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Let E be an elliptic curve with complex multiplication by the ring of integers O

of an imaginary quadratic field K. The purpose of this paper is to describe certain
connections between the arithmetic of E on the one hand and the Galois module
structure of certain arithmetic principal homogeneous spaces arising from E on the
other. The present paper should be regarded as a complement to [AT]; we assume
that the reader is equipped with a copy of the latter paper and that he is not averse
to referring to it from time to time.

An outline of the contents of this paper is as follows. After setting up a certain
amount of notation in Section 0, we give an account of the algebraic p-adic height
pairing on E in Section 1. The pairing that we describe was first introduced by
Bernadette Perrin-Riou (see [PR1], [PR2]). In Section 2 we describe the class invari-
ant homomorphism. This homomorphism measures information regarding the mod-
ule structure of certain principal homogeneous spaces of torsion sub-group schemes
ofE. In the next two sections, we describe what we call the modified classgroup of the
Hopf algebra representing a certain torsion subgroup scheme of E, and we explain
precisely how this group is related to the height pairing on E (see Theorem 4·2).
This gives a very direct and explicit link between the Galois module structure of
the principal homogeneous spaces that we consider and the infinite descent on E
described by Perrin-Riou in [PR1], [PR2]. Theorem 4·2 of the present paper there-
fore goes some way towards addressing the point raised in the introduction of [AT]
concerning the precise nature of the connection between the algebraic p-adic height
pairing and the class invariant homomorphism in the present setting. It seems quite
likely to us that a similar relationship exists in the more general context of the p-adic
height pairings described in [PR3]. It would be of some interest to obtain a better
understanding of the relationship between class invariants and p-adic height pairings
in general. (See [A3] for some further remarks on this.)

The final two sections of this paper are logically independent of the previous
sections, although they involve a similar circle of ideas. Here we develop the bare
beginnings of an Iwasawa theory of classgroups of Hopf orders, using techniques
of Kervaire-Murthy and Ullom (cf. [KM], [U1], [U2]). In particular, we prove an
elliptic analogue of a result of Ullom (see Theorem 6·4).

† The author was partially supported by an NSF Postdoctoral Research Fellowship while the
research described in this paper was carried out.
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448 A. Agboola

0. Notation

We begin by fixing a certain amount of notation that will be in force for the rest
of this paper. Let F/K be a finite extension over which E acquires everywhere good
reduction. Set ∆ = Gal (F/K), and assume that all endomorphisms of E are defined
over F . If α ∈ O we shall sometimes write [α] for the corresponding endomorphism
of E. For any field L, we write Lc for an algebraic closure of L, and we set ΩL =
Gal (Lc/L).

Let p be an odd rational prime which splits in O with pO = pp∗. Choose π ∈ p with
ph = πO for some h > 1, and write π∗ for the complex conjugate of π. Set q = ππ∗.

Let Eπn (resp. Eπ∗n) denote the subgroup of elements of E(Qc) which are killed by
πn (resp. π∗n). (We shall also often write Gn (resp. G∗n) instead of Eπn (resp. Eπ∗n).)
Let

wn: Eπn × Eπ∗n −→ µqn (0·1)

denote the Weil pairing on E. For each R ∈ Eπn , we define a character χ(n)
R ∈ Ĝn by

χ(n)
R = wn(g,R) ∀g ∈ Eπ∗n (0·2)

This identifies Ĝn with Eπ∗n . If ω ∈ ΩF and χ ∈ Ĝn, then ω acts on χ via χω(g) =
χ(gω

−1
)ω. The identification (2) preserves this action since the Weil pairing is ΩF -

equivariant.
For each R ∈ Eπn (resp. R∗ ∈ Eπ∗n), we let F [R] (resp. F [R∗]) denote the field ob-

tained by adjoining the coordinates of R (resp. R∗) to F . We write Fn = xR∈EπnF [R]
(resp. F ∗n = xR∈Eπ∗nF [R]). Set F∞ = xnFn (resp. F ∗∞ = xnF ∗n ), and write Γ1 =
Gal (F∞/F ). Let N∞/F be the unique Zp extension contained in F∞/F , and set
Γ = Gal (N∞/F ).

