
ON CERTAIN SPECIAL VALUES OF THE
KATZ TWO-VARIABLE p-ADIC L-FUNCTION

A. AGBOOLA

Abstract. We develop a framework that enables us to study a broad class of special values
of the Katz two-variable p-adic L-functions, including certain special values lying outside
the range of p-adic interpolation.
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2 A. AGBOOLA

1. Introduction

In this article we shall study a wide class of special values of the Katz two-variable p-adic

L-function by extending the techniques and results of [1, 2, 23, 24]

Let K be an imaginary quadratic field, and let E/K be an elliptic curve with complex

multiplication by the ring of integers OK of K; then K is necessarily of class number one.

Let p > 3 be a prime of good, ordinary reduction for E. We may write p = pp∗, with

pOK = πOK and p∗ = π∗OK .

Let

ψ : Gal(K/K)→ Aut(Eπ∞)
∼−→ O×K,p

∼−→ Z×p ,

ψ∗ : Gal(K/K)→ Aut(Eπ∗∞)
∼−→ O×K,p∗

∼−→ Z×p

denote the natural Z×p -valued characters of Gal(K/K) arising via Galois action on Eπ∞ and

Eπ∗∞ respectively. We may identify ψ with the Grossecharacter associated to E (and ψ∗

with the complex conjugate ψ of this Grossencharacter), as described, for example, in [23,

p. 325].

Set K∞ := K(Ep∞), and let O denote the completion of the ring of integers of the maximal

unramified extension of Kp. For any extension L/K we set

Λ(L) := Λ(Gal(L/K)) := Zp[[Gal(L/K)]],

and Λ(L)O := O[[Gal(L/K)]].

The Katz two-variable p-adic L-function Lp ∈ Λ(K∞)O satisfies a p-adic interpolation

formula that may be described as follows (see [23, Theorem 7.1] for the version given here,

and also [10, Theorem II.4.14]. Note also that, as the notation indicates, Lp depends upon

a choice of prime p lying above p). For all pairs of integers j, k ∈ Z with 0 ≤ −j < k, and

for all characters χ : Gal(K(Ep)/K)→ K
×
, we have

Lp(ψ
kψ∗jχ) = A · L(ψ−kψ

−j
χ−1, 0). (1.1)

Here L(ψ−kψ
−j
χ−1, s) denotes the complex Hecke L-function, and A denotes an explicit,

non-zero factor whose precise description we shall not need.

For any character φ : Gal(K/K) → Z×p , we write 〈φ〉 for the composition of φ with the

natural projection Z×p → Zp, and we define

Lp(φ, s) := Lp(φ〈φ〉s−1).

If φ lies within the range of p-adic interpolation of Lp, then the behaviour of Lp at φ (i.e. the

behaviour of Lp(φ, s) at s = 1) is predicted by various p-adic generalisations of conjectures

of Birch and Swinnerton-Dyer type due to several people. On the other hand, the behaviour
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of Lp outside the range on interpolation is much less well-understood. Variants of the p-adic

Birch and Swinnerton-Dyer conjecture involving special values of Lp lying outside the range

of interpolation were first introduced and studied by Rubin in [23, 24], with some subsequent

work by the present author in [1, 2]. (See also [4] for recent work related to this topic, using

a very different approach.) In this paper we shall generalise the framework introduced in

[1, 2]; this will enable us to analyse a broad class of special values of Lp in a uniform manner.

For any integer r ≥ 0, we write

L(r)
p (φ) := lim

s→1

Lp(φ, s)

(s− 1)r
.

Let χcyc denote the p-adic cyclotomic character of Gal(K/K), and define φ∗ := φ−1χcyc. Set

T := Zp(φ) and W := T ⊗Zp (Qp/Zp). Let K∞ be the smallest extension of K such that

Gal(K/K∞) acts trivially on T . Define T ∗, W ∗, and K∗∞ analogously.

In order to study the behaviour of Lp at φ, we introduce an Iwasawa module that is

naturally associated to Lp(φ, s) via the two-variable main conjecture. The Iwasawa module

Xp(K∞,W ) that we consider is the Pontryagin dual of a certain restricted Selmer group

Σp(K∞,W ). This restricted Selmer group is equal to the classical (or Bloch-Kato) Selmer

group when φ lies within the range of interpolation of Lp; in general however, the two Selmer

groups are different. The two-variable main conjecture shows that a characteristic power

series of Xp(K∞,W ) may be viewed as being an algebraic p-adic L-function associated to

Lp(φ, s).

We define corresponding compact restricted Selmer groups Σp(K,T ) ⊆ H1(K,T ) and

Σp∗(K,T
∗) ⊆ H1(K,T ∗), and we construct a p-adic height pairing

[−,−]φ
∗

K,p∗ : Σp(K,T )× Σp∗(K,T )→ Zp

together with an associated regulator R(φ∗)
K,p∗ .

Set

np(φ) := rankZp [Σp(K,T )],

and let Σp(K,W )/ div denote the quotient of Σp(K,W ) by its the maximal divisible subgroup.

Write Σp(K,T )tors for the torsion subgroup of Σ(K,T ). The following result is a special case

of Theorem 8.2 of the main text.

Theorem A. Let φ be of infinite order, with φ 6= χcyc. Suppose that R(φ∗)
K,p∗ 6= 0. Then

ords=1 Lp(φ, s) = np(φ),

and

L(np(φ))
p (φ) ∼ |Σp(K,W )/ div| · |Σp(K,T )tors| · R(φ∗)

K,p∗ ,
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where the symbol ‘∼’ denotes equality up to multiplication by a p-adic unit.

By using duality theorems to study np(φ) (see Proposition 9.4 of the main text), we show

the following result.

Theorem B. Suppose that φ is of infinite order, with φ 6= χcyc. Then

|np(φ)− np(φ
∗)| = 1.

Hence, if in addition R(φ∗)
K,p∗ 6= 0, then

| ords=1[Lp(φ, s)]− ords=1[Lp(φ
∗, s)]| = 1.

In order to be able to obtain exact special value formulae, we need to impose a further

condition on the characters φ that we consider, namely that of being locally Lubin-Tate

(LLT) at p (see Definition 6.7 of the main text). Roughly speaking, this means that the

restriction of φ to a decomposition group at a prime q above p is an integral power mq(φ)

of a character associated to a Lubin-Tate formal group. When φ is LLT at p, it is possible

to obtain exact expressions for L(np(φ))
p (φ) by applying suitable explicit reciprocity laws to

canonical elements y(φ) ∈ Σp(K,T ) that are constructed using twisted Euler systems of

elliptic units (see Section 11 below).

Let us illustrate a special case of our results in the setting of characters associated to CM

modular forms of higher weight. Consider the characters

φk := ψk+1ψ∗−k, φ∗k := ψ−kψ∗k+1, (k ≥ 0).

The character φk is naturally associated to the CM modular form of weight 2k+ 2 attached

to ψ, and it lies within the range of interpolation of Lp. The behaviour of Lp(φk, s) at

s = 1 is conjecturally well-understood in terms of generalisations of the p-adic Birch and

Swinnerton-Dyer conjecture to the case of modular forms of higher weight. On the other

hand, the character φ∗k lies outside the range of interpolation of Lp, and the behaviour of

Lp(φk, s) at s = 1 for arbitrary k is less well understood. When k = 0 and np(φk) ≥ 1, the

function Lp(φ
∗
k, s) was first studied by K. Rubin, who formulated a version of the p-adic Birch

and Swinnerton-Dyer conjecture in this setting (see [23, 24]). This work was subsequently

extended to the cover the case np(φk) = 0 by the present author (see [1, 2]). When k ≥ 1,

the function Lp(φ
∗
k, s) has not previously been studied.

Set

Tk := Zp(φk), T ∗k := Zp(φ
∗
k),

Vk := Tk ⊗Qp, V ∗k := T ∗k ⊗Qp.
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Write

Exp∗Vk
: H1(Kp∗ , Vk)→ Qp,

Exp∗V ∗k : H1(Kp, V
∗
k )→ Qp

for the Bloch-Kato dual exponential maps associated to Vk and V ∗k , and

LogVk
: H1(Kp, Vk)→ Qp,

LogV ∗k
: H1(Kp∗ , V

∗
k )→ Qp

for the corresponding Bloch-Kato logarithm maps. For each place v of K, we let

locv : H1(K,Tk)→ H1(Kv, Tk), locv : H1(K,T ∗k )→ H1(Kv, T
∗
k )

denote the obvious localisation maps at v.

Suppose that q ∈ {p, p∗} and that m ∈ Z. Let Frq denote a Frobenius element of

Gal(K/K) at q. For any character φ : Gal(K/K)→ Z×p we define an Euler factor Eulq(φ,m)

by

Eulq(φ,m) :=
(
1− (φχ−m

cyc )(Frq)
)−1 · (1− φ(Frq))

−1

×
(
1− [(p−1χcyc)

mφ−1](Frq)
)
·
(
1− [p−mφ−1](Frq)

)
.

The following result is a special case of Theorems 11.6 and 12.3 of the main text.

Theorem C. Suppose that φk and φ∗k are LLT at p, and that Lp(φk) 6= 0. Then R(φk)
K,p 6= 0,

and we have the following equality in Qp:

Eulp(φ
−1
k , k + 1)−1 Eulp∗(φ

−1
k , k)−1 · Lp(φk) =

Ω(φ−1
k,p∗)

Ω(φ−1
k,p)
·

[y(φ∗k), y(φk)]
(φk)
K,p∗

Exp∗Vk
(locp∗(y(φk))) Exp∗V ∗k (locp(y(φ∗k)))

· L(1)
p∗ (φk).

(We refer the reader to Section 6 for the precise definitions of the periods Ω(φ−1
k,p∗) and

Ω(φ−1
k,p).)

Theorem C, (which is a generalisation of [2, Theorem A] to modular forms of higher

weight), relates the value of Lp at the point φk lying within the range of interpolation to

the derivative of Lp at the point φ∗k lying outside the range on interpolation. It may be

viewed as being an analogue of the well-known exceptional zero phenomenon observed in

the work of Mazur, Tate and Teitelbaum in the setting of elliptic curves without complex

multiplication (see [14, especially Conjecture 2], [16, especially page 38]).



6 A. AGBOOLA

If Lp(φk) = 0, then Theorems 11.6 and 12.3 below also yield the following generalisation

of [23, Theorem 10.1] to the higher weight case, which again illustrates the phenomenon

alluded to above.

