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ON TWISTED FORMS AND RELATIVE
ALGEBRAIC K-THEORY

A. AGBOOLA and D. BURNS

1. Introduction

Let R be a Dedekind domain with field of fractions F , and suppose that
G → Spec(R) is a finite, flat, commutative group scheme. In recent years, there
has been some interest in the study of Galois structure invariants attached to
torsors of G. The original motivation for this work arose from the study of the
Galois module structure of rings of integers: if X → Spec(R) is a G-torsor, then
we may write X = Spec(C), and in many cases, the algebra C may be viewed as
being an order in the ring of integers of some (in general wildly ramified) field
extension of F . The case in which G is a torsion subgroup scheme of an abelian
variety is particularly interesting: here the corresponding torsors are obtained by
dividing points in the Mordell–Weil group of the abelian variety, and this enables
one to relate questions concerning the Galois structure of rings of integers to the
arithmetic of abelian varieties. This approach was first introduced by M. J. Taylor
(see [12, 28, 29]), and has since been developed in greater generality by several
authors (see for example [3, 5, 11, 24]).

The main goal of this paper is to show that combining ideas arising from the
study of Galois structure invariants attached to torsors of G with techniques from
relative algebraic K-theory yields a natural refinement and reinterpretation of
several different aspects of Galois module theory. At the same time, we shall also
see that this approach also gives fresh insight into a number of old results. We
remark that techniques involving relative algebraic K-theory have already played
an essential role in the formulation of an equivariant version of the Tamagawa
Number Conjecture of Bloch and Kato, and in the description of its consequences
for Galois module theory (see [9, 10]).

We now give an outline of the contents of this paper. In § 2, we recall the definition
of a fibre product category, and we introduce the notion of a generalised twisted
form. This is a generalisation of the usual notion of a twisted form or principal
homogeneous space of a Hopf algebra (see Remark 2.4). An example of such an
object may be given as follows. Suppose that A is a finitely generated R-algebra
which spans a semisimple F -algebra A, and let E be an extension of F . Then
a generalised E-twisted A-form is given by a triple [M,N ; ι], where M and N

are finitely generated, locally free A-modules, and ι : M ⊗R E ∼→ N ⊗R E is an
isomorphism of A⊗F E-modules. We discuss two particular examples of generalised
twisted forms that provide motivation for our later work. The first example arises
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2 a. agboola and d. burns

via finite Galois extensions of number fields, while the second is constructed using
torsors of finite, flat, commutative group schemes.

It follows from the definition that generalised twisted forms may be classified
by appropriate relative algebraic K-groups. (For example, the generalised twisted
forms [M,N ; ι] described above yield classes in a relative algebraic K-group that we
denote by K0(A, E).) In § 3, we recall the basic facts concerning relative algebraic
K-theory that we use, and we then give a Fröhlich-type ‘Hom-description’ of relative
algebraic K-groups of the form K0(A, E). This description may itself be of some
independent interest.

Suppose now that F is a number field. In § 4, we define the notion of a metric µ
on a finitely generated, locally free A-module M . Following [16], we then define an
arithmetic classgroup AC(A) which classifies metrised A-modules (M,µ). There is
a natural homomorphism ∂A,F c from the relative algebraic K-group K0(A, F c) to
AC(A) (where Fc denotes an algebraic closure of F ). Proposition 4.11 implies that
if (M,N ; ι1) is a generalised Fc -twisted A-form with M and N both locally free
A-modules, then for any metric µ on N , the image of the class (M,N ; ι1) under
∂A,F c measures the difference between the elements of AC(A) that are associated to
(M, ι∗1(µ)) and (N,µ), where ι∗1(µ) is the metric on M that is obtained from µ via
pullback by ι1. This result is of interest since, in many of the examples that occur
in Galois module theory, canonical metrics on locally free A-modules can be shown
to be equal to, for instance, the pullback of the trivial metric on A by a natural
homomorphism.

In § 5, we give two applications of the approach described in this paper to the
study of Galois structure of rings of integers in tamely ramified extensions. For the
first application, we combine our work with results of Bley and the second-named
author from [8] and we obtain a natural strengthening of a result of Chinburg,
Pappas and Taylor concerning the hermitian Galois structure of rings of integers.
For the second application, we describe how certain natural torsion Galois module
invariants first introduced by S. Chase (see [13]) are related to certain ‘equivariant
discriminants’ that take values in a relative algebraic K-group.

The remainder of the paper is devoted to describing how the methods we develop
may be applied to the study of the Galois structure of torsors in several different
contexts. In § 6, we discuss reduced resolvends associated to torsors. This notion was
first introduced by L. McCulloh in a different setting (see [22]). We use a different
approach from McCulloh’s (see [3]), and we give a new characterisation of reduced
resolvends as being primitive elements of a certain algebraic group.

We then introduce a natural refinement of the class invariant homomorphism first
studied by W. Waterhouse in [31]. Our refined homomorphism takes values in a
suitable relative algebraic K-group. We show that the homomorphism is injective,
and that its image admits a precise functorial description in almost all cases of
interest. This extends a result of the first-named author in [2].

Finally, we explain how the approach described in this paper enables one to refine
McCulloh’s results on realisable classes of rings of integers of tame extensions by
considering invariants that lie in an appropriate relative algebraic K-group, rather
than in a locally free classgroup. This gives a relationship between McCulloh’s
realisability results, and the work of Chase concerning certain torsion Galois
modules. It also yields realisability results in certain arithmetic classgroups. We
find that, in general, the collection of realisable classes in the relative algebraic
K-group does not form a group.
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on twisted forms and relative algebraic K-theory 3

Notation. Throughout this paper, all modules are left modules, unless
explicitly stated otherwise.

For any field L, we write Lc for an algebraic closure of L, and we set
ΩL := Gal(Lc/L). If L is either a number field or a local field, then OL will denote
its ring of integers.

If L is a number field, we write Sf (L) and S∞(L) for the sets of, respectively,
finite and infinite places of L. If v is any place of L, then we write Lv for the local
completion of L at v. For any OL -module P , we shall usually set Pv := P ⊗OL

OLv
.

If S1 ⊂ S2 are rings, and if A is any S1-algebra, then we often write AS2 for
A⊗S1 S2. We also often use similar notation MS2 := M⊗S1 S2 for any S1-module M .

The symbol ζ(A) denotes the centre of A.
For any isomorphic A-modules M and N , we write IsA (M,N) for the set of

A-equivariant isomorphisms M ∼→ N .
Throughout this paper, R denotes a Dedekind domain with field of fractions F .

We write Rc for the integral closure of R in Fc . We also allow the possibility that
R = F , in which case of course Rc = Fc .

Finally, we remark that if G and H are two groups, then we sometimes use the
notation g × h (rather than (g, h)) for an element of the product G × H.

2. Twisted forms and fibre product categories

2.1. Fibre product categories

Let Fi : Pi → P3, for i ∈ {1, 2}, be functors between categories and consider the
fibre product category P4 := P1 ×P3 P2. Explicitly, P4 is the category with objects
(L1, L2;λ) where Li is an object of Pi for i ∈ {1, 2} and λ : F1(L1) ∼→ F2(L2)
is an isomorphism in P3. Morphisms α : (L1, L2;λ) → (L′

1, L
′
2;λ

′) in P4 are pairs
α = (α1, α2) with αi ∈ HomPi

(Li, L
′
i) so that the diagram

F1(L1)
F1(α1) ��

λ

��

F1(L′
1)

λ ′

��
F2(L2)

F2(α2) �� F2(L′
2)

in P3 commutes. Such a morphism α is an isomorphism in P4 if and only if the
morphisms α1 and α2 are both isomorphisms. (The reader may consult [6, Chapter
VII, § 3] for more details concerning fibre product categories.)

2.2. Generalised twisted forms

For any ring Λ we write PΛ for the category of finitely generated projective
Λ-modules.

Recall that R is a Dedekind domain, with fraction field F . Suppose that A is
a finitely generated R-algebra which spans a semisimple F -algebra A. For any
extension Λ of R we write PA ×Λ PA for the fibre product category with F1 and F2

both equal to the scalar extension functor −⊗R Λ from PA to PA⊗R Λ.
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4 a. agboola and d. burns

Definition 2.1. We shall refer to an object of the category PA ×Λ PA as a
generalised Λ-twisted A-form. We abbreviate this terminology to generalised twisted
form, or even just twisted form, when both A and Λ are clear from the context.

Example 2.2 (Classical). Suppose that F is a number field, and let L/F be any
finite extension. We write N for the normal closure of L over F and we let ΣF (L,N)
denote the set of distinct F -embeddings of L into N . Set HL

F :=
∏

ΣF (L,N ) Z, and
write Aut(L/F ) for the group of F -automorphisms of L. Then there is a canonical
N [Aut(L/F )]-equivariant isomorphism

πL,N
F : L ⊗F N ∼→ HL

F ⊗Z N

which is given by mapping each primitive tensor l ⊗ n to the vector (σ(l)n)σ .
Now suppose that S is any subring of F and let G be a subgroup of Aut(L/F ).

Then for any projective S[G]-submodule L of L such that L ⊗S F = L, the
triple (L,HL

F ⊗Z S;πL,N
F ) is a generalised N -twisted S[G]-form.

In special cases there are canonical choices of L. For example, if S = F , then one
can take L = L. In addition, if L is a tamely ramified Galois extension of a field K
with Gal(L/K) = G and S = OF for any subfield F of K, then one can take L to
be any G-stable fractional ideal of OL (see [30]).