1. The algebraic p-adic height pairing

In this section we shall describe the algebraic p-adic height pairing on E/F . The
reader may refer to section 3 of [PR1] or to chapter IV of [PR2] for full details of
the results we use.

We begin by recalling various elementary facts about Selmer groups. If q is a
prime of F , we write kq for the residue field of F at q, and we let Ẽ(kq) denote the
reduction of E at q. Write E1,q(F ) for the kernel of reduction of E(F ) at q, and define
E1,p(F ) = E1(F ) via exactness of the sequence

0 −→ E1(F ) −→ E(F ) −→
∏
q|p

Ẽ(kq). (1·1)

Let L be any extension of K over which E is defined. The Selmer group S(L)π
∗n

is defined to be the kernel of the natural homomorphism

H1(ΩL, Eπ∗n) −→
∏

q

H1(ΩLq
, E). (1·2)

(Here Lq denotes the local completion of L at the prime q of L.) The Selmer group
S(L)π

n

is defined similarly. We set S(L) = lim−→S(L)π
n

, and we write Y (L) for the
Pontryagin dual of S(L).
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On p-adic height pairings 449
Define Σ(F )π

∗n
to be the subgroup of S(F )π

∗n
which makes the sequence

0 −→ Σ(F )π
∗n −→ S(F )π

∗n −→
∏
q|p

H1(ΩFq
, Eπ∗n)

exact. Set Σ(F ) = lim←−Σ(F )π
∗n

. Then there is a natural injection

E1(F )⊗O Op∗ → Σ(F )

afforded by Kummer theory on E.
Let J(Fn) denote the group of ideles of Fn, and write U (p)

n for the subgroup of
J(Fn) consisting of ideles which are equal to 1 at all places above p and which are
units elsewhere. Set Cn = J(Fn)/U (p)

n F xn , and let Wn =
∏

q|p µqn(Fn,q).
The first step in the construction of the p-adic height pairing is the following result

(see proposition 3·13 of [PR1]).

Proposition 1·1. There is a natural exact sequence

Hom(Eπn ,Wn)ΩF −→ Hom(Eπn ,Cn(p))ΩF@ > ηn >> Σ(F )π
∗n −→ 0.

(Here Cn(p) denotes the p-primary part of Cn.)

We refer the reader to [PR1] for a proof of this result. We shall give the definition
of the homomorphism ηn in a moment. Before doing so, however, we first explain
how Proposition 1·1 is used to construct the p-adic height pairing.

We first observe that Proposition 1·1 yields an isomorphism

η−1
n : Σ(F )π

∗n −→ Hom(Eπn ,Cn(p))ΩF

Hom(Eπn ,Wn)ΩF
.

Define

Ξn: Σ(F )π
∗n −→ Hom(Eπn ,Cn(p))ΩF

Hom(Eπn ,Wn)ΩF

by Ξn(s)(R) = η−1
n (π∗−nR). For each n, let Xn/Fn be the maximal abelian pro-p

extension of Fn which is unramified away from primes dividing p, and set Xn =
Gal (Xn/Fn), X∞ = lim−→Xn. The global Artin map yields a surjection

(−,Xn/Fn): Cn(p) −→ Xn,

and this induces a homomorphism

Ξ′n: Σ(F )(π∗n) −→ Hom(Eπn , Xn)Γ1 (1·3)

which is defined by Ξ′n = (−,Xn/Fn) ◦ Ξn(s).
It is shown in Section 3·2 of [PR1] that we may take inverse limits of (1·3) to

obtain a homorphism

ΦF : Σ(F ) −→ Hom(Tπ, X∞)Γ1 .

(Here Tπ denotes the π-adic Tate module of E.) ΦF is an isomorphism if the weak
p-adic Leopoldt conjecture holds for F .

It is an immediate consequence of a theorem of Coates (see theorem 12 of [C])
that there is an isomorphism

f : Hom(Tπ, X∞)Γ1 −→ Y (F∞)Γ1 ,
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450 A. Agboola

and it may easily be shown via Pontryagin duality (see [PR1], pp. 378–379) that
there is a natural homomorphism

αF : Y (F∞)Γ1 −→ Hom(E(F )⊗Op,Op).