Theorem D. Assume that φk and φ∗k are LLT above p. Suppose also that Lp(φk) = 0 and

that L(1)
p (φk) 6= 0. Then Lp(φ

∗
k) 6= 0, and the following equality holds in Qp:

Eulp(φ
∗−1
k , k)−1 Eulp∗(φ

∗−1
k , k + 1)−1 · L(1)

p∗ (φ∗k) =

Ω(φ∗−1
k,p )

Ω(φ∗−1
k,p∗)

·
[y(φk), y(φ

∗
k)]

(φ∗k)

k,p∗

LogV ∗k
(locp∗(y(φ∗k))) LogV (locp(y(φk)))

· Lp(φ
∗
k).

A brief outline of the contents of this paper is as follows. In Section 2, we establish certain

notation and conventions that will apply throughout this paper. We then recall some general

facts about twists of Iwasawa modules and derivatives of their characteristic power series in

Section 3, and we explain how these facts may be applied to the Katz two-variable p-adic

L-function. In Section 4, we define various Selmer groups that we need, and we prove a

control theorem for restricted Selmer groups. In Section 5, we describe how elements in

restricted Selmer groups may be constructed using twisted units, and we establish certain

basic properties of elements constructed in this way.

In Section 6, we recall certain results concerning explicit reciprocity laws on Lubin-Tate

formal groups, and we calculate the Bloch-Kato logarithms and dual exponentials of the

elements in restricted Selmer constructed in Section 5. We construct the p-adic height

pairing on restricted Selmer groups in Section 7, and we describe how to evaluate the p-adic

heights of elements in restricted Selmer groups constructed via twisted units. In Section

8, under the assumption that the p-adic height pairing constructed in Section 7 is non-

degenerate, we prove a very general leading term formula for a characteristic power series

of a restricted Selmer group over an arbitrary finite extension of K. We compare different

restricted Selmer groups over K in Section 9, and we describe the relationship between the

leading terms of the relevant characteristic power series (see Theorem 9.7).

We recall some basic facts concerning elliptic units and the construction of the Katz two-

variable p-adic L-function Lq in Section 10. In Section 11, we apply our previous results

to construct canonical elements in restricted Selmer groups over K using twisted elliptic

units, and to prove a very general exact leading term formula for Lq (see especially Theorem

11.6). Finally, in Section 12, we specialise the results of Section 11 to the case of complex

conjugate characters, and we prove a result (see Theorem 12.3) which implies Theorems C

and D above.
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2. Notation and conventions

If L is any field, we write OL for its ring of integers and Lab for its maximal abelian

extension. We let L denote an algebraic closure of L.

Let K be an imaginary quadratic field of class number one, and let E/K be a fixed

elliptic curve with complex multiplication by the ring of integers OK of K. We write f

for the conductor of E. We fix a prime p > 3 of good, ordinary reduction for E, so that

pOK = pp∗. Let

ψ : Gal(K/K)→ Aut(Ep∞)
∼−→ O×K,p

∼−→ Z×p ,

ψ∗ : Gal(K/K)→ Aut(Ep∗∞)
∼−→ O×K,p∗

∼−→ Z×p

denote the natural Z×p -valued characters of Gal(K/K) arising via Galois action on Ep∞ and

Ep∗∞ respectively. We may identify ψ with the Grossecharacter associated to E (and ψ∗

with the complex conjugate ψ of this Grossencharacter), as described, for example, in [23,

p. 325].

The symbol q will always denote a prime of OK lying above p, and we write iq : K ↪→ Kq

for the natural embedding afforded by q.

We write χcyc : Gal(K/K)→ Z×p for the p-adic cyclotomic character of Gal(K/K). If χ :

Gal(K/K)→ Z×p is any character of Gal(K/K), we set χ∗ := χ−1χcyc and Zp(χ) := Zp⊗χ.

We write 〈χ〉 : Gal(K/K) → 1 + pZp for the composition of χ with the natural surjection

Z×p → 1 + pZp.

Throughout this paper φ : Gal(K/K) → Z×p denotes a character of infinite order. (We

shall impose further conditions on φ as the need arises.) We let

T := Z(φ), T ∗ := Zp(φ
∗);

so T and T ∗ are free, rank one Zp-modules on which Gal(K/K) acts via φ and φ∗ respectively.

Set

V := T ⊗Zp Qp, W := V/T,

V ∗ := T ∗ ⊗Zp Qp, W ∗ := V ∗/T ∗,

and write Wpn and W ∗
pn for the pn-torsion subgroups of W and W ∗ respectively. We view

T = lim←−Wpn , T ∗ = lim←−W
∗
pn , (where the inverse limits are taken with respect to the obvious

multiplication-by-p maps), and we let w = [wn], w∗ = [w∗n] denote fixed generators of T and

T ∗ respectively, chosen to satisfy the condition 2.1 below.
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For each integer n ≥ 1, we let

en : Wpn ×W ∗
pn → µpn

denote the pairing afforded by Cartier duality via viewing Wpn and W ∗
pn as group schemes

over Spec(K). This pairing satisfies the identity

en(pwn, w
∗
n) = en(wn, pw

∗
n).

We fix once and for all a generator ζ = [ζn] of Zp(1), and we assume that w and w∗ are

chosen to satisfy

en(wn, w
∗
n) = ζn (2.1)

for all n ≥ 1.

We write

Kn := K(Wpn), K∗n := K(W ∗
pn), Kn := Kn · K∗n,

and

K∞ := ∪n≥1Kn, K∗∞ := ∪n≥1K∗n, K∞ := ∪n≥1Kn.

We denote the unique Zp-extension contained in K∞ by K∞. For any finite extension F/K,

we set

Fn := F · Kn, F∗n := F · K∗n, Fn := F · Kn,

and

F∞ := F · K∞, F∞ := F ·K∞, F∗∞ := F · K∗∞, F∞ := F · F∞.

The symbol O denotes the completion of the ring of integers of the maximal unramified

extension of Qp.

Suppose that q ∈ {p, p∗}. If F/K is a finite extension, we set

Uq(F ) := units in Fq congruent to 1 modulo q.

We also set

E(F ) := global units of F ;

Eq(F ) := the closure of the projection of E(F ) into Uq(F ).

If F/K is an infinite extension with F = ∪n≥0Fn (where each Fn is a finite extension of K),

then we write

Uq(F ) := lim←−Uq(Fn), E(F ) := lim←−E(Fn), Eq(F ) := lim←−Eq(Fn),

where the inverse limits are taken with respect to the obvious norm maps.
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Remark 2.1. Note that since the strong Leopoldt conjecture holds for all finite extensions

of K, we have that

Eq(F ) ' E(F )⊗Z Zp

whenever F/K is finite. Hence, for any algebraic extension F/K, we may also view Eq(F )

as being a submodule of Uq∗(F ). We shall do this without further comment several times in

what follows. �

For any extension L/K, we set

Λ(L) := Λ(Gal(L/K)) := Zp[[Gal(L/K)]], Λ(L)O := O[[Gal(L/K)]].

If F/K is a finite extension and χ : Gal(F/F ) → Z×p is a character of infinite order, we

often write F (χ)/F for the extension of F cut out by χ. We set

Iχ(F ) := Ker[χ : Λ(F (χ))→ Zp],

and we define a generator ϑχ = ϑχ(F ) as follows. We choose a topological generator γχ =

γχ(F ) such that

logp(χ(γχ)) = p,

and we set

ϑχ(F ) := χ(γ−1
χ )γχ − 1.

For any extension L/K we write Mq(L) for the maximal abelian pro-p extension of L

which is unramified away from q, and we set X q(L) := Gal(Mq(L)/L). We let Bq(L) denote

the maximal abelian pro-p extension of L which is unramified away from q and totally split

at all places of L lying above q∗ , and we write Yq(L) := Gal(Bq(L)/L).

If M is any Zp-module, then Mdiv denotes the maximal divisible submodule of M , and

we set M/ div := M/Mdiv. We write Mtors for the torsion submodule of M , and M∧ for the

Pontryagin dual of M . If M is a torsion Zp-module, then we write Tp(M) for the p-adic

Tate module of M .

3. Characteristic power series

Our goal in this section is to recall (following [1], but in slightly greater generality) some

basic facts concerning twists of Iwasawa modules and derivatives of characteristic power

series. We shall then apply these results to twists of the two-variable p-adic L-function Lq

(where q ∈ {p, p∗}) by characters of Gal(K∞/K) of infinite order. This will later enable us

to apply the two-variable main conjecture to relate special values of Lq to the arithmetic of

certain Selmer groups.
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Suppose that F/K is any finite extension. Let GF := Gal(F∞/F ), and suppose that

ρ : GF → Z×p is any character. Then there is a twisting map

Twρ : Λ(GF )→ Λ(GF )

associated to ρ which is induced by the map g 7→ ρ(g)g for all g ∈ GF . It is easy to see that

if f ∈ Λ(GF ), then

f(ρ) = [Twρ(f)](1).

If M is any finitely generated Λ(GF )-module which characteristic power series fM ∈ Λ(GF ),

then a routine computation shows that Twρ(fM) is a characteristic power series ofM(ρ−1) :=

M ⊗ ρ−1.

Set H := Ker(ρ). Then there is a natural quotient map

ΠGF /H : Λ(GF )→ Λ(GF/H),

and ΠG/H(Twρ(fM)) is a characteristic power series of the Λ(GF/H)-module M(ρ−1)⊗Λ(GF )

Λ(GF/H). If ρ1 : GF → Z×p is any character which factors through GF/H, then

[Twρ(fM)](ρ1) = [ΠGF /H(Twρ(fM))](ρ1),

and there is an isomorphism

M(ρ−1)⊗Λ(GF ) Λ(GF/H) ' (M ⊗Λ(GF ) Λ(GF/H))(ρ−1)

of Λ(GF/H)-modules. Hence we see that we may study the values of Twρ(fM) at characters

ρ1 which factor through GF/H by studying the values of the element ΠGF /H(Twρ(fM)) at

such characters.

Suppose now that ρ is of infinite order, and let M1 be a finitely generated Λ(GF/H)-

module. Let fM1 ∈ Λ(GF/H) be a characteristic power series of M1. We may write

GF/H ' ∆H ×GH,

where ∆H is of finite order prime to p, and GH ' Zp. Let γH be a fixed topological

generator of GF/H, and let ΠGH : Λ(GF/H) → Λ(GH) be the natural quotient map. We

identify Λ(GH) with the power series ring Zp[[X]] in one variable in the usual way via the

map ΠGH(γH) 7→ 1 +X.