Example 2.3 (Geometrical). Let R be any Dedekind domain, with field of
fractions F . (We allow R = F .) Suppose that G → Spec(R) is a finite, flat,
commutative group scheme, and let G∗ denote its Cartier dual. Write A := OG∗ and
A := A ⊗R F . It is shown by Waterhouse in [31, §§ 1 and 2] (see also [20, éxposé
VII] or [23]) that there is a canonical isomorphism of groups

H1(Spec(R), G) � Ext1(G∗,Gm ).

This implies that given any G-torsor π : X → Spec(R), we can associate to it a
canonical commutative extension

1 −→ Gm −→ G(π) −→ G∗ −→ 1. (1)

The scheme G(π) is a Gm -torsor over G∗, and we write Lπ for its associated G∗-
bundle.

Let π0 : G → Spec(R) denote the trivial G-torsor. Then, over Spec(Rc), the
G-torsors π and π0 become isomorphic, that is, there is an isomorphism

X ⊗R Rc ∼→ G ⊗R Rc

of schemes with G-action. Hence, via the functoriality of the construction in [31,
§ 2], we obtain an A ⊗R Rc -equivariant isomorphism

ξπ : Lπ ⊗R Rc ∼→ A ⊗R Rc. (2)

We refer to ξπ as a splitting isomorphism associated to π. Then the triple (Lπ ,A; ξπ )
is a generalised Rc -twisted A-form.

Remark 2.4. The line bundle Lπ in Example 2.3 may be described explicitly
in the following way (see [31, § 4]). For any G-torsor π : X → Spec(R) as above,
the structure sheaf OX is an OG -comodule, and so it is also an A-module (see [15,
Proposition 1.3]). As an A-module, OX is locally free of rank 1, and so it gives
a line bundle Mπ on G∗. Then it may be shown that Lπ = Mπ ⊗ M−1

π0
. The
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on twisted forms and relative algebraic K-theory 5

line bundle Mπ is a principal homogeneous space, or twisted form of the Hopf
algebra A in the sense of, for example [29] or [12], and this is the motivation for
Definition 2.1 above.

3. Relative algebraic K-theory

3.1. Basic theory

Let Λ be any extension of R, and let A be a finitely generated R-algebra which
spans an F -algebra A. In this subsection, we shall recall some basic facts concerning
the K-theory of categories of the form PA ×Λ PA. Further details of these results
may be found in [27, Chapter 15] and [17, § 40B].

Definition 3.1. A short exact sequence of objects in PA ×Λ PA is a sequence

0 −→ (L1, L2;λ)
(α1,α2)−−−−−→ (L′

1, L
′
2;λ

′)
(α ′

1,α ′
2)−−−−−→ (L′′

1 , L′′
2 ;λ′′) −→ 0 (3)

such that (α1, α2) and (α′
1, α

′
2) are morphisms in PA ×Λ PA, and such that

0 −→ L1
α1−→ L′

1

α ′
1−→ L′′

1 −→ 0 and 0 −→ L2
α2−→ L′

1

α ′
2−→ L′′

2 −→ 0

are exact sequences of R-modules.

Definition 3.2. We write [L1, L2;λ] for the isomorphism class of an object
(L1, L2;λ) of PA ×Λ PA. We define the relative algebraic K-group K0(A,Λ) to be
the abelian group with generators the isomorphism classes of objects of PA ×Λ PA

and relations
(i) [L′

1, L
′
2;λ

′] = [L1, L2;λ] + [L′′
1 , L′′

2 ;λ′′] for each exact sequence (3),
(ii) [M1,M2; η ◦ η′] = [M1,M3; η′] + [M3,M2; η].
It may be shown that every element of K0(A,Λ) is of the form [L1, L2;λ] (see

[27, Lemma 15.6]). However, the natural map from the set of isomorphism classes
of objects of PA ×Λ PA to K0(A,Λ) is very far from being injective (for example,
the image of the element [An ,An ; 1AΛ ] under this map is zero for every positive
integer n).

For any ring Λ we write K0T (Λ) for the Grothendieck group of the category of
Λ-modules which are both finite and of finite projective dimension. Then there are
natural isomorphisms

K0(A, F ) ∼→ K0T (A) ∼→
⊕

v

K0T (Av ) (4)

where v runs over all finite places of R (see the discussion following (49.12) in [17]).
The first isomorphism in (4) is defined in the following way. If M is any A-module
which is both finite and of finite projective dimension, then (since R is a Dedekind
domain), there exists an exact sequence of A-modules of the form

0 −→ P
ϕ−→ Q −→ M −→ 0

in which P and Q are both finitely generated and projective. The first isomorphism
of (4) sends (P,ϕ,Q) to the class of M .
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6 a. agboola and d. burns

For any ring S we write Ki(S) (i = 0, 1) for the algebraic K-group in degree i
of the exact category PS . We recall that if R → Λ is any homomorphism of rings,
then there is a long exact sequence of relative algebraic K-theory:

K1(A)
∂2

A,Λ−−−→ K1(AΛ)
∂1

A,Λ−−−→ K0(A,Λ)
∂0

A,Λ−−−→ K0(A) −−−→ K0(AΛ) (5)

(see [27, Theorem 15.5]). Here the homomorphism ∂2
A,Λ is the natural scalar

extension morphism. The homomorphism ∂0
A,Λ is defined by

∂0
A,Λ([L1, L2;λ]) = [L1] − [L2].

In order to describe ∂1
A,Λ, we first recall that K1(AΛ) is generated by elements of

the form (V, φ), where V is a finitely generated free AΛ-module and φ ∈ IsAΛ(V, V ).
If T is any projective A-submodule of V such that T ⊗R Λ = V , then ∂1

A,Λ is defined
by setting

∂1
A,Λ((V, φ)) = [T, T ;φ].

This definition is independent of the choice of T .

Remark 3.3. Let E be any extension of F . When AE is a semisimple algebra,
it is often convenient to compute in K1(AE ) by means of the injective ‘reduced
norm’ map

nrdAE
: K1(AE ) −→ ζ(AE )×.

This map sends the element (V, φ) to the reduced norm of φ, considered as an
element of the semisimple E-algebra EndAE

(V ).
If A is commutative, then the determinant functors over AE and A combine

to induce canonical isomorphisms of K1(AE )/ im(∂2
A,E ) with A×

E /A× and of
ker[K0(A) → K0(AE )] with Pic(A). Hence the exact sequence (5) implies that
in this case, the group K0(A, E) may be identified with the multiplicative group of
invertible A-modules in AE .

Proposition 3.4. If E is any extension of F , then the following sequence is
exact:

0 −→ K1(A)
f1−→ K1(AE ) ⊕ K0(A, F )

f2−→ K0(A, E) −→ 0. (6)

Here f1(x) = (∂2
A,E (x),−∂1

A,F (x)), and f2(y1, y2) = ∂1
A,E (y1) + ιA,E (y2), where

ιA,E : K0(A, F ) → K0(A, E) is the natural scalar extension morphism.

Proof. We first observe that f1 is injective because the scalar extension map
∂2

A,E is injective. Next, we note that upon comparing the exact sequences (5) with
Λ = E and Λ = F , one obtains a commutative diagram:

K1(A)
f3 �� K1(AE )

∂1
A, E �� K0(A, E)

f4 �� K0(A)
f5 �� K0(AE )

K1(A)
f6 �� K1(A)

∂1
A, F ��

∂2
A , E

��

K0(A, F )
f7 ��

ιA, E

��

K0(A) �� K0(A)

ιA , E

��

In this diagram, the morphisms ιA,E and ιA,E are the natural scalar extension
morphisms, and are therefore injective. (We remark that in fact the injectivity of
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on twisted forms and relative algebraic K-theory 7

ιA,E follows from the injectivity of ∂2
A,E , as may be shown by an easy diagram-

chasing argument.)
We now show that f2 is surjective. Suppose that z ∈ K0(A, E). Then, as

f5(f4(z)) = 0 and ιA,E is injective, we may choose z1 ∈ K0(A, F ) such that
f7(z1) = f4(z). We then have z − ιA,E (z1) = ∂1

A,E (z2) for some z2 ∈ K1(AE ).
It is easy to check that f2(z2, z1) = z, and so it follows that f2 is surjective.

It now remains to show that Ker(f2) = Im(f1). Suppose that y1 ∈ K1(AE ) and
y2 ∈ K0(A, F ) are such that

∂1
A,E (y1) = ιA,E (y2) = y ∈ K0(A, E),

say. We have to show that there exists y′ ∈ K1(A) such that ∂2
A,E (y′) = y1 and

∂1
A,F (y′) = y2.
Now f5(y) = f4(∂1

A,E (y1)) = 0, and so it follows that f7(y2) = 0. Hence there
exists y3 ∈ K1(A) such that ∂1

A,F (y3) = y2. We now deduce that

f3(y4) = ∂2
A,E (y3) − y1

for some y4 ∈ K1(A). Set y′ = y3 − f6(y4). It is easy to show that ∂2
A,E (y′) = y1

and ∂1
A,F (y′) = y2. This completes the proof.

3.2. Hom-descriptions

Recall that R is a Dedekind domain with field of fractions F . Suppose now that
F is a number field, and let Γ be a finite group upon which ΩF acts (possibly
trivially). Let A be a finitely generated R-subalgebra of Fc [Γ] such that there is an
equality

A ⊗R F c = Fc [Γ]. (7)

Under this condition, for any extension E of F , we shall give a description
of K0(A, E) in terms of idelic-valued functions on the ring RΓ of Fc -valued
characters of Γ. This description is modelled on the ‘Hom-descriptions’ of class
groups introduced by Fröhlich (cf. for example [18, Chapter II]). It will be useful
in later sections, and is itself perhaps also of some independent interest.