Hence we obtain a pairing

{, }: E1(F )⊗O Op∗ × E(F )⊗O Op −→ Op

given by {x, y} = (αF ◦ f ◦ ΦF (x))(y); this extends to a pairing (which we shall also
denote by {, })

{, }: E(F )⊗O Op∗ × E(F )⊗O Op −→ Kp.

This pairing {, } is the algebraic p-adic height pairing on E.
We shall now give a description of the homomorphism ηn.
Suppose that f ∈ Hom(Eπn ,Cn(p))ΩF . Let f̄ ∈ Map (Eπn , J(Fn)) be a representa-

tive of f . Write dn: U (p)
n F xn → F xn for the natural projection map.

Consider the sequence of homomorphisms

Hom(Eπn ,Cn(p))ΩF −→ Ext1(Eπn , U (p)
n F xn )ΩF@ > dn >> Ext1(Eπn , F xn )ΩF . (1·4)

Let f1 ∈ Ext1(Eπn , F xn )ΩF denote the image of f under this sequence of homo-
morphisms. It follows via standard theory (see, for example [R], p. 211) that f1 is
represented by the map

(R,S) 7−→ dn

(
f̄ (R + S)
f̄ (R)f̄ (S)

)
, R, S ∈ Eπn .

Next, consider the exact sequence

0 −→ F xn −→ F̄ x −→ F̄ x/F xn −→ 0;

this gives the ΩF -equivariant exact sequence

Hom(Eπn , F̄ x) −→ Hom(Eπn , F̄ x/F xn ) −→ Ext1(Eπn , F xn ) −→ Ext1(Eπn , F̄ xn ).

Now Ext1(Eπn , F̄ xn ) = 0 since F̄ x is divisible. Hence there exists β ∈
Hom(Eπn , F̄ x/F xn ) which maps onto f1 ∈ Ext1(Eπn , F xn ). Any two different choices
of β differ by an element of Hom(Eπn , F̄ x) = Hom(Eπn , µqn) ' Eπ∗n . Since f1

is fixed by ΩF , it follows that for each σ ∈ ΩF , we have βσ = hσβ, where hσ ∈
Hom(Eπn , µqn) ' Eπ∗n . The element ηn(f ) ∈ H1(ΩF , Eπn) is defined to be the coho-
mology class represented by the cocycle {σ 7→ hσ}. It may be easily checked from
the description that ηn(f ) is trivial at all places q with q|p. Hence ηn(f ) ∈ Σ(F )(π∗n),
as claimed.

We conclude this section by remarking that it is the homomorphism ηn that lies
at the heart of the construction of the p-adic height pairing. In Section 4, we shall
relate ηn to the Galois module structure of principal homogeneous spaces arising
from points on E.

2. The class invariant homomorphism

The purpose of this section is to recall various facts that we shall require concerning
the class invariant homomorphism. For full details, we refer the reader to [A1], [AT],
[BT] and [T1].
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On p-adic height pairings 451
Let Bn denote the OF -Hopf algebra which represents the OF -group scheme of

[π∗n]-torsion onE, and let An denote the Cartier dual of Bn. Then Bn is an OF -order
in the algebraBn = MapΩF (Gn,Qc), and An is an order in the algebraAn = (F cGn)ΩF

(where ΩF acts upon both Gn and F c). Let Eπn\ΩF denote a set of representatives
of ΩF orbits of Eπn . Then the Wedderburn decomposition of An is given by

An =
∏

R∈Eπn\ΩF

F [R]

(see e.g. [A1], lemma 3·3). It is shown in [T1] that

An =

{∑
g∈Gn

f (g)g−1|f ∈ Bn

}
and

An =

{
(π∗)−n

∑
g∈Gn

f (g)g−1|f ∈ Bn

}
.

Let E/OF denote the Néron model of E/F . The endomorphism π∗n of E yields
the exact Kummer sequence of commutative group schemes

0 −→ Eπ∗n −→ E@ > π∗n >> E −→ 0.