Let IGF /H denote the augmentation ideal of Λ(GF/H), and suppose that n ≥ 0 is the

smallest integer such that the image of fM1 in In
GF /H/I

n+1
G/H is non-zero. It is not hard to

check that ΠGH(fM1) is a characteristic power series of the Λ(GH)-module M∆H
1 , and that

((γH − 1)−nfM1)(1) =
ΠGH(fM1)

Xn

∣∣∣∣∣
X=0

, (3.1)
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where 1 denotes the identity character of GF/H.

For any character ν : GF/H → Z×p , we set ϑν := ν(γH)−1γH − 1. Then if m ≥ 0 is any

integer, it follows from the definitions that we have

(ϑ−m
ν fM1)(ν) = [(γH − 1)−m Twν(fM1)](1), (3.2)

where Twν : Λ(GF/H)→ Λ(GF/H) is the twisting map associated to ν.

Let us now explain how (3.2) is related to derivatives of certain p-adic analytic functions

(see [23, §7]). Recall that we write < ν >: GF/H → Z×p for the composition of ν with the

natural projection Z×p → 1 + pZp. Suppose that χ : GF/H → Z×p is any character of order

prime to p. Then the map from Zp to Cp given by s 7→ fM1(νχ < ν >s−1) defines an analytic

function on Zp. Define

ordνχ(fM1) := ords=1 fM1(νχ < ν >s−1),

and set

D(m)fM1(νχ) :=
1

m!

(
d

ds

)m

fM1(νχ < ν >s−1)

∣∣∣∣∣
s=1

.

We write

f
(m)
M1

(νχ) := D(m)fM1(νχ),

and we extend these definitions to Λ(GF ) via the quotient map ΠGF /H. A routine calculation

shows that we have

D(m)(ϑm
ν (νχ)) = {logp(ν(γH))}m,

and

D(m)(ϑm
ν fM1)(νχ) = {logp(ν(γH))}mfM1(νχ)

= [{logp(ν(γH))}m Twν(fM1)](χ). (3.3)

We can now see from (3.1), (3.2) and (3.3) that if nν := ordν(fM1), then we may write

fM1 = ϑnν
ν Fν with Fν ∈ Λ(GF/H), and we have

f
(nν)
M1

(ν) = lim
s→1

fM1(ν < ν >s−1)

(s− 1)nν

= D(nν)(ϑnν
ν Fν)(ν)

= [{logp(ν(γH))}nν Twν(Fν)](1)

= {logp(ν(γH))}nν · ΠG(Twν(Fν))(0)

= {logp(ν(γH))}nν · ΠG(Twν(fM1))

Xnν

∣∣∣∣∣
X=0

. (3.4)
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We shall now apply the above discussion to the case in which F = K, M = Xp(K∞), ρ = ν

is any character of infinite order, and χ = 1.

Set D∞ := KH∞, the fixed field of H, and write D∞ := D∆H
∞ ; then Gal(D∞/K) = GH ' Zp.

Recall that the two-variable main conjecture asserts that if q ∈ {p, p∗}, then Xq(K∞) is a

torsion Λ(K∞)-module, and that the Katz two-variable p-adic L-function Lq is a character-

istic power series of Xq(K∞) in Λ(K∞)O. We therefore see that Twρ(Lq) ∈ Λ(K∞)O is a

characteristic power series of Xq(K∞)(ρ−1).

Let ID∞ denote the kernel of the natural map Λ(K∞) → Λ(D∞). Fix any characteristic

power series H
(K)
q,ρ of the Λ(D∞)-module

Xq(K∞)(ρ−1)⊗Λ(K∞) (Λ(K∞)/ID∞) ' Xq(K∞)(ρ−1)/ID∞Xq(K∞)(ρ−1).

Set

Lq(ρ, s) := Lq(ρ〈ρ〉s−1),

and write

nq,ρ := ords=1 Lp(ρ, s).

Definition 3.1. For any non-negative integer m, we define

L(m)
q (ρ) := lim

s→1

Lp(ρ, s)

(s− 1)m
. (3.5)

�

Proposition 3.2. With the above notation, we have

nq,ρ = ordX=0H
(K)
q,ρ , (3.6)

and

L(nq,ρ)
q (ρ) = lim

s→1

Lp(ρ, s)

(s− 1)nq,ρ
∼ {logp(ρ(γH))}nq,ρ · H

(K)
q,ρ

Xnq,ρ

∣∣∣∣∣
X=0

, (3.7)

where ‘∼’ denotes equality up to multiplication by a p-adic unit (which, in this case, lies in

O×).

Proof. This follows from (3.1), (3.2), and (3.4). �

We therefore see that the order of vanishing nq,ρ of Lq at ρ and the p-adic valuation of

L(nq,ρ)
q (ρ) may be determined by studying H

(K)
q,ρ , and that this may be done algebraically.
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4. Selmer groups

In this section we shall define various Selmer groups that we require, and we shall establish

some of their properties.

Suppose that F is a finite extension of K.

Definition 4.1. For each finite place v of F , we write H1
f (F, V ) for the Bloch-Kato coho-

mology group at v associated to V . Hence

H1
f (Fv, V ) =

Ker[H1(Fv, V )→ H1(Gal(F v/F
nr
v , V ))] if v - p;

Ker[H1(Fv, V )→ H1(Fv, Bcrys ⊗Qp V )] if v | p,

where F nr
v is the maximal unramified extension of Fv, and Bcrys denotes Fontaine’s ring of

crystalline periods.

There is a tautological exact sequence

0→ T → V → W → 0, (4.1)

and we define H1
f (Fv, T ) and H1(Fv, V ) to be the pre-image and image respectively of

H1(Fv, V ) under the maps on cohomology groups induced by the exact sequence (4.1).

For each positive integer n, there is an exact sequence

0→ Wpn → W
×pn

−−→ W → 0, (4.2)

and we define H1
f (Fv,Wpn) to be the inverse image of H1(Fv,W ) under the map on coho-

mology induced by (4.2).

We define similar groups with V replaced by V ∗ in an entirely analogous manner. �

Example 4.2. Suppose that φ = ψiψ∗j. For each place v of F lying above p, we set

mv(φ) =

i if v | p;

j if v | p∗.

The following table lists the groups H1
f (Fv,−) for v | p:

mv(φ) < 0 mv(φ) = 0 mv(φ) > 0

V 0 0 H1(Fv, V )

T H1(F, T )tors H1(Fv, T )tors H1(Fv, T )

W 0 H1(Fv,W )div H1(Fv,W )div

If v - p, then we have

H1
f (Fv, V ) = H1

f (Fv,W ) = 0;

H1
f (Fv, T ) = H1(Fv, T )tors,
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irrespective of the values of i and j. �

Definition 4.3. Suppose that M ∈ {W,W ∗,Wpn ,W ∗
pn} and that q ∈ {p, p∗} . If c ∈

H1(F,M), then we write locv(c) for the image of c in H1(Fv,M). We define

• the true Selmer group Sel(F,M) by

Sel(F,M) =
{
c ∈ H1(F,M) | locv(c) ∈ H1

f (Fv,M) for all v
}

;

• the relaxed Selmer group Selrel(F,M) by

Selrel(F,M) =
{
c ∈ H1(F,M) | locv(c) ∈ H1

f (Fv,M) for all v not dividing p
}

;

• the strict Selmer group Selstr(L,M) by

Selstr(F,M) = {c ∈ Sel(F,M) | locv(c) = 0 for all v dividing p} ;

• the q-strict Selmer group Selstr(q)(F,M) by

Selstr(q)(F,M) = {c ∈ Sel(F,M) | locv(c) = 0 for all v dividing q} ;

• the q-restricted Selmer group (or simply restricted Selmer group for short when q is

understood) Σq(F,M) by

Σq(F,M) = {c ∈ Selrel(F,M) | locv(c) = 0 for all v - q} .

We also define

Šel?(F, T ) := lim←−
n

Sel?(F,Wpn), Šel?(F, T
∗) := lim←−

n

Sel?(F,W
∗
pn),

Σ̌q(F, T ) := lim←−
n

Σq(F,Wpn), Σ̌q(F, T
∗) := lim←−

n

Σq(F,W
∗
pn).

If L/K is an infinite extension, we define

Sel?(L,M) = lim−→ Sel?(L
′,M), Σq(L,M) = lim−→Σq(L

′,M),

Šel?(L, T ) = lim−→ Šel?(L
′, T ), Šel?(L, T

∗) = lim−→ Šel?(L
′, T ∗),

where the direct limits are taken with respect to restriction over all subfields L′ ⊂ L finite

over K.

For any extension L/K, we set

Sel?(L,M)∧ = X?(L,M), Σq(L,M)∧ = Xq(L,M).

�
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Example 4.4. Suppose that φ = ψiψ∗j. By using the table given in Example 4.2, it is not

hard to describe the true Selmer group H1
f (K,W ) as i and j vary:

j < 0 j = 0 j > 0

i < 0 Selstr(K,W ) Selstr(K,W ) Σp∗(K,W )

i = 0 Selstr(K,W ) 0 Σp∗(K,W )

i > 0 Σp(K,W ) Σp(K,W ) Selrel(K,W )

The reader may find it helpful to draw a diagram of the i − j plane to illustrate the table

above. �

The following result is an analogue for restricted Selmer groups of a well known theorem

of Coates about true Selmer groups associated to torsion points on CM elliptic curves [7,

Theorem 12].

Theorem 4.5. Let L be any field such that F∞ ⊆ L ⊆ F∞, and suppose that q ∈ {p, p∗}.
Then there is an isomorphism

Xq(L,W ) ' X (q)(L)(φ−1)

of Λ(L)-modules. In particular, Xq(L,W ) is a torsion Λ(L)-module.

Proof. The proof of this result is very similar to that of [7, Theorem 12]. We begin by

observing that , since F∞ ⊆ L, there are Λ(L)-module isomorphisms

X (q)(L)(φ−1) ' Hom(T,X (q)(L)), X (q)(L)(φ−1)∧ ' Hom(X (q)(L),W ).

Therefore, in order to establish the desired result, it suffices to show that there is a natural

isomorphism

Σq(L,W )
∼−→ Hom(X (q)(L),W ). (4.3)

This follows via an argument entirely analogous to that used to establish [7, Theorem 12]. �

We now state a ‘control theorem’ for restricted Selmer groups.