Let Γ̂ denote the set of Fc -valued characters of Γ. The group ΩF acts on RΓ

according to the following rule: if χ ∈ Γ̂ and ω ∈ ΩF , then for each γ ∈ Γ one has
(ω ◦ χ)(γ) = ω(χ(ω−1(γ))).

We fix an embedding of Fc into Ec and we view each element of Γ̂ as taking
values in Ec . For each element a of GLn (AE ) we define an element Det(a) of
Hom(RΓ, (Ec)×) in the following way: if T is a representation over Fc which has
character φ, then

Det(a)(φ) := det(T (a)).

This definition depends only upon the character φ, and not upon the choice of
representation T .

We write Jf (Fc) for the group of finite ideles of the field Fc , and we view F× as
being a subgroup of Jf (Fc) via the natural diagonal embedding. If a is any element
of GLn (A ⊗F Jf (E)), then the above approach allows one to define an element
Det(a) of Hom(RΓ, Jf (Fc)). We set

Uf (A) :=
∏

v∈Sf (F )

A×
v ⊂ (A ⊗F Jf (F ))×.
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8 a. agboola and d. burns

We then define a homomorphism

∆A,E : Det(A×) −→ Hom(RΓ, Jf (Fc))ΩF

Det(Uf (A))
× Det(A×

E ); θ 	−→ (θ, θ−1). (8)

Theorem 3.5. Under the above conditions, there is a natural isomorphism

hA,E : K0(A, E) ∼→ Cok(∆A,E ). (9)

Proof. From (4) and the isomorphisms of [18, Chapter II, (2.3)], it follows that
there is an isomorphism

h1 : K0(A, F ) ∼→ Hom(RΓ, Jf (Fc))ΩF

Det(Uf (A))
.

Also, the isomorphisms K1(AΛ) ∼= Det(A×
Λ ) of [18, Chapter II, Lemma 1.2 and

Lemma 1.6] for Λ ∈ {E,F} induce an isomorphism

h2 :
K1(AE )
Im(∂2

A,E )
∼→ Det(A×

E )
Det(A×)

.

It follows that there is a natural isomorphism

Coker(f1) � Coker(∆A,E ),

where f1 is defined in the statement of Theorem 3.4. The desired result now follows
from the fact that Theorem 3.4 implies that there is a natural isomorphism

Coker(f1) ∼→ K0(A, E).

Remark 3.6. An explicit description of the isomorphism hA,E may be given as
follows. Suppose that [X,Y ; ξ] is an element of K0(A, E) for which XF and YF are
free A-modules of the same rank (by [28, Lemma 15.6] any element of K0(A, E) is
of this shape). Then for any choice of isomorphism θ ∈ IsA (XF , YF ) one has

[X,Y ; ξ] = [X,Y ; θE ] +
[
Y, Y ; ξ ◦ θ−1

E

]
= [X,Y ; θE ] + ∂1

A,E

((
YE , ξ ◦ θ−1

E

))
in K0(A, E). The element hA,E ([X,Y ; ξ]) of Cok(∆A,E ) is then represented by the
pair (h1([X,Y ; θ]), h2,E ((YE , ξ ◦ θ−1

E ))).

Definition 3.7. A finitely generated A-module M is said to be locally free if
Mv is a free Av -module for all places v in Sf (F ). It follows easily from this definition
that if M is a locally free A-module, then it is projective and the associated A-
module MF is free.

Remark 3.8. If [X,Y ; ξ] is an element of K0(A, E) for which both X and
Y are locally free A-modules, then one can give an explicit representative for
hA,E ([X,Y ; ξ]) as follows.

For any ordered set of d elements {ej : 1 � j � d} we write ej for the d × 1
column vector with jth entry equal to ej .

We choose an A-basis {yj} of YF and, for each v ∈ Sf (F ), an Av -basis {yj
v} of Yv

and an Av -basis {xj
v} of Xv . Let µv be the element of GLd(Av ) such that yj

v = µvyj .
We choose θ ∈ IsA (XF , YF ). Since {θ−1(yj )} is an A-basis of XF , there exists an
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on twisted forms and relative algebraic K-theory 9

element λv of GLd(Av ) such that xj
v = λvθ−1(yj ). Finally, we let µ ∈ GLd(AE )

denote the matrix of ξ ◦ (θ−1 ⊗F E) with respect to the A-basis {yj} of YE . Then
hA,E ([X,Y ; ξ]) is represented by the function( ∏

v∈Sf (F )

Det
(
λvµ−1

v

))
× Det(µ) ∈ Hom(RΓ, Jf (Qc))ΩF × Hom(RΓ, (Ec)×).

This construction will be used in the proof of Proposition 4.11.

Examples 3.9. Suppose that F is a number field, and let R = OF .
(i) Suppose that A = R[G] (see Example 2.2). Then condition (7) is satisfied if

we take Γ = G, viewed as a trivial ΩF -module.
(ii) In Example 2.3, set Γ = G(Fc), endowed with the natural ΩF -action. Then

G ⊗R F c is a finite constant group scheme over Spec(Fc), and so its Cartier dual
G∗ ⊗R F c is equal to Spec(Fc [Γ]) (see for example [32, § 2.4]). Hence A = OG∗

satisfies condition (7). Furthermore, in this case the description of Theorem 3.5
may be interpreted more explicitly as follows. Let Jf (A) denote the group of finite
ideles of A, that is, if M is the (unique) maximal R-order in A, then Jf (A) is the
restricted direct product of the groups A×

v with respect to the subgroups M×
v for

all places v ∈ Sf (F ). Define a map

∆′
A,E : A× −→ Jf (A)

Uf (A)
× A×

E ; a 	−→ (a) × a−1.

Then, taken in conjunction with Remark 3.3, the result of Theorem 3.5 implies that
there is a natural isomorphism

K0(A, E) ∼→ Cok(∆′
A,E ). (10)

4. Metrised structures

In this section we let R denote the ring of algebraic integers in a number field
F . We fix an R-order A in a finite-dimensional F -algebra A, and we continue to
assume that the condition (7) is satisfied.

For each φ ∈ Γ̂ we write Wφ for the Wedderburn component of Fc [Γ] which
corresponds to the contragredient character φ of φ. For any Fc [Γ]-module X we
then set

Xφ :=
top∧
F c

((X ⊗F c Wφ)Γ),

where ‘
∧top

F c ’ denotes the highest exterior power over Fc which is non-zero, and Γ
acts diagonally on X ⊗F c Wφ .

For each v ∈ S∞(F ) we fix an embedding σv : Fc → Fc
v (which induces the place

v upon restriction to F ), and we also identify Fc
v with C.

For each complex number z we write z for its complex conjugate.

4.1. Metrised A-modules

Definition 4.1. Let X be a finitely generated locally-free A-module. A metric
µ on X is a set {µv,φ : v ∈ S∞(F ), φ ∈ Γ̂} where, for each v ∈ S∞(F ) and
φ ∈ Γ̂, µv,φ is a hermitian metric on the complex line (X ⊗R F c)φ ⊗F c ,σv

C. If
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10 a. agboola and d. burns

x ∈ (X ⊗R F c)φ ⊗F c ,σv
C, then we shall write µv,φ(x) for the length of x with

respect to the metric µv,φ .
A metrised A-module is a pair (X,µ) consisting of a locally-free A-module X and

a metric µ on X.

Example 4.2 (Classical). In this example we adopt the notation of Example
2.2. We take A to be Z[G], so that Γ = G (viewed as a trivial ΩQ-module). Via the
fixed embedding σ∞ : Qc → C restricted to the normal closure N of L, we identify
ΣQ(L,N) with the set Σ(L) of embeddings of L into C. We remind the reader that
if X is a finitely generated, locally free A-module, then any G-equivariant positive
definite hermitian form on XC induces a metric on X in a natural way (see for
example [16, Definition 2.2]).

We write µC[G ] for the G-equivariant positive definite hermitian form on C[G]
which satisfies

µC[G ]

( ∑
g∈G

xgg,
∑
h∈G

yhh

)
=

∑
g∈G

xgyg .

(i) There is a G-equivariant positive definite hermitian form µL on HL
Q ⊗Z C

which is defined by the rule

µL

( ∑
σ∈Σ(L)

z′σ ,
∑

τ∈Σ(L)

zτ

)
=

∑
σ∈Σ(L)

z′σ zσ .

For each φ ∈ Ĝ, we write µL,∞,φ for the metric on (HL
Q ⊗Z Qc)φ that is obtained

as the highest exterior power of the metric on(
HL

Q ⊗Z Wφ

)G =
(
HL

Q ⊗Z C
)
⊗C (Wφ ⊗Qc ,σ∞ C)G

which is induced by µL on HL
Q⊗ZC and by the restriction of µC[G ] on Wφ⊗Qc ,σ∞C.

(ii) There is a G-equivariant positive definite hermitian form hL on C⊗QL which
is defined by the rule

hL (z1 ⊗ m, z2 ⊗ n) = z1z2

∑
σ∈Σ(L)

σ(m)σ(n).

We recall that in [16, § 5.2] this form is referred to as the ‘Hecke form’.
For each φ ∈ Ĝ we write hL,∞,φ for the metric on (L ⊗Q Qc)φ that is obtained

as the highest exterior power of the metric on

(L ⊗Q Wφ)G ⊗Qc ,σ∞ C = ((C ⊗Q L) ⊗C (Wφ ⊗Qc ,σ∞ C))G

which is induced by hL on C⊗Q L and by the restriction of µC[G ] on Wφ ⊗Qc ,σ∞ C.
We set hL,• := {hL,∞,φ : φ ∈ Ĝ}. If L is any full projective Z[G]-sublattice of L,

then the pair (L, hL,•) is a metrised Z[G]-module.