This in turn yields the following exact sequence of flat cohomology:

0 −→ Eπ∗n −→ E(OF )@ > π∗n >> E(OF ) −→ H1(OF ,Eπ∗n).

Since E(F ) ' E(OF ) (via the universal property of the Néron model), we obtain a
homomorphism

E(F )
π∗nE(F )

' E(OF )
π∗nE(OF )

−→ H1(OF ,Eπ∗n).

Thus each point Q ∈ E(F ) yields an element of H1(OF ,Eπ∗n); this element is repre-
sented by an algebra CQ(n) which is a principal homogeneous space of Bn. It may be
shown that CQ(n) is a locally free An-module, and so determines an element (CQ(n))
in the locally free classgroup Cl(An) of An. Hence we obtain a map

ψn: E(F ) −→ Cl(An)

defined by ψn(Q) = (CQ(n)). It is shown in [T1] that if E/F has everywhere good
reduction, then ψn is a homomorphism. (For a discussion of ψn in terms of the
geometry of E, we refer the reader to [A2].)

Let us now make a remark on Galois action. Write CQ(n) = CQ(n) ⊗OF F ; then
CQ(n) is a principal homogeneous space of Bn, and so determines an element sQ(n) ∈
H1(F,Eπ∗n). In general, CQ(n) is not stable under the action of Gn. However,
(CQ(n)⊗Fn)/F is a Galois algebra with Galois group isomorphic to Gal (Fn/F )nGn,
where for g ∈ Gn and γ ∈ Gal (Fn/F ), we have

γ−1gγ = γ(g)

(i.e. Galois action of γ on Gn). If c ∈ CQ(n) ⊗ F c and σ ∈ ΩF , then it follows from
Galois descent (cf. [BT], pp. 181–183) that

cσ = csQ(n)(σ).
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452 A. Agboola

We shall write PH(Bn) (resp. PH(Bn)) for the group of principal homogeneous
spaces of Bn (resp. Bn), and we let PHp(Bn) (resp. PHp(Bn)) denote the group of
principal homogeneous spaces of Bn (resp. Bn) that are locally trivial at all places di-
viding p. There are natural injections PH(Bn) ↪→ PH(Bn) and PHp(Bn) ↪→ PHp(Bn).

We now turn our attention to locally free classgroups. Let J(An) denote the group
of finite ideles ofAn. The theory of classgroups (see e.g. chapter VI of [CR]) furnishes
us with isomorphisms

Cl(An) ' J(An)
(
∏

q Ax
n,q)Axn

' Map (Eπn , J(Qc))ΩF∏
q(Det (Ax

n,q)) Map (Eπn , (F c)x)ΩF
. (2·1)

This notation may be explained as follows. Suppose that u ∈ J(An). Then u de-
termines a map Det (u) ∈ Map (Eπn , J(Qc))ΩF which is defined by

Det (u)(R)q = χ(n)
R (uq).

The second isomorphism in (2·1) is induced by the map u 7→ Det (u) from J(An)
to Map (Eπn , J(Qc))ΩF .

We shall now describe the construction of an idele in J(An) representing the class
(CQ(n)) ∈ Cl(An). Define the resolvend map

r: CQ(n) −→ (CQ(n)⊗ Fn)[Gn]

by

r(c) =
∑
g∈Gn

cgg−1.

Then r is a homomorphism of An-modules (but not of algebras, since it does not
preserve multiplication). It is a standard result in Galois theory that r(c) is invertible
if and only if CQ(n) = cAn.

For each prime q of F , choose a local generator cq ∈ CQ(n)q such that CQ(n)q =
cq An,q, and let c ∈ CQ(n) satisfy CQ(n) = cAn. Then we have that r(c) = r(cq)uq,
with uq ∈ Axn,q. The idele (uq) ∈ J(An) represents the class (CQ(n)) ∈ Cl(An).

3. The modified class invariant homomorphism

In this section we shall describe a map that we call the modified class invariant
homomorphism. It is this map that gives the link between the module structure of
principal homogeneous spaces and the algebraic p-adic height pairing.