Theorem 4.6. Suppose that q ∈ {p, p∗}.
(a) Let IF∞ denote the kernel of the quotient map

ΠF∞ : Λ(F∞)→ Λ(F∞).

Then the kernel of the restriction map

Σq(F∞,W )→ Σq(F∞,W )[IF∞ ]
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is finite. A characteristic power series in Λ(F∞) of the Pontryagin dual of the cokernel of

this restriction map is given by

eF = (γ − φ−1(γ))−1
∏
v|q

(γv − φ−1(γv)),

where γ is a topological generator of Gal(F∞/F ), and, for each place v of F∞ lying above

q, γv denotes a topological generator of Gal(F∞,v/Fv) ≤ Gal(F∞/F ).

Hence if f ∈ Λ(F∞) is a characteristic power series of Xq(F∞,W ), then e−1
F ΠF∞(f) ∈

Λ(F∞) is a characteristic power series of Xq(F∞,W ).

(b) Suppose that L is any field such that F ⊆ L ⊆ F∞, and write IL for the kernel of the

quotient map Λ(F∞)→ Λ(L). Then the restriction map

Σq(L,W )→ Σq(F∞,W )[IL]

is an isomorphism.

Hence the dual of this restriction map is an isomorphism of Λ(L)-modules:

Xq(F∞,W )/ILXq(F∞,W )
∼−→ Xq(L,W ).

Proof. Let N denote the maximal extension of F∞ that is unramified away from all places

of F∞ lying above p. Consider the following commutative diagram:

0 −−−→ Σq(F∞,W ) −−−→ H1(N /F∞,W )
locq∗−−−→

∏
v|q∗ H

1(Nv/F∞,v,W )

α

y y y
0 −−−→ Σq(F∞,W )[IF∞ ] −−−→ H1(N /F∞,W )[IF∞ ]

locq∗−−−→
∏

v|q∗ H
1(Nv/F∞,v,W )

in which the vertical arrows are the obvious restriction maps.

Applying the Snake Lemma (together with the inflation-restriction exact sequence) to this

diagram yields the exact sequence

0→ Ker(α)→ H1(F∞/F∞,W )
g1−→

∏
v|q∗

H1(F∞,v/F∞,v,W
∗)→

→ Coker(α)→ H2(F∞/F∞,W )
g2−→

∏
v|q∗

H2(F∞,v/F∞,v,W )→ 0. (4.4)

Now,

H1(F∞/F∞,W ) ' Hom(Gal(F∞/F∞),W ),∏
v|q∗

H1(F∞,v/F∞,v,W ) '
∏
v|q∗

Hom(Gal(F∞,v/F∞,v),W ), (4.5)
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and, as Gal(F∞/F∞) ' ∆× Zp with p - ∆, we have

H2(F∞/F∞,W ) ' H0(F∞/F∞,W ) ' W,∏
v|q∗

H2(F∞,v/F∞,v,W ) '
∏
v|q∗

H0(F∞,v/F∞,v,W ) '
∏
v|q∗

W.

We now deduce that g1 is non-zero, and therefore has finite kernel (since H1(F∞/F∞,W )

is divisible), and that g2 is injective. It follows from (4.4) that Ker(α) is finite, and that

there is an exact sequence

0→ Ker(α)→ H1(F∞/F∞,W )
g1−→

∏
v|q∗

H1(F∞,v/F∞,v,W )→ Coker(α)→ 0. (4.6)

It follows from (4.5) that

CharΛ(F∞)

(
H1(F∞/F∞,W )

)∧
= γ − φ−1(γ);

CharΛ(F∞)

∏
v|q∗

H1(F∞,v/F∞,v,W )

∧

=
∏
v|q∗

(γv − φ−1(γv)).

Hence we deduce from (4.6) that

CharΛ(F∞)(Coker(α))∧ = eF = (γ − φ−1(γ))−1
∏
v|q∗

(γv − φ−1(γv)),

as asserted.

(b) In this case we consider the commutative diagram

0 −−−→ Σq(L,W ) −−−→ H1(N /L,W )
locq∗−−−→

∏
v|q∗ H

1(Nv/Lv,W )

β1

y β2

y β3

y
0 −−−→ Σq(F∞,W )[IL] −−−→ H1(N /F∞,W )

locq∗−−−→
∏

v|q∗ H
1(N /F∞,v,W )

We have that

Ker(β2) = H1(F∞/L,W ) = 0,

Ker(β3) =
∏
v|q∗

H1(F∞,v/Lv,W ) = 0,

Coker(β2) = H2(F∞/L,W ) = 0,

(cf. [20, p. 40], for example), and so the Snake Lemma implies that β1 is an isomorphism,

as claimed. �
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Corollary 4.7. For any field L with F ⊆ L ⊆ F∞, we have an isomorphism

Xq(L, T ) ' Xq(F∞)(φ−1)/IL(Xq(F∞)(φ−1)) (4.7)

of Λ(L)-modules.

Proof. This follows directly from Proposition 4.6 and Theorem 4.5. �

Remark 4.8. If we take F = K in Proposition 4.6, then it is easy to check that eK ∈
Λ(K∞)×. We therefore see from Proposition 4.6(a) and Corollary 4.7 that the element

H
(K)
q,ρ ∈ Λ(K∞) fixed in Section 3 is a characteristic power series of Xq(K∞,W ). Let us

also remark that as Lq ∈ Λ(K∞)O is a characteristic power series of Xq(K∞), it follows that

Twφ(Lq) is a characteristic power series of Xq(K∞,W ). �

5. Kummer Theory

In this section we shall explain how to construct elements in restricted Selmer groups

using twisted units. We begin by recording the following standard cohomological result.

Lemma 5.1. Let F/K be any finite extension, and set Nn := F∗nK∞. Suppose that L and

M are fields with F ⊆ L ⊆M ⊆ Nn. Then for every integer m ≥ 1, the restriction maps

H1(L,Wpm)→ H1(M,Wpm), H1(L, µpm)→ H1(M,µpm)

are injective, and they induce isomorphisms

H1(L,Wpm) ' H1(M,Wpm)Gal(M/L), H1(L, µpm) ' H1(M,µpm)Gal(M/L).

A similar result holds if L and M are replaced by Lv and Mv with

Fv ⊆ Lv ⊆Mv ⊆ Nm,v

for any finite place v of F .

Proof. See, for example, [20, page 140]. �

We now recall some basic facts about twisting cohomology classes by Galois characters

[26, II.4 and VI].

Fix generators w = [wn] of T and w∗ = [w∗n] of T ∗. Set

ζ = [ζn] = [en(wn, w
∗
n)] ∈ Zp(1).

Write T ∗−1 := Hom(T ∗,Zp), and let w∗−1 = [w∗−1
n ] ∈ T ∗−1 be the generator of T ∗−1 defined

by w∗−1
n : w∗n 7→ 1. Observe that we have

T ∗−1 ⊗ Zp(−1) = Hom(T ∗,Zp)⊗ Zp(1) ' Hom(T ∗,Zp(1)) ' T,
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and that the image of w∗−1⊗ ζ ∈ T ∗−1⊗Zp(1) in Hom(T ∗,Zp(1)) is the map w∗ 7→ ζ, which

is in turn identified with w ∈ T via the en-pairings.

Let F/K be a finite extension.

Lemma 5.2. For each integer n ≥ 1, the map

µpn → Wpn ; ζn 7→ wn

induces an isomorphism

Tw
(n)

φ∗−1 : H1(F∗n, µpn)
∼−→ H1(F∗n,Wpn).

Proof. This is straightforward, and follows immediately from the fact that Gal(F̄ /F∗n) acts

trivially on w∗n. �

Lemma 5.3. Suppose that c ∈ H1(F∗n,Zp(1)). Then the image of c under the composition

of maps

H1(F∗n,Wpn)
(Tw

(n)

φ∗−1 )−1

−−−−−−−→ H1(F∗n, µpn)
Cores−−−→ H1(F, µpn)

Tw
(n)

φ∗−1

−−−−→ H1(F∗n,Wpn)

is equal to
∑

σ∈Gal(F∗n/F ) φ
∗−1(σ)cσ.

Proof. See [26, Lemma II.4.3]. �

For each integer n ≥ 1, let αn : H1(F∗n,Wpn) → H1(F∗n−1,Wpn−1) be the composition of

maps

H1(F∗n,Wpn)
Cores−−−→ H1(F∗n−1,Wpn)

×p−→ H1(F∗n−1,Wpn−1).

Lemma 5.4. (a) There is a natural isomorphism

lim←−H
1(F∗n,Wpn) ' lim←−H

1(F∗n, T ),

where the left-hand inverse limit is taken with respect to the maps αn, and the right-hand

inverse limit is taken with respect to the obvious corestriction maps.

(b) Suppose that u = [un] ∈ lim←−H
1(F∗n,Zp(1)), and, for each n, write Tw

(n)

φ∗−1(un) ∈
H1(F∗n,Wpn) for the image of un under the sequence of maps

H1(F∗n,Zp(1))→ H1(F∗n, µpn)
Tw

(n)

φ∗−1

−−−−→ H1(F∗n,Wpn).

Then

αn(Tw
(n)

φ∗−1(un)) = Tw
(n−1)

φ∗−1 (un−1).
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Hence it follows from part (a) above that the maps Tw
(n)

φ∗−1 induce a homomorphism

Twφ∗−1 : lim←−H
1(F∗n,Zp(1))→ lim←−H

1(F∗n, T )

u 7→ Twφ∗−1(u) = [Twφ∗−1(u)n]

Proof. (a) See [26, Proposition VI.2.1].

(b) This follows via a routine computation. �

Definition 5.5. For each u = [un] ∈ lim←−H
1(F∗n,Zp(1)), we define Pu(φ) ∈ H1(F, T ) by

Pu(φ) := Twφ∗−1(u)0. (5.1)

�

We shall study the behaviour of Pu(φ) using Kummer theory on the multiplicative group.

The main result that we shall use to do this is the following.

Proposition 5.6. (a) There is an isomorphism of Gal(F∗n/F )-modules

H1(F∗n,Wpn)
∼−→ Hom(W ∗

pn ,F∗×n /F∗×pn

n ); f 7→ f̃ . (5.2)

For each place v of F∗n, there is also a corresponding local isomorphism

H1(F∗n,v,Wpn)
∼−→ Hom(W ∗

pn ,F∗×n,v/F∗×pn

n,v ).

(b) There is an injective homomorphism

κφ : H1(F, T )→ lim←−H
1(F∗n,Zp(1)),

where the inverse limit is taken with respect to the obvious corestriction maps.