Example 4.3 (Geometrical). In this example we adopt the notation used in
Example 2.3.

(i) For each v ∈ S∞(F ) and φ ∈ Γ̂, the space (A ⊗F F c)φ ⊗F c ,σv
C identifies

naturally with C and so is endowed with a metric µA,v ,φ coming from the standard
metric on C. The set µA := {µA,v ,φ : v ∈ S∞(F ), φ ∈ Γ̂} is then a metric (‘the
trivial metric’) on A.
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on twisted forms and relative algebraic K-theory 11

(ii) It is shown in [5, § 2] that, for each place v ∈ S∞(F ) and character φ ∈ Γ̂,
the space (Lπ ⊗R F c)φ ⊗F c ,σv

C may be endowed with a canonical ‘Neron metric’
‖·‖v ,φ which is constructed by using canonical splittings of the extension (1). (These
canonical splittings are analogous to the canonical splittings of extensions of abelian
varieties by tori that may be used to define Néron pairings on abelian varieties; see
for example [21].) Denote the family of metrics {‖ · ‖v ,φ : v ∈ S∞(F ), φ ∈ Γ̂} by
‖ · ‖π . Then the pair (Lπ , ‖ · ‖π ) constitutes a metrised A-module.

4.2. Arithmetic class groups

In this subsection we use idelic-valued functions on RΓ to define a group which
classifies the structure of metrised A-modules. All of the constructions in this
subsection are motivated by those of [16, §§ 3.1, 3.2].

We write |∆|A for the homomorphism

Det(A×) −→ Hom(RΓ, Jf (Fc))ΩF

Det(Uf (A))
× Hom

(
RΓ,

∏
v∈S∞(F )

R×
>0

)
; θ 	−→ (θ, |θ|)

where |θ| is the homomorphism that sends each φ ∈ Γ̂ to the element∏
v∈S∞(F )

|σv (θ(φ))|−1 ∈
∏

v∈S∞(F )

R×
>0.

Remark 4.4. We caution the reader that the definition of the homomorphism
|θ| given above is slightly different from that used in [16, § 3.1]. Our |θ|(φ) is equal
to |θ|(φ)−1 in the notation of [16]. This reflects our definitions of ∆A,E in (8) and
hA,E in (9). Our normalisation is also consistent with the definition of the hermitian
classgroup given in [19, Chapter II, § 5].

Definition 4.5. We define the arithmetic classgroup AC(A) of A to be the
cokernel of |∆|A.

Remark 4.6. When F = Q and A = Z[Γ] for some finite group Γ, then it is
easy to show (taking into account Remark 4.4 above) that AC(A) is isomorphic to
the arithmetic classgroup A(A) which is described in [16, Definition 3.2].

We now suppose given a metrised A-module (M,µ). Let M have rank d over A,
and choose an A-basis {mj} of MF and, for each v ∈ Sf (F ), an Av -basis {mj

v} of
Mv . Then there exists an element λv of GLd(Av ) such that mj

v = λvm
j .

For each element m of MF we set

r(m) :=
∑
γ∈Γ

γm ⊗ γ ∈ M ⊗R F c [Γ].

For each element w of Wφ we have

r(m)(1 ⊗ w) ∈ (M ⊗R Wφ)Γ.

Let {wφ,k : k} be an Fc -basis of Wφ which is orthonormal with respect to the
restriction of µF c [Γ] to Wφ . Then the set {r(mj )(1 ⊗ wφ,k ) : j, k} is an Fc -basis of
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12 a. agboola and d. burns

(M ⊗R Wφ)Γ, and so the wedge product∧
j

∧
k

r(mj )(1 ⊗ wφ,k )

is an Fc -basis of the line (M ⊗R F c)φ .

Definition 4.7. We define [M,µ] to be the element of AC(A) that is
represented by the homomorphism on RΓ that sends each character φ ∈ Γ̂ to

∏
v∈Sf (F )

Det(λv )(φ) ×
∏

v∈S∞(F )

µv,φ

((∧
j

∧
k

r(mj )(1 ⊗ wφ,k )

)
⊗F c ,σv

1

)1/φ(1)

∈ Jf (Fc) ×
∏

v∈S∞(F )

R×
>0.

It can be shown that [M,µ] is independent of the precise choices of bases {mj},
{mj

v} and {wφ,k}.

4.3. The connection to generalised twisted forms

Let E be any field which contains Fc and which is such that, for each v ∈ S∞(F ),
the fixed embedding σv : Fc → C factors through an embedding σ̃v : E → C.

The map

πE : E× −→
∏

v∈S∞(F )

R×
>0; e 	−→

∏
v∈S∞(F )

|σ̃v (e)|

induces a homomorphism

ε : Det(A×
E ) � Hom(RΓ, E×) −→ Hom

(
RΓ,

∏
v∈S∞(F )

R×
>0

)
.

Then, via the Hom-descriptions of Theorem 3.5 and Definition 4.5, it is not hard
to see that the map

δ :
Hom(RΓ, Jf (Fc))ΩF

Det(Uf (A))
× Det(A×

E )

−→ Hom(RΓ, Jf (Fc))ΩF

Det(Uf (A))
× Hom

(
RΓ,

∏
v∈S∞(F )

R×
>0

)

given by x1 × x2 	→ x1 × ε(x2) induces a homomorphism

∂A,E : K0(A, E) −→ AC(A).

Lemma 4.8. There is a natural isomorphism

ker(∂A,E ) ∼→ Hom(RΓ, ker(πE ))
[Hom(RΓ, ker(πE )) ∩ Det(A×)] ∩ Det(Uf (A))

. (11)

(In the denominator of the right-hand side of (11), the first intersection takes
place in Hom(RΓ, E×) � Det(A×

E ), and then the second intersection takes place in
Hom(RΓ, Jf (Fc)).)

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0024611505015418
Downloaded from https://www.cambridge.org/core. Access paid by the UCSB Libraries, on 03 Sep 2021 at 23:55:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0024611505015418
https://www.cambridge.org/core
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Proof. Set

N1 :=
Hom(RΓ, Jf (Fc))ΩF

Det(Uf (A))
× Det(A×

E ),

and write N2 := δ(N1). Then there is a commutative diagram:

0 �� Hom(RΓ, ker(πE )) �� N1
δ �� N2

�� 0

Det(A×)

∆A, E

��

Det(A×)

|∆|A

��

Applying the Snake Lemma to this diagram (and taking into account Theorem 3.5
and Definition 4.5) yields the sequence

Hom(RΓ,Ker(πE )) −−−→ K0(A, E)
∂A, E−−−→ AC(A) −−−→ 0,

and it is easy to check (again using Theorem 3.5) that this implies the desired
result.

Given an explicit element of K0(A, E) we now aim to describe its image
under ∂A,E .

Definition 4.9. Let X1 and X2 be finitely generated locally-free A-modules
and suppose that ξ ∈ IsAE

(X2,E ,X1,E ). For each place v ∈ S∞(F ) and character
φ ∈ Γ̂ we write

ξv,φ : (X2 ⊗R F c)φ ⊗F c ,σv
C ∼→ (X1 ⊗R F c)φ ⊗F c ,σv

C

for the isomorphism of complex lines that is induced by ξ. If h is any metric on X1,
then the pullback of h under ξ is defined to be the metric ξ∗(h) on X2 that satisfies

ξ∗(h)v ,φ(z) = hv,φ(ξv,φ(z))

for each v ∈ S∞(F ), φ ∈ Γ̂ and z ∈ (X2 ⊗R F c)φ ⊗F c ,σv
C.

Example 4.10. (i) (Classical) An explicit computation shows that, in the
notation of Example 4.2, one has (πL,N

Q )∗(µL,•) = hL,•.
(ii) (Geometrical) We use the notation of Example 4.3. If ξπ is any isomorphism

as in (2), then it follows from [5, Remark 2.3] that ξπ induces an isometry between
Lπ endowed with the Néron metric ‖ · ‖π and A endowed with the trivial metric.
(Note that the map that is denoted by ξπ in [5] is equal to ξ⊗e

π in our present
notation, where e denotes the exponent of the group scheme G.) Hence we have
(ξπ ⊗Rc F c)∗(µA ) = ‖ · ‖π .

Proposition 4.11. Let (X,Y ; ξ) be any object of PA ×E PA for which X and
Y are both locally free A-modules. Then, for any metric ρ on Y , one has

∂A,E (hA,E ([X,Y ; ξ])) = [X, ξ∗(ρ)] − [Y, ρ] ∈ AC(A).

Proof. We use the notation introduced in Remark 3.8.
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14 a. agboola and d. burns

It is clear that ∂A,E (hA,E ([X,Y ; ξ])) is represented by the homomorphism that
sends each character φ∈ Γ̂ to∏

v∈Sf (F )

Det(λvµ−1
v )(φ) ×

∏
v∈S∞(F )

|σ̃v (Det(µ)(φ))|. (12)

For each element x of Xi,φ := (Xi ⊗R F c)φ ⊗F c E (where i = 1, 2) and each place
v ∈ S∞(F ), we write [x]v for the image of x in Xi,φ⊗E ,σ̃v

C = (Xi⊗R F c)φ⊗F c ,σv
C.