Let Jp(An) denote the subgroup of
∏

q Det (Ax
n,q) consisting of those elements that

are equal to 1 at all places dividing p. If q is a prime of F , we write Gn(Fq) for
the subgroup of elements of Gn that are rational over Fq. The modified classgroup
Cl′(An) of An is defined as follows:

Cl′(An) =
J(An)

Jp(An) (
∏

q|p Gn(Fq))Axn
.

We remark that (unlike Cl(An)) Cl′(An) is an infinite group, and there is a natural
surjection

en: Cl′(An) −→ Cl(An).

Now suppose that C ∈ PHp(Bn), with C÷C⊗F . For each q|p, there is a natural
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On p-adic height pairings 453
isomorphism of Fq-algebras and An,q-modules

iq: Cq −→ Bn,q;

iq is only defined up to an element of AutFq
(Bn,q) = Gn(Fq). There is also an isomor-

phism

jn,q: Bn,q −→ An,q

of An,q-modules (but not of algebras) defined by

jq(f ) =
∑
g∈Gn

f (g) g−1.

Suppose that C = cAn, and set

νn,q(c) = jq ◦ iq(c).

Then νn,q(c) gives a well-defined element of Axn,q/Gn(Fq)Axn. We define the modified
class invariant homomorphism

ψ′n: PHp(Bn) −→ Cl′(An)

by explaining how to construct an idele in J(An) representing ψ′n(C). Suppose that
Cq = cq An,q for each prime q of F . Then ψ′n(C) is represented by the idele whose
components are given by {

r(c) r(cq)−1 q H p

νn,q(c) q|p.

It may be easily checked that this gives a well-defined homomorphism independent
of the choices of c and cq. We shall abuse notation and write ψ′n(Q) for ψ′n(CQ(n)) if
Q ∈ Σ(F )(π∗n).

Proposition 3·1. Suppose that Q ∈ Σ(F )(π∗n).Then en ◦ ψ′n(Q) = ψn(Q).

Proof. Choose a generator c ∈ CQ(n) such that CQ(n) = cAn and CQ(n)q = cAn,q

for all places q|p. Then ψn(Q) is represented by the idele{
r(c) r(cq)−1 q H p

1 q|p.

Hence the class (en ◦ψ′n(Q))ψn(Q)−1. is represented by the idele (vq) that is equal to
νn,q(c) for q|p and equal to 1 elsewhere.

Now since CQ(n)q = cAn,q for all places q|p, it follows that νn,q(c) is a generator of
An,q as a module over itself. Hence for each q with q|p, we have νn,q(c) ∈ Ax

n,q, and now
the result follows, since the idele (vq) lies in the denominator of the classgroup. q

Let m be a positive integer. We shall now give the definition of the mth Adams
operation [m] on Cl′(An). (There is also a similar operation on Cl(An) which is defined
in an identical manner.)

For any commutative F -algebra S, say, there is a natural map [m]: S[Gn]→ S[Gn]
defined by

[m]
∑
g∈Gn

sgg =
∑
g∈Gn

sgg
m.
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454 A. Agboola

Now suppose that α ∈ Cl′(An) is represented by the idele (vq) ∈ J(An). The mth
Adams operation [m] : Cl′(An) → Cl′(An) is defined as follows: [m]α is the class
represented by the idele ([m]vq) ∈ J(An). It may easily be checked that this gives a
well-defined operation on Cl′(An).

Proposition 3·2. Suppose that Q ∈ Σ(F )(π∗n). Then ([m]ψ′n(Q))(ψ′n(Q))−m = 0 for
all positive integers m.

Proof. It is shown in lemma 4·15 and proposition 7·5 of [AT] that ([m]r(c))
(r(c))−m ∈ Axn and that ([m]r(cq))(r(cq))−m ∈ Ax

n,q. This implies the result.

4. The class invariant and the p-adic height

In this section, we shall describe the link between the homomorphisms ψ′n of
Section 3 and ηn of Section 1. We thus obtain a direct relationship between the
class invariant of Q on the one hand, and the p-adic height of Q on the other.