Proof. (a) The isomorphism (5.2) is defined as follows. We first identify F∗×n /F∗×pn

n via

Kummer theory, and then we define f̃ by f̃(w∗n) = Tw
(n)

φ∗−1(f). It is not hard to check that

the map f 7→ f̃ is a Gal(F∗n/F )-isomorphism.

(b) Suppose that c = [cn] ∈ lim←−H
1(F,Wpn) ' H1(F, T ), and consider the composition of

maps

H1(F∗n+1, µpn+1)→ H1(F∗n, µpn+1)→ H1(F∗n, µpn), (5.3)

where the first arrow is given by corestriction and the second arrow is induced by the natural

map µpn+1 → µpn . Recall from Lemma 5.1 that there is an isomorphism H1(F,Wpn) '
H1(F∗n,Wpn)Gal(F∗n/F ). It is not dificult to check that (5.3) maps c̃n+1(w

∗
n+1) to c̃n(w∗n). We

may therefore define

c̃(w) := [c̃n(w∗n)] ∈ lim←−H
1(F∗n, µpn),
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where the inverse imit is taken with respect to the maps (5.3). Since

lim←−H
1(F∗n, µpn) ' lim←−H

1(F∗n,Zp(1)),

where the right-hand inverse limit is taken with respect to the obvious corestriction maps

(see e.g. [26, Appendix B, Section B3]), we may therefore view c̃(w∗) as being an element

of lim←−H
1(F∗n,Zp(1)), and we write

κφ(c) = [κφ(c)n] ∈ lim←−H
1(F∗n,Zp(1))

for this element.

It follows from the construction of κφ that for each integer n ≥ 1, we have

κφ(c)n ≡ Twφ∗−1(cn) (mod F∗×pn

n )

in H1(F∗n, µpn) ' F∗×n /F∗×pn

n . This implies that κφ is injective. �

Corollary 5.7. Suppose that u = [un] ∈ lim←−H
1(F∗n,Zp(1)). Then we have

κφ(Pu(φ))n ≡

 ∑
σ∈Gal(F∗n/F )

φ∗−1(σ)σ

un (mod F∗×pn

n )

in H1(F∗n, µpn) ' F∗×n /F∗×pn

n .

Proof. This follows directly from Lemma 5.3 and the definition of κφ. �

We remind the reader that for each construction we have carried out in this section, there

are corresponding local constructions in which F is replaced by Fv for any finite place v of

F .

Now set

I(φ∗)
F := Ker[φ∗ : Λ(F∗∞)→ Zp],

and put

ϑ
(φ∗)
F := γ∗φ∗(γ∗−1)− 1,

where γ∗ is any topological generator of Gal(F∗∞/F ) such that logp(γ
∗) = p. Then ϑ

(φ∗)
F is a

generator of the ideal I(φ∗)
F .

For each integer n ≥ 1, let ϑ
(φ∗)
F,n denote the projection of ϑ

(φ∗)
F into Zp[Gal(F∗n/F )].

Lemma 5.8. We have

ϑ
(φ∗)
F,n ·

∑
σ∈Gal(F∗n/F )

φ∗−1(σ)σ ≡ −(p− 1)pn mod pnI(φ∗)
F Zp[Gal(F∗n/F )].

Proof. The proof of this assertion is identical to that of [23, Lemma 6.3]. �
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Proposition 5.9. Suppose that u = [un] and ν = [νn] are elements of lim←−H
1(F∗n,Zp(1))

such that u = ϑ
(φ∗)
F · ν. Then Pu(φ) = 0.

Proof. Recall that we have an injection

κφ : H1(F, T )→ lim←−H
1(F∗n,Zp(1))

(see Proposition 5.6(b)), and so to prove the desired result, it suffices to show that κφ(Pu(φ)) =

0.

Now for each integer n ≥ 1, Corollary 5.7 yields

κφ(Pu(φ)n ≡

 ∑
σ∈Gal(F∗n/F )

φ∗−1(σ)σ

un (mod F∗×pn

n )

≡

 ∑
σ∈Gal(F∗n/F )

φ∗−1(σ)σ

ϑ
(φ∗)
F,n νn (mod F∗×pn

n )

≡ −(p− 1)pnνn (mod F∗×pn

n )

≡ 1 (mod F∗×pn

n ).

Hence κφ(Pu(φ))n is trivial for all n, and so it follows that κφ(Pu(φ)) = 0, as required. �

The following result describes how norm-coherent units may be used to construct elements

of restricted Selmer groups.

Proposition 5.10. Let q ∈ {p, p∗}, and suppose that u = [un] ∈ H1(F∗n,Zp(1)). If

locv(u) ∈ ϑ(φ∗)
F · lim←−H

1(F∗n,v,Zp(1))

for every place v of F lying above q∗, then Pu(φ) ∈ Σq(F, T ).

Proof. Proposition 5.9 (with F replaced by Fv for v | q∗) implies that

locv(Pu(φ)) = 0

for each place v of F lying above q∗. Since Twφ∗−1(u) ∈ lim←− Selrel(F∗n, T ) (cf. [26, Proposition

B.3.3]), the result follows. �

We shall now recall a number of basic facts concerning Kummer pairings and cup products.

Definition 5.11. Suppose that F/K is a finite extension, and that q ∈ {p, p∗}. For each

integer n ≥ 1, we define a pairing

(−,−)
(φ)
Fq,n : H1(Fn,q,Zp(1))×H1(Fq,Wpn)→ Wpn (5.4)
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by

(un, yn)
(φ)
Fq,n = yn([un, F

ab
q /Fn,q]) =: α(φ)

q,n(un, yn) · wn,

with α
(φ)
q,n(un, yn) ∈ Z/pnZ.

The pairings (5.4) fit together to yield a pairing

(−,−)
(φ)
Fq

: lim←−H
1(Fn,q,Zp(1))×H1(Fq, T )→ T

that is defined as follows. Suppose that y = [yn] ∈ lim←−H
1(Fq,Wpn) ' H1(Fq, T ), and

u = [un] ∈ lim←−H
1(Fn,q,Zp(1)). Then we set

(u, y)
(φ)
Fq

= [(un, yn)
(φ)
Fq,n] ∈ lim←−Wpn = T.

Hence, if we write α
(φ)
Fq

(u, y) = [α
(φ)
q,n(un, yn)] ∈ Zp, then we have that

(u, y)
(φ)
Fq

= α
(φ)
Fq
· w∗.

�

The following result describes the relationship between the Kummer pairing (−,−)
(φ)
Fq

and

the cup product pairing

∪ : H1(Fq, T )×H1(Fq, T
∗)→ Zp. (5.5)

Proposition 5.12. Suppose that y = [yn] ∈ H1(Fq, T ) and y∗ = [y∗n] ∈ H1(Fq, T
∗). Then

(κφ(y), y
∗)

(φ∗)
Fq

= (y ∪ y∗) · w∗,

i.e.

α
(φ∗)
Fq

(κφ(y), y
∗) = [α

(φ∗)
Fq,n(κφ(y), y

∗
n)] = (y ∪ y∗).

Proof. For each integer n ≥ 1, let

∪ : H1(Fq,Wpn)×H1(Fq,W
∗
pn)→ Z/pnZ

be the cup product pairing ‘at level n’ afforded by (5.5). To prove the desired result, it

suffices to show that we have

(κφ(y)n, y
∗
n)

(φ∗)
Fn,q = −(yn ∪ y∗n) · w∗n

for every n ≥ 1.

Recall that Fn,q = F∗n,q(µpn), and that there are Gal(F c
q/Fn,q)-isomorphisms

Wpn
∼−→ µpn ; wn 7→ en(wn, w

∗
n),

W ∗
pn

∼−→ µpn ; w∗n 7→ en(wn, w
∗
n),
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which in turn induce isomorphisms of cohomology groups

H1(Fn,q,Wpn)
∼−→ H1(Fn,q, µpn) ' F×n,q/F

×pn

n,q ,

H1(Fn,q,W
∗
pn)

∼−→ H1(Fn,q, µpn) ' F×n,q/F
×pn

n,q .

Via these isomorphisms, over Fn,q, the Kummer pairing (−,−)
(φ∗)
Fq,n may be identified with

the Hilbert pairing

(−,−) :
F×n.q

F×pn

n,q

×
F×n.q

F×pn

n,q

→ µpn

defined by

(a, b) =
(b1/pn

)σa

b1/pn ,

where σa denotes the local Artin symbol [a, F ab
q /Fn,q], and b1/pn

is any pn-th root of b in F ab
q .

We now recall (see e.g. [28, Chapter XIV]) that the Hilbert pairing may in turn be

identified with a cup product pairing

∪ : H1(Fn,q, µpn)×H1(Fn,q, µpn)→ µpn

so that

(b1/pn
)σa

b1/pn = (a ∪ b) · ζn.

Via functoriality of cup products, we therefore deduce that

(κφ(y)n, y
∗
n)

(φ∗)
Fn,q = −(yn ∪ y∗n) · w∗n

for every n ≥ 1, as required. �

Corollary 5.13. Suppose that F/K is a finite extension, and that q ∈ {p, p∗}. If y∗ ∈
H1(Fq, T

∗), then we have

Pu(φ) ∪ y∗ = α
(φ)
Fq

(locq(u), y
∗).

�

6. Formal groups and explicit reciprocity laws

In this section we shall recall various results that we need concerning explicit reciprocity

laws, and we shall explain how these may be used to evaluate the cup products locq(Pu(φ))∪
y∗ (cf. Corollary 5.13) in terms of certain p-adic measures associated to u.
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6.1. Formal groups. Suppose that q ∈ {p, p∗}, and let F be a height one Lubin-Tate

formal group defined over OK,q. Recall that [ζn] denotes the generator of Zp(1) that was

fixed at the begining of this paper in Section 2. For each n, let ζ̂n denote the parameter of

ζn on the multiplicative formal group Ĝm. We choose an isomorphism

ηF : Ĝm
∼−→ F; ηF(X) ∈ O[[X]] (6.1)

over O, and we set

νn = νF,n := ηF(ζ̂n).