Using this notation, we see that the elements [X, ξ∗(ρ)] and [Y, ρ] are represented
by the homomorphisms that send each character φ ∈ Γ̂ to∏

v∈Sf (F )

Det(λv )(φ) ×
∏

v∈S∞(F )

ρv,φ

([∧
j

∧
k

r(ξ ◦ ψ(yj ))(1 ⊗ wφ,k )

]
v

)1/φ(1)

(13)

and ∏
v∈Sf (F )

Det(µv )(φ) ×
∏

v∈S∞(F )

ρv,φ

([∧
j

∧
k

r(yj )(1 ⊗ wφ,k )

]
v

)1/φ(1)

, (14)

respectively. For each z =
∑

γ∈Γ cγ γ ∈ E[Γ] we set z :=
∑

γ∈Γ cγ γ−1, and we extend
this convention to matrices over E[Γ] by applying it to individual entries. Now

ξ ◦ ψ(yj ) =
∑

l

µl,j y
l

where µl,j is the (l, j)-component of the matrix µ, and so

r(ξ ◦ ψ(yj ))(1 ⊗ wφ,k ) =
∑

l

r(yj )(1 ⊗ µl,jwφ,k ).

This implies that∧
j

∧
k

r(ξ ◦ ψ(yj ))(1 ⊗ wφ,k ) = Det(µ)(φ)φ(1) ·
∧
j

∧
k

r(yj )(1 ⊗ wφ,k ).

But Det(µ)(φ) = Det(µ(φ)), and so for each v ∈ S∞(F ) one has

ρv,φ([
∧

j

∧
k r(ξ ◦ ψ(yj ))(1 ⊗ wφ,k )]v )1/φ(1)

ρv,φ([
∧

j

∧
k r(yj )(1 ⊗ wφ,k )]v )1/φ(1)

= |σ̃v (Det(µ)(φ))| ∈ R×
>0.

It is now clear that the expression (13) is equal to the product of the expressions
(12) and (14), and this immediately implies the claimed equality.

5. The classical case

In this section we give two applications of our approach in the context of
Example 2.2. We thus fix a finite tamely ramified Galois extension of number fields
L/K, with F ⊆ K, and we set G := Gal(L/K). Our interest is in the element

δL
OF [G ](OL ) :=

[
OL,HL

F ⊗Z OF ;πL,N
F

]
∈ K0(OF [G], N).

5.1. Arithmetic classes

In this subsection we combine Proposition 4.11 with a result of Bley and the
second named author in [8] in order to describe an explicit homomorphism which
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on twisted forms and relative algebraic K-theory 15

represents the element δL
Z[G ](OL ). We then explain how this yields an explicit

homomorphism which represents the element [OL, hL,•] of AC(Z[G]). We show that
this description of [OL, hL,•] gives a natural refinement of a result of Chinburg,
Pappas and Taylor in [16].

Before stating our explicit description of the class δL
Z[G ](OL ) we must introduce

some notation.
For each character φ ∈ Ĝ, we write τ(K,φ) for the Galois–Gauss sum associated

to φ, and we let ε(K,φ) denote the epsilon constant which arises in the functional
equation of the Artin L-function attached to φ (see [18, Chapter I, § 5]). With
respect to the canonical identification ζ(C[G]) =

∏
Ĝ C (which is induced by the

fixed embedding σ∞ : Qc → C) we then set

εL/K := (ε(K,φ))φ ∈ ζ(C[G])×.

This element is the natural epsilon constant which is associated to the ζ(C[G])-
valued equivariant Artin L-function of L/K, and it actually lies in ζ(R[G])×. The
last fact implies that we may therefore choose an element

λ = (λφ)φ ∈ ζ(Q[G])× ⊂ ζ(C[G])×

such that

λεL/K ∈ Im(nrdR[G ]) (15)

(see [8, § 3.1]). We write dK for the absolute discriminant of K.
We write ι : N → C for the embedding induced by restricting σ∞ to N , and

we use this to view δL
Z[G ](OL ) as an element of K0(Z[G],C) (using the inclusion

K0(Z[G], N) ⊆ K0(Z[G],C) induced by the functor −⊗N,ι C).
We can now state the main result of this section.

Theorem 5.1. Let λ be any element of ζ(Q[G])× that satisfies (15). Then the
class δL

Z[G ](OL ) in K0(Z[G],C) is represented by the homomorphism that sends

each character φ ∈ Ĝ to

λ−1
φ

∏
v∈Sf (K )

yv (φ) × λφτ(K,φ)|dK |φ(1)/2. (16)

Here yv denotes the ‘unramified characteristic’ function on RG defined in [18,
Chapter IV, § 1].

We shall derive a description of the class δL
Z[G ](OL ) from certain results in [8].

For the reader’s convenience we first recall some notation from [8].

Definition 5.2 (see [8, § 3.2]). Set HL :=
∏

Σ(L) Z. The groups G and
Gal(C/R) act on Σ(L), and they endow HL with the structure of G × Gal(C/R)-
module. For any Gal(C/R)-module X, write X+ and X− for the submodules on
which complex conjugation acts by +1 and −1 respectively.

There is a canonical C[G × Gal(C/R)]-equivariant isomorphism

ρL : L ⊗Q C ∼→ HL ⊗Z C; l ⊗ z 	−→ (σ(l)z)σ∈Σ(L).
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16 a. agboola and d. burns

We write πL for the composite R[G]-equivariant isomorphism given by

L ⊗Q R = (L ⊗Q C)+
ρL−−→ (HL ⊗Z C)+

= (H+
L ⊗Z R) ⊕ (H−

L ⊗Z (i · R))
×(1,−i)−−−−−→ (H+

L ⊗Z R) ⊕ (H−
L ⊗Z R)

= HL ⊗Z R.

We now define the G-equivariant discriminant δL/K (OL ) of OL by setting

δL/K (OL ) := [OL,HL ;πL ] ∈ K0(Z[G],R).

In what follows, we shall in fact view δL/K (OL ) as an element of K0(Z[G],C) via
the natural inclusion K0(Z[G],R) ⊆ K0(Z[G],C).

Proof of Theorem 5.1. It follows from results in [8] (see especially [8, Lemma 7.4
and Corollary 7.7]) that the class δL/K (OL ) is represented in the Hom-description
of Theorem 3.5 by the element of Hom(RG, Jf (Qc))ΩQ ×Hom(RG,C×) that sends
each character φ ∈ Ĝ to

λ−1
φ

∏
v∈Sf (K )

yv (φ) × λφε(K,φ),

where yv is as defined in the statement of Theorem 5.1.
For each place v ∈ S∞(K), we let Gv denote the decomposition group of v in

G. If φ ∈ Ĝ, we let Vφ be a representation space for φ, and we define a complex
number w∞(K,φ) by setting

w∞(K,φ) :=
∏

v∈S∞(K )

i− codim
(
V G v

φ

)
.

We may identify HL with HL
Q via our fixed embedding ι : N → C. By compar-

ing the homomorphisms πL,N
Q ⊗N,ι C and πL ⊗R C, it may be shown that the

element δL/K (OL ) − δL
Z[G ](OL ) of K0(Z[G],C) is represented by the element

of Hom(RG, Jf (Qc))ΩQ × Hom(RG,C×) that sends each character φ∈ Ĝ to
1 × w∞(K,φ).

In addition, for each φ ∈ Ĝ one has

ε(K,φ) = τ(K,φ)w∞(K,φ)|dK |φ(1)/2 (17)

(see [8, (13) and the displayed formula which follows it]).
It now follows that δL

Z[G ](OL ) is represented by the homomorphism that sends
each character φ ∈ Ĝ to

λ−1
φ

∏
v∈Sf (K )

yv (φ) × λφτ(K,φ)|dK |φ(1)/2,

as claimed.

Corollary 5.3. Let λ be any element of ζ(Q[G])× that satisfies (15). Then
the class [OL, hL,•] in AC(Z[G]) is represented by the homomorphism that sends

each character φ ∈ Ĝ to

λ−1
φ × |λφτ(K,φ)|

(
|G|[K :Q]|dK |

)φ(1)/2
.
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on twisted forms and relative algebraic K-theory 17

Proof. We first observe that Example 4.10(i) and Proposition 4.11 imply that

[OL, hL,•] = [HL
Q, µL,•] + ∂Z[G ],C

(
δL
Z[G ](OL )

)
∈ AC(Z[G]). (18)

It follows via an explicit computation (using, for example [16, Lemma 2.3]) that
the class [HL

Q, µL,•] is represented by the homomorphism that sends each character
φ ∈ Ĝ to 1×|G|[K :Q](φ(1)/2). Combining this with (18) and Theorem 5.1, we deduce
that [OL, hL,•] is represented by the homomorphism that sends each φ ∈ Ĝ to

λ−1
φ

∏
v∈Sf (K )

yv (φ) × |λφτ(K,φ)|
(
|G|[K :Q]|dK |

)φ(1)/2
.

The desired result now follows from this description upon noting that, as a
consequence of [18, Chapter IV, Theorem 29(i)], the homomorphism that sends
each φ ∈ Ĝ to ( ∏

v∈Sf (K )

yv (φ)

)
× 1

belongs to the image of |∆|A.

It is often convenient to replace AC(Z[G]) by weaker classifying groups. As an
example of this, we shall now explain how Corollary 5.3 yields a natural refinement
of [16, Theorem 5.9].

We first quickly recall the definition of the ‘tame symplectic arithmetic
classgroup’ As

T (Z[G]) of Z[G] from [16, § 4.3]. We write Rs
G for the subgroup of

RG that is generated by the irreducible symplectic Fc -valued characters of G, and
we write Dets(−) for the restriction of the function Det(−) to Rs

G . Let T denote
the maximal abelian tamely ramified extension of Q in Qc , and set Ẑ = lim←−n

Z/nZ.
Then we write Det(ÔT [G]×) for the direct limit of Det(ÔN [G]×), where N runs over
all finite extensions of Q in T and ÔN denotes the ring of integral adeles Ẑ ⊗ ON .