We begin by observing that there is a natural homomorphism

ξn: Cl′(An) −→ Map (Eπn ,Cn(p))ΩF∏
q|p Hom(Eπn , µqn(Fq))ΩF

defined as follows. Suppose that α ∈ Cl′(An) is represented by the idele (vq) of J(An).
Then ξn(α) is represented by the map R 7→ (χR(vq)) of Map (Eπn , J(F c))ΩF .

The following result is an immediate consequence of Proposition 3·2.

Proposition 4·1. Suppose that Q ∈ Σ(F )(π∗n). Then

ξn ◦ ψ′n(Q) ∈ Hom(Eπn ,Cn(p))ΩF∏
q|p Hom(Eπn , µqn(Fq))ΩF

.

We are now able to describe the relationship between ψ′n and ηn.

Theorem 4·2. Suppose that Q ∈ Σ(F )(π∗n). Then ηn ◦ ξn ◦ ψ′n(Q) = Q.

Proof. This follows from carefully unwinding the definitions of the homomorphisms
involved. We begin by observing that ξn ◦ ψ′n(Q) is represented by
f̄ ∈ Map (Eπn , J(F c))ΩF defined by

f̄ (R) = χR(uq) q H p

= χR(νn,q(c)) q|p.

Let f1 ∈ Ext1(Eπn , F xn )ΩF denote the image of ξn ◦ ψ′n(Q) under the sequence of
homomorphisms (1·4). Then f1 is represented by the map

(R,S) 7−→ dn

(
f̄ (R + S)
f̄ (R)f̄ (S)

)
i.e.

(R,S) 7−→
∏
q|p

χR+S(νn,q(c))
χR(νn,q(c))χS(νn,q(c))

.

Next we note that since Cn(Q) is a principal homogeneous space of Bn, there is
an isomorphism (of algebras and An ⊗ F c-modules)

i′: Cn(Q)⊗ F c −→ Bn ⊗ F c.
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On p-adic height pairings 455
There is also an isomorphism

j′: Bn ⊗ F c −→ An ⊗ F c

of An ⊗ F c-modules (but not of algebras) defined by j′(f ) =
∑

g∈Gn f (g)g−1. Set
ν′n = j′ ◦ i′.

Recall from Section 1 that there is a natural surjection

Hom(Eπn , (F c)x/F xn ) −→ Ext1(Eπn , F xn ).

Define β ∈ Hom(Eπn , (F c)x/F xn ) by β(R) = χR(ν′n(c)) (modF xn ). Then β 7→ f1

under the above surjection.
The fact that ηn ◦ ξn ◦ ψ′n(Q) = Q now follows from the definition of ηn together

with the remarks on Galois action on principal homogeneous spaces in Section 1.

5. Further remarks on classgroups

The remainder of this paper is devoted to an analysis of a certain piece of Cl(An)
via the techniques of Ullom and Kervaire-Murty (see [KM], [U1], [U2]). In order to
carry out this analysis, we shall require certain results proved in [AT]. We therefore
assume from now on:

(i) that F/K is abelian, and that F and K(Ep∞) are linearly disjoint over K;
(ii) that the prime p is completely split in F/K.
The assumption (i) implies that the Wedderburn decompositions of An and Bn are

given by

An '
n⊕
i=0

Fi, Bn '
n⊕
i=0

F ∗i . (5·1)

Let {χi}ni=0 denote a sequence of characters of G∗n such that χi has order qi and
χqi+1 = χi. We assume that the above decomposition of An is induced by

⊕n
i=0 χi.

We shall now describe two different homomorphisms from Cl(An) to Cl(An−1). It
is most important that the reader keep in mind the distinction between these maps.

Let α ∈ Cl(An), and let mn ∈ J(An) be a representative of α in (2·1). Then
qn(α) ∈ Cl(An−1) is defined to be the class represented by the element

R 7−→ χR(mn), R ∈ Eπn−1

of Map (Eπn−1 , J(Qc))ΩF . This gives us a homomorphism (‘passage to quotient’; see
chapter 1, section 4 of [T2])

qn: Cl(An) −→ Cl(An−1).