We write

F[pn] := OK,q · νn

(where here OK,q acts on νn via F) for the group of pn-torsion points on F. We have that

ν = νF := [νn] is a generator of the p-adic Tate module TF of F. We write

κF : Gal(Kq/Kq)→ Z×p

for the formal group character afforded by Galois action on TF, and

ΩηF
:= η′F(0) (6.2)

for the p-adic period associated to our choice of isomorphism ηF. Then, for each σ ∈
Gal(Kq/Kq), we have

Ωσ
ηF

= (κF · χ−1
cyc)(σ

−1)ΩηF
. (6.3)

We denote the formal group logarithm associated to F by λF(X) ∈ OK,q[[X]], and we write

logq for the q-adic logarithm associated to Gm.

For each integer n ≥ 1, we set Ln := Kq(νn), and we write Hn for the unique unramified

extension of Kq of degree pn−1(p− 1). We put Mn := LnHn, and we set

L∞ := ∪n≥1Ln, H∞ := ∪n≥1Hn, M∞ := ∪n≥1Mn. (6.4)

We define L0 = H0 = Kq.

For each n ≥ 0, there is an injective Coleman homomorphism

ColHnL∞/Kq : U(HnL∞)→ ΛO(HnL∞); β 7→ µ
(n)
β

(see [10, Chapter I]), and these maps combine to yield an injective homomorphism

ColM∞/Kq : U(M∞)→ ΛO(M∞); β 7→ µβ.

The Coleman map ColM∞/Kq is canonical; in particular—and this will be of crucial use to

us—it does not depend upon the choice of formal group F used in its construction (see [10,

Proposition I.3.9]).
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There is also an ‘unramified Coleman map’

Colur
H∞/Kq

: U(H∞)→ ΛO(H∞)

that is defined as follows (cf. [23, Theorem 7.2]). Suppose that β = [βn] ∈ U(H∞), and write

Frq ∈ Gal(H∞/Kq) for the Frobenius element. Then it follows via local class field theory

that there exists

α = [α(n)] ∈ U(M∞), α(n) = [α(n)
m ] ∈ U(Hn · L∞), (6.5)

such that for each n, we have

α
(n)
0 = β1−Frq

n . (6.6)

This in turn implies that

[ColHnL∞/Kq(α
(n))] ∈ lim←−

n

ΛO(L∞ ·Hn) ' ΛO(M∞),

and we define

Colnr
H∞/Kq

(β) = [ColHnL∞/Kq(α
(n))].

The map Colnr
H∞/Kq

is injective and is independent of all choices made in its definition.

We shall apply the above constructions in the setting afforded by the following result.

Proposition 6.1. Let N∞ be any totally ramified Z×p extension of Kq, and let π(N∞) be

a uniformiser of OK,q that generates the group of universal norms of this extension. Then

there exists a height one Lubin-Tate formal group F(N∞) associated to π(N∞), such that

L∞ = N∞ (using the notation of (6.4)).

Proof. This is a standard result which follows via local class field theory; see [17, Chapter

V, §5], for example. �

6.2. Explicit reciprocity laws. We retain the notation established in the previous sub-

section.

Definition 6.2. If r is any non-zero integer, then there is a twisting homomorphism

Twκr
F

: lim←−H
1(Ln,Zp(1))→ lim←−H

1(Ln, T
⊗r
F (1))

β 7→ Twκr
F
(β) = [Twκr

F
(β)n].

We define Qβ(χcycκ
r
F) ∈ H1(Kq, T

⊗r
F (1)) by

Qβ(χcycκ
r
F) = Twκr

F
(β)0. (6.7)

�
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For each non-zero integer r, we set

V ⊗r
F (1) := T⊗r(1)⊗Zp Qp,

and we put ν⊗r(1) := ν⊗r ⊗ ζ. We write

DR(V ⊗r
F (1)) := (BdR ⊗Kq V

⊗r(1))Gal(Kq/Kq),

where BdR denotes the de Rham period ring of Fontaine. We put

tF := ΩηF
· t,

where t denotes the canonical element of BdR upon which Gal(Kq/Kq) acts via the p-adic

cyclotomic character χcyc, and we identify Kq with DR(V ⊗r
F (1)) via the map

Kq
∼−→ DR(V ⊗r

F (1)) (6.8)

x 7→ xt−r
F ⊗ ν(1)⊗r.

With this identification, let

ExpV ⊗r
F (1) : Kq → H1

f (Kq, V
⊗r
F (1)) ⊆ H1(Kq, V

⊗r
F (1))

and

Exp∗
V ⊗r
F (1)

: H1(Kq, V
⊗r
F (1))→ H1(Kq, V

⊗r
F (1))

H1
f (Kq, V

⊗r
F (1))

→ Kq

denote the Bloch-Kato exponential and dual exponential maps respectively. We have

H1
f (Kq, V

⊗r
F (1)) =

H1(Kq, V
⊗r
F (1)) if r ≥ 1;

0 if r ≤ −1.

If r ≤ −1, then Exp∗
V ⊗r
F (1)

is an isomorphism, while ExpV ⊗r
F (1) is the zero map; if r ≥ 1, then

the reverse is true. We write

LogV ⊗r
F (1) : H1(Kq, V

⊗r
F (1))→ Kq

for the inverse of ExpV ⊗r
F (1) when r ≥ 1, and we call this map the Bloch-Kato logarithm

associated to V ⊗r
F (1).

If y ∈ H1(Kq, V
⊗r
F ) and y∗ ∈ H1(Kq, V

⊗(−r)
F (1)), then we have (at least up to sign):

y ∪ y∗ =

LogV ⊗r
F

(y) · Exp∗
V
⊗(−r)
F (1)

(y∗) if r ≥ 1

Exp∗
V ⊗r
F

(y) · Log
V
⊗(−r)
F (1)

(y∗) if r ≤ −1.
(6.9)
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Definition 6.3. For each non-zero integer r and each character ρ : Gal(Kq/Kq)→ Z×p , set

Eulq(ρ, r) :=

(
1−

[
ρ

χcyc

]r

(Frq)

)−1

· (1− ρr(Frq))
−1

×
(

1−
[
χcyc

p · ρ

]r

(Frq)

)
·
(
1− (p · ρ)−r(Frq)

)
.

�

Theorem 6.4. Suppose that β ∈ U(L∞) ⊆ lim←−H
1(Ln,Zp(1)).

(a) If r ≥ 1, then

LogV ⊗r
F (1)(Qβ(χcycκ

r
F)) = (−1)r · (r − 1)! · Eulq(κF, r) · Ω−r

ηF
·
∫
GKq

κF(x)−rdµβ.

(b) If r ≤ −1, then

Exp∗
V ⊗r
F (1)

(Qβ(χcycκ
r
F)) =

1

(−r − 1)!
· Eulq(κF, r) · Ωr

ηF
·
∫
GKq

κF(x)−rdµβ.

Proof. Part (a) is simply a restatement of [29, Theorem 3.3], in our setting, while part (b)

is [29, Theorem 6.2]. These are in turn generalisations of earlier results of Colmez [9]. �

We shall also require an analogue of Theorem 6.4 in which we consider cohomology classes

that arise via twisting norm-coherent systems of local units by unramified characters of

infinite order.

Suppose therefore that χ : Gal(H∞/Kq) → Z×p is a surjective character, and set χ∗ :=

χ−1 · χcyc. Then χ∗ cuts out a totally ramified Z×p -extension K
(χ∗)
q = ∪n≥0K

(χ∗)
q,n of Kq, and

χ∗|Gal(Kq/Knr
q ) = χcyc|Gal(Kq/Knr

q ).

It follows from Proposition 6.1 that there exists a height one Lubin-Tate formal group

F(K
(χ∗)
q ) defined associated to a uniformiser π(K

(χ∗)
q ) of OKq , such that the π(K

(χ∗)
q )-adic

Tate module T
F(K

(χ∗)
q )

of F(K
(χ∗)
q ) is isomorphic to Zp(χ

∗) as a Gal(Kq/K)-module.

As χ∗ = χ−1 · χcyc, there is a twisting homomorphism

Twχ−1 : U(H∞)→ lim←−H
1(Hn, TF(K

(χ∗)
q )

); β 7→ Twχ−1(β) = [Twχ−1(β)n].

For each β ∈ U(H∞), we define Qβ(χ∗) ∈ H1(Kq, TF(K
χ∗)
q

) by

Qβ(χ∗) := Twχ−1(β)0. (6.10)

A result of Bloch and Kato [5, Example 3.10.1] implies that if we identify Kq with

DR(V
F(K

(χ∗)
q

) as described above (see (6.8)), then the Bloch-Kato logarithm

LogV
F(K

(χ∗)
q )

: H1(Kq, VF(K
(χ∗)
q )

)→ Kq
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and the formal group logarithm λ
F(K

(χ∗)
q )

(extended via linearity to H1(Kq, VF(K
(χ∗)
q

)) are the

same. In particular, we have that

LogV
F(K

(χ∗)
q )

(Qβ(χ∗)) = λ
F(K

(χ∗)
q )

(Q̂β(χ∗)) (6.11)

for every β ∈ U(H∞).

For each integer n ≥ 1, the isomorphism

η
F(K

(χ∗)
q )

: Ĝm
∼−→ F(K(χ∗)

q )

induces an isomorphism

ιn : µpn
∼−→ F(K(χ∗)

q )[pn]; ζn 7→ zn,

say. If we set Nn := K
(χ∗)
q,n ·H∞, then ιn induces an isomorphism (which we denote by the

the same symbol)

ιn : H1(Nn, µpn)
∼−→ H1(Nn,F(K(χ∗)

q )[pn])

which is Gal(Kq/Hn)-equivariant. Let mn denote the maximal ideal in the ring of integers

of the completion of Nn.

Proposition 6.5. (a) The following diagram commutes:

H1(Nn, µpn)
ιn−−−→
∼

H1(Nn,F(K
(χ∗)
q )[pn])x x

Ĝm(mn)

Ĝm(mn)pn
'

O×Nn

O×pn

Nn

η
F(K

(χ∗)
q )

−−−−−→
∼

F(K
(χ∗)
q )(mn)

pnF(K
(χ∗)
q )(mn)

.

(Here the vertical arrows denote the natural maps afforded by Kummer theory on Ĝm and

F(K
(χ∗)
q ).)

(b) If x̂ ∈ Ĝm(mn), then

λ
F(K

(χ∗)
q )

(η(x̂)) ≡ Ω
F(K

(χ∗)
q )
· logq(x̂) (mod mpn

n )

on Ĝm(mn)/Ĝm(mn)pn
.

Proof. (a) This follows directly from the definitions of η
F(K

(χ∗)
q )

and ιn.