Definition 5.4. The tame arithmetic symplectic classgroup As
T (Z[G]) of Z[G]

is defined to be the cokernel of the map

Dets(Q[G]×) −→
Dets(ÔT [G]×)Hom

(
Rs

G, Jf (Qc)
)ΩQ

Dets(ÔT [G]×)
× Hom

(
Rs

G,R×
>0

)
which is induced by the diagonal map

∆s : Dets(Q[G]×) −→ Hom
(
Rs

G, Jf (Qc)
)ΩQ ×Hom

(
Rs

G,R×
>0

)
; θ 	−→ (θ, θ−1).

We write

θs
T : Hom

(
Rs

G, Jf (Qc)
)ΩQ × Hom

(
Rs

G,R×
>0

)
−→ As

T (Z[G])

for the natural surjective map, and

πs
T : AC(Z[G]) −→ As

T (Z[G])

for the homomorphism induced by restricting an element of

Hom(RG, Jf (Qc))ΩQ × Hom(RG,R×
>0)

to Rs
G , and then applying θs

T .
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18 a. agboola and d. burns

Definition 5.5. Let Pf(OL ) denote the ‘Pfaffian’ element of Hom(Rs
G, Jf (Qc))

which is defined (in [16, Definition 5.8]) as follows: for each φ ∈ Rs
G one has

Pf(OL )(φ)p =
∏
p

(−p)fp(φ,IndG
I p

up)/2

where here p runs over all elements of Sf (K) that divide p, fp is the residue class
extension degree of p in K/Q, Ip is the inertia subgroup of any fixed place of L
that lies above p, up is the augmentation character of Ip, and (−,−) is the standard
inner product on RG .

We remark that the image of [OL, hL,•] under πs
T is equal to the element

χs
T (OL,det h•) defined in [16, § 4.3]. This implies that the following result is

equivalent to [16, Theorem 5.9(a)].

Corollary 5.6. The class πs
T ([OL, hL,•]) is represented by the homomor-

phism that sends each symplectic character φ ∈ Ĝ to

w∞(K,φ)Pf(OL )(φ) ×
(
|G|[K :Q]|dK |

)φ(1)/2
.

Proof. Upon computing the image under πs
T of the class represented by the

explicit homomorphism described in Corollary 5.3, one finds that it suffices to prove
the following result: if f denotes the homomorphism that sends each symplectic
character φ ∈ Ĝ to

λφw∞(K,φ)Pf(OL )(φ) × |λφτ(K,φ)|−1,

then θs
T (f) = 0.

To prove this we first observe that there exist a finite tamely ramified abelian
extension N of Q and an element u of ÔN [G]× such that, for each symplectic
character φ ∈ Ĝ, one has

Pf(OL )(φ) = τ(K,φ) · Det(u)(φ).

This can be seen, for example, to be a consequence of the argument that proves [16,
Proposition 5.11]. Hence one has θs

T (f) = θs
T (f ′), where f ′ is the homomorphism

that sends each symplectic character φ ∈ Ĝ to

λφw∞(K,φ)τ(K,φ) × |λφτ(K,φ)|−1.

Now the equality (17) combines with the containment (15) to imply that, for
each symplectic character φ ∈ Ĝ, the real numbers λφ and w∞(K,φ)τ(K,φ)
have the same sign (note that φ = φ if φ is symplectic). This implies that the
element Φ of Hom(Rs

G, (Qc)×)ΩQ that sends each symplectic character φ ∈ Ĝ to
λφw∞(K,φ)τ(K,φ) actually belongs to Dets(Q[G]×). In addition, since for each
symplectic φ ∈ Ĝ one has w∞(K,φ) = ±1, it also implies that

λφw∞(K,φ)τ(K,φ) = |λφτ(K,φ)|.

This in turn implies that f ′ = ∆s(Φ), and hence that θs
T (f ′) = 0, as required.
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5.2. Torsion modules

In this subsection we shall indicate how certain natural torsion Galois module
invariants introduced by S. Chase (see [13; 18, Notes to Chapter III]) are related
to the element δL

OK [G ](OL ).
We first recall that there is a natural OL [G]-equivariant injection

ψL/K : OL ⊗OK
OL −→ Map(G,OL ); ψL/K (l1 ⊗ l2)(g) = g(l1)l2.

The cokernel Cok(ψL/K ) of ψL/K is finite, and is of finite projective dimension as
an OL [G]-module because L/K is tamely ramified. Hence Cok(ψL/K ) determines a
class in K0T (OL [G]). This class has been studied by Chase and other authors, and
it gives information regarding the OK [G]-module structure of OL .

We write
iL/K : K0(OK [G], L) −→ K0T (OL [G])

for the composite of the natural scalar extension morphism

K0(OK [G], L) −→ K0(OL [G], L); [X,Y ; i] 	−→ [X ⊗OK
OL, Y ⊗OK

OL ; i]

and the first isomorphism of (4) with A = OL [G].

Lemma 5.7. The class of Cok(ψL/K ) in K0T (OL [G]) is equal to the image of
δL
OK [G ](OL ) under iL/K .

Proof. There is an OL [G]-equivariant isomorphism

θ : Map(G,OL ) ∼→ HL
K ⊗Z OL ; θ(φ) = (φ(g))g .

The stated result follows from the definition of isomorphism in POL [G ] ×L POL [G ]

(see § 2.1) and the commutativity of the following diagram in PL [G ]:

L ⊗K L
ψL / K ��

id

��

Map(G,L)

θ

��
L ⊗K L

πL , L
K �� HL

K ⊗Z L

Here πL,L
K is as defined in Example 2.2.

We remark that Chase has given an explicit description of Cok(ψL/K ) as
an OL [G]-module (see, in particular, Theorem 2.15 of [13]). Hence, Lemma 5.7
shows that Chase’s results may be naturally reinterpreted in terms of equivariant
discriminants.

6. Torsors

We shall now apply the methods developed in this paper to the ‘geometrical’
setting of Example 2.3.

6.1. Reduced resolvends

In this subsection, we shall discuss reduced resolvends coming from torsors of
finite group schemes. This notion was first introduced by L. McCulloh (see [22],
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20 a. agboola and d. burns

and the references contained therein). Our approach will be rather different from
McCulloh’s, and will use ideas that first appeared in [5] and [3].

We use the notation of Example 2.3. Set Γ := G(Rc) = G(Fc).

Definition 6.1. We define

H(A) := {α ∈ A
×
Rc : αω = gω α for all ω ∈ ΩF , where gω ∈ Γ},

H(A) := H(A)/Γ,

H(A) := H(A)/(Γ · A×).

(Note that we allow the possibility that R = F , in which case we have A = A.)

We suppose for the moment that R is a local ring, and we let π : X → Spec(R) be
a G-torsor. Then the line bundle Lπ associated to π (see Example 2.3) is isomorphic
to the trivial line bundle on G∗. Let sπ : A ∼→ Lπ be any trivialisation of Lπ . Recall
from Example 2.3 that over Spec(Rc), π becomes isomorphic to the trivial torsor
π0, that is, there is an isomorphism i : X ⊗R Rc ∼→ G ⊗R Rc of schemes with
G-action. This isomorphism is not unique. If i′ is any other such isomorphism, then
i−1i′ : G⊗R Rc ∼→ G⊗R Rc is also an isomorphism of schemes with G-action, and
so is given by translation by an element of Γ.

Let ξπ : Lπ ⊗R Rc ∼→ A⊗R Rc be the splitting isomorphism corresponding to i,
and consider the map from ARc to itself defined by

ARc
sπ ⊗R Rc

−−−−−→ Lπ ⊗R Rc ξπ−−−−→ ARc .

This is an isomorphism of ARc -modules, and so it is given by multiplication by
some element r(sπ ) in A

×
Rc . We refer to r(sπ ) as a resolvend of sπ . Note that r(sπ )

depends upon sπ as well as upon the choice of ξπ .
If ω ∈ ΩF , then ξω

π = gω ξπ , for some gω ∈ Γ. Since sω
π = sπ , we deduce

that r(sπ )ω = gω r(sπ ), and so r(sπ ) ∈ H(A). As i is only well defined up to
translation by an element of Γ, it follows that changing our choice of ξπ alters r(sπ )
by multiplication by an element of Γ (see also [12, Lemmas 1.2 and 1.3]). Hence
the image r(sπ ) of r(sπ ) in H(A) depends only upon the trivialisation sπ . We refer
to r(sπ ) as the reduced resolvend of sπ .

We next observe that changing our choice of trivialisation sπ alters r(sπ ) by
multiplication by an element of A×. It follows that the image of r(sπ ) in the group
H(A) depends only upon the isomorphism class of the G-torsor π.

The following result was first proved by McCulloh in the case in which G is a
constant group scheme [22, §§ 1, 2]. In the generality given below, it is due to Byott
[11, Lemma 1.11, Proposition 2.12]. A different proof of this result is given in [3].

Theorem 6.2. Suppose that R is a local ring. Then the map

H1(Spec(R), G) −→ H(A); π 	−→ [r(sπ )]

is an isomorphism.

We shall now show that, for any field F , the subgroup H(A) of A×
F c /(Γ · A×)

has a natural functorial description. In order to do this, we first make the following
definition.
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Definition 6.3. Let R be any commutative ring, and suppose that F is any
contravariant functor from the category of finite, flat, commutative group schemes
over Spec(R) to the category of abelian groups.

If G is any finite, flat, commutative group scheme over R, let m : G × G → G
denote multiplication on G, and write pi : G × G → G (i = 1, 2) for projection
onto the ith factor. Let m∗, p∗i : F(G) → F(G × G) denote the homomorphisms
induced by m and pi respectively. An element x ∈ F(G) is said to be primitive
if m∗(x) = p∗1(x) · p∗2(x). (Note, in particular, that it follows that the subset of
primitive elements of F(G) is a group.)