The other map that we wish to consider is the restriction map on classgroups.
Suppose that α ∈ Cl(An) and mn ∈ J(An) are as above. Then resn/n−1(α) ∈ Cl(An−1)
is defined to be the class represented by the element

R 7−→ (IndGnGn−1
χR)(mn), R ∈ Eπn−1

of Map (Eπn−1 , J(Qc))ΩF . (Here IndGnGn−1
χR denotes the character of Gn induced from

Gn−1 by χR.) Now a straightforward computation shows that we have

(IndGnGn−1
χR)(mn) =

∏
{R′∈Gn|[q]R′=R}

χR′(mn)

= NFn/Fn−1 (χR′)(mn)
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456 A. Agboola

for any choice ofR′ ∈ Gn with [q]R′ = R. Hence a representing map for resn/n−1(α) ∈
Cl(An−1) is given by

R 7−→ NFn/Fn−1 (χR)(mn) =
∏

{R′∈Gn|[q]R′=R}

χR′(mn).

We shall now focus our attention on certain natural automorphisms of Cl(An).
Write κ: ΩF → Zxp for the character giving the action of ΩF on the π-adic Tate module
Tπ of E. Let Aut (Gn) denote the group of automorphisms of Gn. Then there is a
canonical isomorphism Aut (Gn) → Gal (Fn/F ) given by τ 7→ στ . This isomorphism
induces an action of Aut (Gn) on An via Galois action on each factor occuring in the
Wedderburn decomposition (4·1) of An. We now examine this action. Suppose that
m =

∑
g agg is an element of An, and that R ∈ Eπn . For each τ ∈ Aut (Gn), we have

[χR(m)]στ =
∑
g∈Gn

aστg wn(R, g)στ

=
∑
g∈Gn

aστg wn(Rστ , gστ )

=
∑
g∈Gn

agwn(Rστ , g)

=
∑
g∈Gn

agwn(κ(στ )R, g)

=
∑
g∈Gn

agwn(R, κ(στ )g)

= χR([κ(στ )]m).

Now [κ(στ )]: An → An is a homomorphism of algebras. Hence Aut (Gn) preserves
the denominator of (2.1), whence it follows that Aut (Gn) acts on Cl(An) via its action
on An. Thus, Cl(An) is an Aut (Gn)-module.

We next observe that Aut (Gn) ' ∆ × Γn, where |∆| = p − 1, and Γn is cyclic of
order qn. Set Γ = lim←−Γn (where here the inverse limit is taken with respect to the
natural quotient map Γn → Γn−1). Then lim←−Cl(An) (inverse limit taken with respect
to the restriction maps resn/n−1) carries the structure of a Γ-module in the obvious
manner.

Let Cl(An)(p) denote the p-primary part of Cl(An), and set Q(F ) = lim←−Cl(An)(p)

(where here again the inverse limit is taken with respect to the restriction maps
resn/n−1). Then Q(F ) is a Λ÷Zp[[Γ]]-module.

6. The kernel group

Write Mn for the OF -maximal order of An. The kernel group D(An) of An is
defined to be the kernel of the natural homomorphism Cl(An) → Cl(Mn). Since
An,p = Mn,q for q H p (see proposition 2·1 of [AT]), it follows from standard theory
that

D(An) '
Mx

n,p

Ax
n,p A

x
n

. (6·1)

The following result is proved in section 9 (see especially (9·7)) of [AT].
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On p-adic height pairings 457
Proposition 6·1. There is a natural homomorphism

δn: D(An) −→
Ox
Fn−1,p

mod p

Im (Ox
Fn−1

)
, (6·2)

where Im (Ox
Fn−1

) denotes the image of Ox
Fn−1

mod p. This homomorphism is defined as
follows. Set Ln = Fn F

∗
n ; then via the existence of the Weil pairing, we see that µqn ⊂ Ln.

Let f ∈ Gal (Ln/F (µqn)) denote the Frobenius automorphism for the primes of F (µqn)
above p. Suppose that α ∈ D(An) is represented in (6·1) by an element m ∈Mx

n p. Then

δn(α) = NFn/Fn−1 (χn(m))χn−1(m)−fIm (Ox
Fn−1

)mod p.