(b) (cf. [23, Corollary 9.2].) Observe that the map

λ
F(K

(χ∗)
q )
◦ η

F(K
(χ∗)
q )

: Ĝm → Ĝa

is a multiple of the logarithm map logq(1+X) ∈ OK,q[[X]] of Ĝm. Comparing the derivatives

of λ
F(K

(χ∗)
q )
◦ η

F(K
(χ∗)
q )

and logq at X = 0 yields

λ
F(K

(χ∗)
q )
◦ η

F(K
(χ∗)
q )

(X) = Ω
F(K

(χ∗)
q )

logq(1 +X),
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and this implies the desired result. �

Recall (see (6.4)) that, with our present notation, we have that M∞ = K
(χ∗)
q ·H∞.

Theorem 6.6. Suppose that β ∈ U(H∞), and that χ : Gal(H∞/Kq) → Z×p is surjective.

Set µβ := Colnr
H∞/Kq

(β) ∈ ΛO(M∞). Then

LogV
F(K

(χ∗)
q )

(Qβ(χ∗)) =
(
1− χ(Fr−1

q )
)
·
(

1− χ(Frq)

p

)−1

· Ω
F(K

(χ∗)
q )
·
∫
GKq

χ(x) · dµβ. (6.12)

Proof. From (6.11) and Proposition 6.5(b), and applying (6.5)and (6.6), we obtain the fol-

lowing, where all congruences are taken modulo mpn

n :

LogV
F(K

(χ∗)
q )

(Qβ(χ∗)) = λ
F(K

(χ∗)
q )

(Q̂β(χ∗))

≡
∑

σ∈Hn/Kq

λ
F(K

(χ∗)
q )

( ̂Twχ−1(β)n)

≡
∑

σ∈Hn/Kq

(
Ω

F(K
(χ∗)
q )
· logq(β̂n)

)σ

≡ Ω
F(K

(χ∗)
q )
·

∑
σ∈Hn/Kq

χ−1(σ) · logq(β̂
σ
n)

≡ Ω
F(K

(χ∗)
q )
·

∑
σ∈Hn/Kq

χ−1(σ) · logq(α̂
(n)
0

(1−Fr−1
q )σ

)

≡ Ω
F(K

(χ∗)
q )
· (1− χ(Fr−1

q ))−1

×
∑

σ∈Hn/Kq

χ−1(σ) · logq(α̂
(n)
0

σ

). (6.13)

It follows from [10, II.4.6] that, writing µα(n) = Col
K

(χ∗)
q Hn/Kq

(α(n)), we have

(
1− χ(Frq)

p

)
·

∑
σ∈Hn/Kq

χ−1(σ) · logq(α̂
(n)
0

σ

) =

∫
GKq

χ(x) · dµα(n) . (6.14)
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We therefore deduce from (6.13) and (6.14) that

LogV
F(K

(χ∗)
q )

(Qβ(χ∗)) = Ω
F(K

(χ∗)
q )
· (1− χ(Frq))

−1 ·
(

1− χ(Frq)

p

)−1

× lim
n→∞

∫
GKq

χ(x) · dµα(n)

= Ω
F(K

(χ∗)
q )
· (1− χ(Frq))

−1 ·
(

1− χ(Frq)

p

)−1

×
∫
GKq

χ(x) · dµβ,

as asserted. �

6.3. Global cohomology classes. We shall now describe how Theorems 6.4 and 6.6 may

be applied to the global cohomology classes Pu(φ) ∈ H1(K,T ) constructed in the previous

section. In order to do this, we have to impose certain conditions on the extension K∗∞/K
and upon the character φ∗ which we shall now explain.

Definition 6.7. Let q ∈ {p, p∗}, and suppose that χ : Gal(K/K) → Z×p is a character of

infinite order. Write χq for the restriction of χ to Gal(Kq/Kq). We shall say that χ is locally

Lubin-Tate (LLT) at q of type mq(χ) ∈ Z if the following two properties are satisfied:

(a) χq is surjective;

(b) We have

χq |Gal(Kq/Knr
q )= χmq(χ)

cyc |Gal(Kq/Knr
q ) .

Plainly if χ is LLT at q of type mq(χ), then χ−1 is LLT at q of type −mq(χ).

The reason for this terminology is as follows. Let K
(χq)
q /Kq denote the Z×p extension cut

out by χ. If mq(χ) 6= 0, then Proposition 6.1 implies that there is a height one Lubin-Tate

formal group F(K
(χq)
q ) defined over Kq such that K

(χq)
q /Kq is the division tower associated

to F(K
(χq)
q ). Over Knr

q , the formal groups F(K
(χq)
q ) and Ĝm are isomorphic, and so (b)

implies that

χq |Gal(Kq/Knr
q )= κ

mq(χ)

F(K(χq)
q )
|Gal(Kq/Knr

q ) .

We therefore deduce that

χq = κ
mq(χ)

F(K
(χq)
q )

.

If mq(χ) = 0, then K
(χq)
q /Kq is the unique unramified Z×p -extension of Kq. �

Suppose now that φ∗ is LLT at q of type mq(φ
∗). If mq(φ

∗) 6= 0, then we may identify T ∗

with T
⊗mq(φ∗)
F(K∗q,∞) via the map w∗ 7→ ν⊗mq(φ∗). This is a Gal(Kq/Kq)-isomorphism. (We remind

the reader that this isomorphism depends upon a choice of isomorphism between the formal
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group F(K∗q,∞) and the multiplicative formal group Ĝm over O (see (6.1)).) The element

locq(Pu(φ)) (see (5.1)) is then identified with the element Qlocq(u)(χcycκ
−mq(φ∗)
F(K∗q,∞) ) (see (6.7)).

If mq(φ
∗) = 0, then φ∗q is unramified, and φq = φ∗−1

q · χcyc cuts out the totally ramified

Z×p -extension Kq,∞ of Kq. In this case, the element locq(Pu(φ)) is identified with the element

Qlocq(u)(φq) of (6.10).

We introduce the following notation to enable us to state our results in a uniform fashion.

Definition 6.8. Suppose that φ∗ is LLT at q of type mq(φ
∗); so we have that

φ∗q = κ
mq(φ∗)
F(K∗q,∞).

(a) If x ∈ H1(Kq, T ), we define

LogV (x) =

LogV (x) if mq(φ
∗) ≤ 0;

Exp∗V (x) if mq(φ
∗) ≥ 1.

(6.15)

(b) Define

Eulq(φ
∗−1) =


Eulq(φ

∗−1,−mq(φ
∗)) if mq(φ

∗) ≤ −1;(
1− φ∗q(Frq)

)−1 ·
(
1− φ∗q(Frq)−1

p

)−1

if mq(φ
∗) = 0.

Eulq(φ
∗−1,−mq(φ

∗)−1 if mq(φ
∗) ≥ 1.

(6.16)

(c) Define

Ω(φ∗q) =


(−1)mq(φ∗) · (−mq(φ

∗)− 1)! · Ωmq(φ∗)
ηF(K∗q,∞)

if mq(φ
∗) ≤ −1;

ΩηF(Kq,∞)
if mq(φ

∗) = 0.

(mq(φ
∗)− 1)! · Ωmq(φ∗)

ηF(K∗q,∞)
if mq(φ

∗) ≥ 1.

(6.17)

�

The following result is now a direct consequence of Theorems 6.4 and 6.6.

Theorem 6.9. Suppose that φ∗ is LLT at q of type mq(φ
∗). Then, using the notation

established in Definition 6.8, we have that

LogV (locq(Pu(φ))) = Eulq(φ
∗−1) · Ω(φ∗−1

q ) ·
∫
GKq

φ∗q(x) · dµlocq(u).

�
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7. The p-adic height pairing

Let F/K be a finite extension. In this section we shall use the methods of [18] and [20]

to construct a p-adic height pairing

[−,−]
(φ)
F,q : Σq∗(F, T

∗)× Σq(F, T )→ Zp,

and we shall describe some of its properties.

Let us first recall the statement of the weak q-adic Leopoldt hypothesis for F .

Definition 7.1. Let M/K be any finite extension, and consider the diagonal injection

iM : O×M →
∏
v|q

O×M,v.

Let iM(O×M) denote the q-adic closure of iM(O×M) in
∏

v|qO
×
M,v, and set

δ(M) := rkZ(O×M)− rkZp(iM(O×M)).

The weak q-adic Leopoldt hypothesis for F asserts that the numbers δ(L′) are bounded as

L′ runs through all finite extensions of F contained in F∗∞. The strong q-adic Leopoldt

hypothesis for F asserts that the numbers δ(L′) are all equal to zero.

We remark that the strong Leopoldt hypothesis is known to hold for all abelian extensions

of K (see [6]). �

Next, we recall that B(q)(F∞) denotes the maximal abelian pro-p extension of F∞ which is

unramified away from q and totally split at all places lying above q∗, and that Y(q)(F∞) :=

Gal(B(q)(F∞)/F∞). The construction of the pairing [−,−]
(φ)
F,q rests upon the following key

result.

Theorem 7.2. If the weak q-adic Leopoldt hypothesis holds for F , then there is a natural

isomorphism

Ψ
(φ∗)
F,q∗ : Σq∗(F, T

∗)
∼−→ Hom(T,Y(q)(F∞))Gal(F∞/F ).

As the proof of this theorem is very similar to that of [18, Théorème 3.2], we shall just

describe the main outlines, and we refer the reader to [18] for more details.

Recall from Proposition 5.6 that we have an isomorphism

H1(Fn,W
∗
pn)

∼−→ Hom(Wpn ,F×n /F×pn

n ); f 7→ f̃ ,

and that there are similar local isomorphisms at each finite place of F . Suppose that

h ∈ Σq∗(Fn,W
∗
pn). Then it follows from the local conditions defining Σq∗(Fn,W

∗
pn) that, for

each finite place v of F , we have:

(a) h̃(u) ∈ F×pn

n,v for all v | q;
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(b) pn | vFn(h̃(u)) for all v - q∗.

(There are no local conditions imposed at places lying above q∗.)

Now let Gn := Gal(Fn/F ), and write Jn for the group of finite ideles of Fn. Let Vn,q

denote the subgroup of Jn consisting of those elements of Jn whose components are equal

to 1 at all places dividing q, and are units at all places not dividing q∗. We set

Cn,q := Jn/(Vn,q · Fn), Ωn,q :=
∏
v|q

µpn(Fn,v),

and we note that the order of Ωn,q remains bounded as n varies.