It is sometimes helpful to formulate this definition in terms of Hopf algebras
rather than group schemes. This may be done as follows. Each functor F as
above naturally corresponds to a covariant functor F from the category of finite,
flat, commutative and cocommutative Hopf algebras over R to the category of
abelian groups. For any such Hopf algebra A, let ∆ : A → A ⊗R A denote the
comultiplication on A. Define i1, i2 : A → A⊗R A by i1(a) = a⊗1 and i2(a) = 1⊗ a
for each a ∈ A. Write ∆∗, i∗1, i

∗
2 : F(A) → F(A ⊗R A) for the homomorphisms

induced by ∆, i1, and i2 respectively. Then an element y ∈ F(A) is primitive if
∆∗(y) = i∗1(y) · i∗2(y).

Theorem 6.4. The group H(A) is equal to the subgroup of primitive elements
of the group A×

F c /(Γ · A×).

Proof. Suppose first that a ∈ H(A), with aω = gω a for all ω ∈ ΩF . We have
AF c = Fc [Γ], and the comultiplication map ∆ : AF c → AF c ⊗F AF c is induced by
∆(γ) = γ ⊗ γ for γ ∈ Γ. This implies that, for all ω ∈ Ω,

∆(a)ω = (gω ⊗ gω )∆(a), i1(a)ω = (gω ⊗ 1)i1(a), i2(a)ω = (1 ⊗ gω )i2(a).

Hence we have ∆(a)[i1(a)i2(a)]−1 ∈ (AF c ⊗F AF c )ΩF = A⊗F A. This implies that
the class of a in A×

F c /(Γ · A×) is primitive.
Suppose, conversely, that a ∈ A×

F c represents a primitive class in A×
F c /(Γ · A×).

For each ω ∈ ΩF , write aω = uω a. We wish to show that uω ∈ Γ for all ω.
Since a ∈ A×

F c represents a primitive class in A×
F c /(Γ · A×), we have

∆(a)
i1(a)i2(a)

= (g ⊗ h)β,

where g, h ∈ Γ, and β ∈ (A ⊗F A)×. Hence if ω ∈ ΩF , then βω = β and[
∆(a)

i1(a)i2(a)

]ω

= (gω ⊗ hω )β = (gω g−1 ⊗ hω h−1)
(

∆(a)
i1(a)i2(a)

)
. (19)

On the other hand, we also have[
∆(a)

i1(a)i2(a)

]ω

=
∆(uω )

i1(uω )i2(uω )

(
∆(a)

i1(a)i2(a)

)
. (20)

Hence (19) and (20) imply that

∆(uω )
i1(uω )i2(uω )

= gω g−1 ⊗ hω h−1. (21)
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Therefore, in order to prove that uω ∈ Γ, it suffices to prove the following
assertion. Suppose that u ∈ A×

F c satisfies

∆(u)
i1(u)i2(u)

= e ⊗ f, (22)

with e, f ∈ Γ. Then u ∈ Γ.
In order to establish this, we argue as follows. Suppose first that u = aγ γ for

some γ ∈ Γ. Then
∆(u)

i1(u)i2(u)
=

aγ (γ ⊗ γ)
a2

γ (γ ⊗ γ)
=

1
aγ

1Γ ⊗ 1Γ,

and so in this case u satisfies (22) if and only if aγ = 1. Hence we may assume that
u =

∑
γ∈Γ aγ γ with aγ1aγ2 �= 0 for some γ1 �= γ2.

Under this assumption, (22) implies that∑
γ

aγ γ ⊗ γ = (e ⊗ f)
∑
β ,β ′

aβ aβ ′(β ⊗ β′)

= (e ⊗ f)
[
a2

γ1
(γ1 ⊗ γ1) + a2

γ2
(γ2 ⊗ γ2) + aγ1aγ2(γ1 ⊗ γ2)

+ (other terms)
]
. (23)

If e = f , then (23) implies that aγ1aγ2(γ1⊗γ2) = 0, whence it follows that aγ1aγ2 =
0, which is a contradiction. On the other hand, if e �= f , then we see from (23) that
a2

γ1
= a2

γ2
= 0, which is also a contradiction. Hence u ∈ Γ as claimed.

This completes the proof of the result.

6.2. Class invariant maps

We retain the notation established in the previous section. In this subsection we
describe a natural refinement of the class invariant homomorphism introduced by
Waterhouse in [31].

Suppose that F is a number field. Then the class invariant homomorphism ψ is
defined by

ψ : H1(Spec(R), G) −→ Pic(G∗); π 	−→ (Lπ ).

Remark 6.5. In general ψ is not injective (see for example [1, 24, 26]). It
is known that the image of ψ is always contained in the subgroup PPic(G∗) of
primitive classes of Pic(G∗) (see for example [14]). It is shown by the first-named
author in [2] that if the composition series of every geometric fibre of G → Spec(R)
of residue characteristic 2 does not contain a factor of local-local type, then the
image of ψ is in fact equal to PPic(G∗).

Now suppose that π : X → Spec(R) is a G-torsor, and fix a choice of isomorphism
ξπ as in (2). For ease of notation, we use the same symbol ξπ for the map
Lπ ⊗R F c ∼→ AF c induced by (2). In general the element [Lπ ,A; ξπ ] ∈ K0(A, Rc)
depends upon the choice of ξπ .

Recall that there is a natural morphism

ιA,Rc : K0(A, Rc) −→ K0(A, F c)

arising via extension of scalars from R to F . The image of ιA,Rc ([Lπ ,A; ξπ ]) under
the isomorphism (10) with E = Fc may be described as follows. Choose any
trivialisation sπ : A ∼→ Lπ ⊗R F . For each finite place v of F , choose a trivialisation
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tπ ,v : Av
∼→ Lπ ⊗R Rv . It is easy to check that the isomorphism

Av
tπ , v−−−−−→ Lπ ⊗R Fv

(sπ ⊗F Fv )−1

−−−−−−−−→ Av

is given by multiplication by r(tπ ,v ).r(sπ )−1 ∈ A×
v . Then Remark 3.8 implies that

a representative of the image of ιA,Rc ([Lπ ,A; ξπ ]) under the isomorphism (10) is
given by ∏

v∈Sf (F )

(r(tπ ,v ).r(sπ )−1) × r(sπ ) ∈ Jf (A) × A×
F c . (24)

Observe that if we change the choice of splitting isomorphism ξπ , the element
r(sπ ) is altered by multiplication by an element of Γ. This motivates the following
definition.

Definition 6.6. Let ∆′′
A,F c denote the composition of the homomorphism

∆′
A,F c : A× −→ Jf (A)

Uf (A)
× A×

F c ,

defined in Example 3.9(ii), with the quotient map

Jf (A)
Uf (A)

× A×
F c −→ Jf (A)

Uf (A)
× A×

F c

Γ
.

We define K0(A, F c) to be the quotient of K0(A, F c) defined by the isomorphism

K0(A, F c) �

Jf (A)
Uf (A)

× A×
F c

Γ
Im(∆′′

A,F c )
. (25)

We write K0(A, Rc) for the image of K0(A, Rc) under the composite of the scalar
extension map ιA,Rc and the natural projection map K0(A, F c) → K0(A, F c).

Lemma 6.7. The natural projection map K0(A, F c) → K0(A, F c) is bijective
if and only if the points of Γ = G(Fc) are fixed by ΩF .

Proof. It is clear that the stated projection is bijective if and only if Γ ⊆ A×
v

for all v ∈ Sf (F ), that is, if and only if Γ ⊆ A×. But this last condition obtains if
and only if the points of Γ are fixed by ΩF .

It follows from (24) that the class of ιA,Rc ([Lπ ,A; ξπ ]) in K0(A, F c) is represented
by ∏

v∈Sf (F )

(r(tπ ,v ).r(sπ )−1) × r(sπ ) ∈ Jf (A) ×H(A).

It is easy to check that this class is independent of the choice of splitting
isomorphism ξπ and that it depends only upon the isomorphism class of the G-
torsor π : X → Spec(R).

Theorem 6.8. The map

ψ : H1(Spec(R), G) −→ K0(A, Rc); π 	−→ ιA,Rc ([Lπ ,A; ξπ ])

is an injective group homomorphism.
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Proof. Let us first show that ψ is a group homomorphism. Suppose that π and
π′ are G-torsors. Let ξπ and ξπ ′ denote splitting isomorphisms associated to π and
π′ respectively. It follows from the functoriality of Waterhouse’s construction in
[31] that there is a canonical isomorphism Lπ ⊗A Lπ ′ � Lπ ·π ′ and that the map

ξπ ⊗AR c ξπ ′ : (Lπ ⊗R Rc) ⊗AR c (Lπ ′ ⊗R Rc) ∼→ ARc ⊗AR c ARc ∼→ ARc

is a splitting isomorphism associated to π · π′. Since in K0(A, Rc), we have

[Lπ ,A; ξπ ] + [Lπ ′ ,A; ξπ ′ ] = [Lπ ⊗A Lπ ′ ,A; ξπ ⊗AR c ξπ ′ ],

(cf. for example [7, proof of Lemma 2.6(i)]), it follows that

ψ(π) + ψ(π′) = ψ(π · π′),

as required.
To show that ψ is injective, we argue as follows. If we compose the natural

injection H1(Spec(R), G) → H1(F,G) with the isomorphism H1(F,G) → H(A)
afforded by Theorem 6.2, then we obtain an injection H1(Spec(R), G) → H(A).
It follows easily from the definitions that this injection is the same as the
homomorphism obtained by composing ψ with the inclusion K0(A, Rc) ⊆
K0(A, F c) and the natural projection

K0(A, F c) −→ A×
F c

Γ · A× .