Now set Vn = ker (qn|D(An)). We remark that classes in Vn may be represented
by elements m ∈ Mx

n,p satisfying χi(m) = 1 for i < n. It is easily seen that
resn/n−1(D(An)) ⊂ D(An−1) and that resn/n−1(Vn) ⊂ Vn−1. In the remainder of
this section, we shall determine the structure of lim←−Vn (where the inverse limit is
taken with respect to the restriction map on classgroups) as a Λ-module. We begin
by examining lim←−Ker (δn|Vn).

Lemma 6·2. lim←−Ker (δn|Vn) = 0.

Proof. Suppose that (sn) ∈ lim←−Ker (δn|Vn). Then each class sn ∈ Vn may be rep-
resented (via the isomorphism (6·1) by an element mn ∈Mx

n,p satisfying χi(mn) = 1
for i < n.

Fix n, and choose M > n. Suppose that sM ∈ VM is represented by mM with
χi(mM ) = 1 for i < M . Since sn = resM/n(sM ), it follows that there is a representative
mn(M ) ∈ Mx

n,p of sn, say, which is such that χn(mn(M )) = NFM/Fn(χM (mM )), and
χi(mn(M )) = 1 for i < n.

Now sM ∈ ker(δM ), and so there is a global unit uM−1 ∈ Ox
FM−1

such that
NFM/FM−1 (χM (mM )) ≡ uM−1(mod p). This implies that χn(mn(M )) = un γn, where
un ∈ Ox

Fn
is a global unit, and γn ∈ Ox

Fn,p
. The local unit γn may be made as p-

adically close to 1 as we please by choosing M to be sufficiently large (as may be
seen by an argument very similar to that given in lemma 3·2 of [U2]). Hence mn(M )
lies in the denominator of the RHS of (6·1) for all sufficiently large M , and so it
follows that sn = 0. This establishes the result. q

Hence we deduce that the natural map

δ = lim←− δn: lim←−Vn −→ lim←−
Ox
Fn−1,p

mod p

Im (Ox
Fn−1

)

(where the right-hand inverse limit is taken with respect to the norm map) is an
injection. We remark that δ is clearly a Γ-homomorphism.

We shall now show that δn|Vn is surjective, whence it follows that δn is an isomor-
phism. This is an immediate consequence of the following lemma.

Lemma 6·3. Let q be any prime of F lying above p. Then

(1 + pOF,q)NFn+1/Fn(Ox
Fn+1,q

) = Ox
Fn,q

.

Proof. The proof is via classfield theory. We begin by observing that
[Ox

Fn,q
: NFn+1/Fn(Ox

Fn+1,q
)] = p, since Fn+1,q/Fn,q is totally ramified. Now 1 + pOF,q is
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458 A. Agboola

topologically generated by 1 + p, and so to prove our result it suffices to show that
the Artin symbol (1 + p, Fn+1,q/Fn,q) is non-trivial.

We have the following sequence of maps:

Ox
F,q@ > Artin >> Gal (Fn+1,q/Fq)@ > transfer >> Gal (Fn+1,q/Fn,q).

Under this sequence of maps, 1+pOF,q maps surjectively onto the p-Sylow subgroup
of Gal (Fn+1,q/Fn,q) since [Ox

F,q: 1 + pOF,q] is of order prime to p. The result now
follows from the fact that Gal (Fn+1,q/Fn,q) is a p-group.

Thus, we have now shown that

lim←−Vn ' lim←−
Ox
Fn−1,p

mod p

Im (Ox
Fn−1

)
,

where the left-hand inverse limit is taken with respect to the restriction map on
classgroups and the right-hand inverse limit is taken with respect to the norm map.

Now let H∞ (resp. X∞) be the maximal abelian pro-p extension of F∞ which is
everywhere unramified (resp. unramified away from p), and set Y∞ = Gal (X∞/H∞).
It follows from classfield theory (cf. the argument given in Section 3 of [U2]) that

lim←−
Ox
Fn−1,p

mod p

Im (Ox
Fn−1

)
' Y∞

as Γ-modules. The following result, which may be regarded as an elliptic analogue
of theorem 3·6(a) of [U2], is now immediate.

Theorem 6·4. There is a canonical isomorphism of Λ-modules

lim←−Vn ' Y∞.
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