This implies that ψ is injective.

Remark 6.9. Let φ ∈ Γ̂. Then for each γ ∈ Γ and v ∈ S∞(F ), the complex
number σv (φ(γ)) is a root of unity and hence has absolute value 1. This implies
that the morphism

∂A,F c : K0(A, F c) −→ AC(A)

defined in § 4.3 induces a morphism K0(A, F c) → AC(A). Upon composing this
morphism with ψ we obtain a morphism

ψ̂ : H1(Spec(R), G) −→ AC(A) � P̂ic(G∗)

which was first introduced and studied by the first-named author and G. Pappas
in [5]. In turn, upon composing ψ̂ with the natural surjection AC(A) → Pic(G∗)
we obtain the homomorphism

ψ : H1(Spec(R), G) −→ Pic(G∗)

which was introduced by Waterhouse in [31].

Write PK0(A, Rc) for the subgroup of primitive elements of K0(A, Rc).

Theorem 6.10. (i) The image of ψ lies in PK0(A, Rc).
(ii) Suppose that the composition series of every geometric fibre of G → Spec(R)

of residue characteristic 2 does not contain a factor of local-local type. Then the
image of ψ is equal to PK0(A, Rc).

Proof. (i) Recall from Example 2.3 that we have a canonical isomorphism

Ext1(G∗,Gm ) � H1(Spec(R), G).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0024611505015418
Downloaded from https://www.cambridge.org/core. Access paid by the UCSB Libraries, on 03 Sep 2021 at 23:55:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0024611505015418
https://www.cambridge.org/core


on twisted forms and relative algebraic K-theory 25

Composing this isomorphism with ψ gives a homomorphism

κG∗ : Ext1(G∗,Gm ) −→ K0(A, Rc)

whose image is the same as that of ψ. It follows from the functoriality of
Waterhouse’s construction in [31] that the homomorphism κG∗ is functorial
in G∗.

Let m : G∗×G∗ → G∗ denote multiplication on G∗, and write pi : G∗×G∗ → G∗

(i = 1, 2) for projection onto the ith factor. Let

m∗, p∗i : Ext1(G∗,Gm ) −→ Ext1(G∗ × G∗,Gm )

be the homomorphisms induced by m and pi . Then it follows from standard
properties of the functor Ext1 that m∗(x) = p∗1(x)+p∗2(x) for all x ∈ Ext1(G∗,Gm )
(see for example [25, Proposition 1 on p. 163, and p. 182]). Since κG∗ is functorial
in G∗, this implies that κG∗(x) is a primitive element of K0(A, Rc).

(ii) It is shown in [3] that there is a natural isomorphism Ker(ψ) � H(A). From
[2, Theorem 1.3], we know that, under the given hypotheses, we have Im(ψ) =
PPic(G∗). Since ψ is injective, this implies that there is an exact sequence

0 −→ H(A) −→ Im(ψ) −→ PPic(G∗) −→ 0. (26)

Next, we observe that upon comparing the exact sequences (5) with Λ = Rc and
Λ = Fc , we obtain a commutative diagram of short exact sequences:

0 �� cok[K1(A) → K1(ARc )]

��

�� K0(A, Rc)

ιA, R c

��

�� ker[K0(A) → K0(ARc )]

⊆

��

�� 0

0 �� cok[K1(A) → K1(AF c )] �� K0(A, F c) �� ker[K0(A) → K0(AF c )] �� 0

Now, since A is commutative, the second and fourth terms of the lower sequence
can be identified with A×

F c /A× and Pic(A) respectively (cf. the end of Remark 3.3).
Further, the image of the natural composite morphism

K1(ARc ) −→ K1(AF c ) −→ cok[K1(A) → K1(AF c )] ∼= A×
F c /A×

is equal to A
×
Rc /A×. Upon identifying Pic(A) with Pic(G∗) we see that the above

diagram implies that there is an exact sequence

1 −→ A
×
Rc

A× −→ ιA,Rc (K0(A, Rc)) −→ Pic(G∗).

It is easy to see that this in turn induces an exact sequence

1 −→ A
×
Rc

Γ · A× −→ K0(A, Rc) −→ Pic(G∗). (27)

Since Im(ψ) ⊆ PK0(A, Rc), it follows from (26) that the natural map
PK0(A, Rc) → PPic(G∗) is surjective. Hence Theorem 6.4 implies that (27) induces
an exact sequence

0 −→ H(A) −→ PK0(A, Rc) −→ PPic(G∗) −→ 0. (28)

We now see from (26) and (28) that Im(ψ) = PK0(A, Rc), as asserted.
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6.3. Rings of integers

In this subsection we shall briefly explain how McCulloh’s results on realisable
classes of tame extensions in [22] can be naturally lifted to the corresponding
relative algebraic K-group. Proposition 5.7 implies that such realisability results
in the relative algebraic K-group are related to those of Chase in [13].

Suppose that F is a number field with ring of integers R. Let G be any finite,
constant abelian group scheme over Spec(R), and set Γ := G(Fc). Then in this
case, we have G = Spec(B) and G∗ = Spec(A), where

B = Map(Γ, R), A = R[Γ].

Write GF and G∗
F for the generic fibres of G and G∗ respectively. Note that, since

GF is a constant group scheme over Spec(F ), Lemma 6.7 implies that K0(A, F c)
is canonically isomorphic to K0(A, F c).

Now suppose that π : X → Spec(F ) is a GF -torsor, and write Lπ for its associated
line bundle on G∗

F . Then X = Spec(Cπ ), where Cπ is the Galois algebra extension
of F with Galois group Γ.

Definition 6.11. We say that π is tame if it is trivialised by a tamely ramified
extension of F . Equivalently, π is tame if and only if the extension Cπ /F is tamely
ramified.

We write H1
t (Spec(F ), GF ) for the subgroup of H1(Spec(F ), GF ) consisting of

isomorphism classes of tame GF -torsors.

Let Oπ denote the integral closure of R in Cπ . If π is tame, then Noether’s
theorem (see for example [18, Chapter I, § 3]) implies that Oπ is a locally free, rank
one A-module, and so it yields a line bundle on G∗ which we shall denote by Mπ .
Let π0 : GF → Spec(F ) denote the trivial GF -torsor, and set

Lπ := Mπ ⊗M−1
π0

.

It follows from the definitions that there is a natural isomorphism Lπ ⊗R F � Lπ .
If we make this identification, then any choice of splitting isomorphism ξπ for π gives
a class [Lπ ,A; ξπ ] in K0(A, F c). This class is independent of the choice of ξπ . Hence
we obtain a map

ψt : H1
t (Spec(F ), GF ) −→ K0(A, F c); π 	−→ [Lπ ,A; ξπ ]. (29)

If F is a number field, then a representative in Jf (A)×A×
F c of ψt(π) may be given

exactly as in the previous section. It may be shown via an argument very similar
to that given in Theorem 6.8 that the map ψt is injective. However, in general, ψt

is not a group homomorphism (see Remark 6.13 below).

Definition 6.12. We say that an element of K0(A, F c) is realisable if it lies in
the image of ψt .

The general strategy for describing the set of realisable classes in K0(A, F c) is as
follows. Let

j : Jf (A) × [A×
F c /Γ] −→ K0(A, F c)

denote the obvious quotient map afforded by (25) (together with Lemma 6.7), and
write H(A(A)) for the restricted direct product of the groups H(Av ) with respect
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to the subgroups H(Av ). Then the obvious natural maps A×
v → H(Av ) induce a

homomorphism
rag : Jf (A) −→ H(A(A)).

Suppose that c := cfin × c∞ ∈ Jf (A) × [A×
F c /Γ] satisfies j(c) ∈ Im(ψt). McCulloh

shows that the idele rag(cfin) admits a special type of decomposition (see [22,
Theorem 5.6]). It is a straightforward exercise to use the results of [22] to
characterise the image of ψt in a manner similar to that given in [22, Theorem
6.7]. We omit the details in order to keep this paper to a reasonable length.

Remark 6.13. (i) McCulloh has shown that the image of the map obtained
by composing ψt with the quotient map K0(A, F c) → Pic(G∗) is a subgroup of
Pic(G∗) (see [22, Corollary 6.20]). On the other hand, by using the description of
the image of ψt mentioned above, it may be shown that in general, Im(ψt) is not a
group. This situation is very similar to that which obtains in the case of realisable
classes in classgroups of sheaves discussed in [4, Remark 2.10(iii)].

(ii) By composing ψt with the natural morphism ∂A,F c : K0(A, F c) → AC(A)
defined in § 4.3, we obtain a map

ψ̂t : H1
t (Spec(F ), GF ) −→ AC(A).

The results of [22] may also be used to give a description of Im(ψ̂t). It follows from
Proposition 4.11 that such a description may be viewed as a realisability result for
certain metrised A-modules (cf. Remark 6.9).
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Boston, 1992).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0024611505015418
Downloaded from https://www.cambridge.org/core. Access paid by the UCSB Libraries, on 03 Sep 2021 at 23:55:33, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0024611505015418
https://www.cambridge.org/core


28 on twisted forms and relative algebraic K-theory

13. S. Chase, ‘Ramification invariants and torsion Galois module structure in number fields’, J.
Algebra 91 (1984) 207–257.

14. L. Childs and A. Magid, ‘The Picard invariant of a principal homogeneous space’, J. Pure
Appl. Algebra 4 (1974) 273–286.

15. T. Chinburg, B. Erez, G. Pappas and M. J. Taylor, ‘Tame actions for group schemes:
integrals and slices’, Duke Math. J. 82 (1996) 269–308.

16. T. Chinburg, G. Pappas and M. J. Taylor, ‘Arithmetic classes of metrised complexes and
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