Proposition 7.3. There is an exact sequence

Hom(Wpn ,Ωn,q)
Gn → Hom(Wpn , Cn,q)

Gn
ηn−→ Σq∗(F,W

∗
pn)→ 0. (7.1)

Proof. The proof of this Proposition is identical, mutatis mutandis, to that of [18, Proposition

3.13]. �

Now let η′n be the map obtained from ηn via passage to the quotient by the kernel of ηn,

and write Cn,q(p) for the p-primary part of Cn,q. Then it may be shown exactly as on [18,

pp. 387–389] that passing to inverse limits over the maps η′−1
n yields an isomorphism

ΞF,q : lim←− Σ̌q∗(F,W
∗
pn) = Σq∗(F, T

∗)
∼−→ Hom(T, lim←−Cn,q(p))

Gal(F∞/F ).

(Here the inverse limit lim←−Cn,q(p) is taken with respect to the norm maps F×n → F×n−1.)

The proof of Theorem 7.2 is completed by the following result.

Proposition 7.4. If the weak q-adic Leopoldt hypothesis holds for F , then there is an iso-

morphism

Hom(T, lim←−Cn,q(p))
Gal(F∞/F ) ' Hom(T,Y(q)(F∞))Gal(F∞/F ).

Proof. This may be shown in the same way as [18, Lemme 3.18]. �

We can now describe how the isomorphism Ψ
(φ∗)
F,q∗ may be used to construct a p-adic height

pairing

[−,−]
(φ)
F,q : Σq∗(F, T

∗)× Σq(F, T )→ Zp.

Recall (see Theorem 4.6(b) that the restriction map

Σq(F,W )→ Σq(F∞,W ) (7.2)

is injective, and that there is a natural isomorphism (see Theorem 4.5)

Σq(F∞,W )
∼−→ Hom(X (q)(F∞),W ). (7.3)
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The local conditions defining the restricted Selmer group Σq(F,W ) imply that (7.2) and

(7.3) induce an injection

Σq(F,W )→ Hom(Y(q)(F∞),W ), (7.4)

and taking Pontryagin duals yields a surjection

Hom(T,Y(q)(F∞))→ Xq(F,W ). (7.5)

Composing this with the natural surjection

Xq(F,W )→ [Σq(F,W )div]
∧

and taking Gal(F∞/F )-invariants yields a homomorphism

β
(φ)
F,q : Hom(T,Y(q)(F∞))Gal(F∞/F ) → [Σq(F,W )div]

∧.

Next, we observe that we have a canonical isomorphism

[Σq(F,W )div]
∧ ' Hom(Tp(Σq(F,W )div),Zp)

= Hom(Tp(Σq(F,W )),Zp),

where the last equality holds because

Tp(Σq(F,W )div) = Tp(Σq(F,W )).

Also, for each n ≥ 1, we have a surjective map

Σq(F,Wpn)→ Σq(F,W )pn

with finite kernel. Via passage to inverse limits, these yield a map

Σ̌q(F, T )→ Tp(Σq(F,W ))

which also has finite kernel.

It follows from the above discussion that we may view β
(φ)
F,q as a homomorphism

β
(φ)
F,q : Hom(T,Y(q)(F∞))Gal(F∞/F ) → Hom(Σ̌q(F, T ),Zp).

We thus obtain a map

β
(φ)
F,q ◦Ψ

(φ∗)
F,q∗ : Σ̌q∗(F, T

∗)→ Hom(Σ̌q(F, T ),Zp),

and this yields the desired pairing

[−,−]
(φ)
F,q : Σ̌q∗(F, T

∗)× Σ̌q(F, T )→ Zp.
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Definition 7.5. If x1, . . . , xm and x∗1, . . . , x
∗
m are Zp-bases modulo torsion of Σq(F, T ) and

Σq∗(F, T
∗) respectively, then we define the regulator R(φ)

F,q associated to [−,−]
(φ)
F,q by

R(φ)
F,q := det([x∗i , xj]

(φ)
F,q).

We conjecture that R(φ)
F,q is always non-zero. �

We now turn to the local decomposition of [−,−]
(φ)
F,q. Suppose that

y = [yn] ∈ Σ̌q(F, T ), y∗ = [y∗n] ∈ Σ̌q∗(F, T
∗).

For each positive integer n, we define qn,q∗ to be the map

qn,q∗ : Σ̌q∗(F, T
∗)

Ψ
(φ∗)
F,q∗−−−→ Hom(T,Y(q)(F∞))Gal(F∞/F ) → Hom(Wpn , Cn,q)

Gal(F∞/F ),

where the second arrow is the natural quotient map afforded by the isomorphism described

in Proposition 7.4.

For each ς ∈ Wpn , let n(ς) denote the exact power of p that kills ς. Let Sn,ς(y
∗
n) denote

any representative of η−1
n (y∗n)(ς) in Jn. For each finite place v of K, define {y∗, y}(ς)n,v to be

the unique element of Zp/p
nZp such that

{y∗, y}(ς)n,v · ς = yn([Sn,ς(y
∗
n)v, F

ab
v /Fn,v]),

where [Sn,ς(y
∗
n)v, F

ab
v /Fn,v] ∈ Gal(F ab

v /Fn,v) is the obvious local Artin symbol.

Proposition 7.6. (cf. [18, Lemma 3.19])

(a) For any ς ∈ Wpn, we have

[y∗, y]
(φ)
F,q · ς = yn([qn,q∗(y)(ς), F

ab/Fn]), (7.6)

where [qn,q∗(y)(ς), F
ab/Fn] ∈ Gal(F ab/Fn) is the obvious global Artin symbol.

(b) We have

[y∗, y]
(φ)
F,q ≡

∑
v

{y∗, y}(ς)n,v (mod pn(ς)Zp), (7.7)

where the sum is over all finite places v of Fn.

Proof. (a) This follows immediately from the following commutative diagram:

Σ̌q∗(F, T
∗)

Ψ
(φ∗)
F,q∗−−−→ Hom(T,Y(q)(F∞))Gal(F∞/F )

β
(φ)
F,q−−−→ Hom(Σ̌q(K,T ),Zp)y y y

Σq∗(K,W
∗
pn)

η′−1
n−−−→ Hom(Wpn , Cn,q)

Gal(F∞/F )

Ker(ηn)
−−−→ Hom(Σq(F,Wpn),Zp/p

nZp)
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In this diagram, the second arrow on the bottom row is induced by the map

f 7→ (c 7→ {ς 7→ c([f(ς), F ab/Fn])}), f ∈ Hom(Wpn , Cn,q)
Gal(F∞/F )

and is well-defined because [z, F ab/Fn] = 0 for all z ∈ Ωn,q. Note also that here we have

canonically identified Zp/p
nZp with Hom(Wpn ,Wpn) via the map

β 7→ {ς 7→ β · ς}.

(b) This follows from the local decomposition of the global Artin symbol afforded via class

field theory, viz. if α ∈ Jn, then

[α, F ab/Fn] =
∏

v

[αv, F
ab
v /Fn,v],

where the product is over all finite places v of Fn. �

Let us now explain how Proposition 7.6 may be applied to elements in restructed Selmer

groups that are constructed via twisted units in Section 5. Suppose that u = [un] ∈
lim←−H

1(Fn,Zp(1)). Suppose also that, for each place v of F with v | q, we have that

u = ϑ
(φ)
F · βv for some βv = [βv,n] ∈ lim←−H

1(Fn,v,Zp(1)). Then Proposition 5.10 implies

that Pu(φ
∗) ∈ Σq∗(F, T

∗). Suppose now that y is any element of Σq(F, T ). The following

result, which expresses [Pu(φ
∗), y]

(φ)
F,q in terms of Kummer pairings and cup products, is an

immediate consequence of Proposition 7.6 and Corollary 5.13.

Proposition 7.7. We have that

[Pu(φ
∗), y]

(φ)
F,q =

∑
v|q

(βv, locv(y))
(φ)
Fv

=
∑
v|q

Pβv(φ
∗) ∪ locv(y).

�

8. A leading term formula

We retain the notation of the previous sections. Recall that F∞/F denotes the unque

Zp-extension contained in F∞/F . Set ΓF := Gal(F∞)/F , and fix a topological generator

γF of ΓF . We identify Λ(F∞) with the power series ring Zp[[X]] via the map γF 7→ X + 1,

and we let H
(F )
q,φ ∈ Λ(F∞) be a characteristic power series of Xq(F∞,W ). In this section,

we shall calculate the p-adic valuation of the leading coefficient of H
(F )
q,φ , assuming that the

weak q-adic Leopoldt hypothesis holds for F , and that the p-adic regulator R(φ)
F,q is non-zero.
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The following result is a straightforward consequence of work of Ralph Greenberg on the

structure of certain Galois groups.

Proposition 8.1. Suppose that F satisfies the weak q-adic Leopoldt hypothesis. Then the

Λ(F∞)-module Xq(F∞,W ) contains no non-trivial finite submodules.

Proof. It is not difficult to show that a slight modification of the arguments given in [11,

§4] may be used to prove that if F satisfies the weak q-adic Leopoldt hypothesis, then

the Λ(F∞)-module X q(F∞) has no non-trivial, finite submodules. For brevity, we omit the

details. The result now follows from Theorems 4.6 and 4.5. �

Suppose now that the weak q-adic Leopoldt hypothesis holds for F , and that R(φ)
F,q 6= 0,

i.e. that the p-adic height pairing

[−,−]φF,q : Σq∗(F, T
∗)× Σq(F, T )→ Zp

is non-degenerate. Set

n(F )
q (φ) := rkZp(Σq(F, T )).

Theorem 8.2. With the above hypotheses and notation, we have that

ordX=0H
(F )
q,φ = n(F )

q (φ),

and

H
(F )
q,φ

Xn
(F )
q (φ)

∣∣∣∣∣
X=0

∼ |Σq(F,W )/ div| · |Σ̌q(F, T )tors| · R(φ)
F,q.

Proof. We first observe that there is a surjective homomorphism

Xq(F∞,W )→ [Σq(F,W )div]
∧;

this implies that H
(F )
q,φ is divisible by Xn

(F )
q (φ). Let Z∞ denote the kernel of this map. Then

the Snake Lemma yields the exact sequence

0→ (Z∞)ΓF → Xq(F∞,W )ΓF
ξF−→ [Σq(F,W )div]

∧ →

→ (Z∞)ΓF
→ Xq(F∞,W )ΓF

→ [Σq(F,W )div]
∧ → 0.

We now observe that the kernel of the last map

Xq(F∞,W )ΓF
→ [Σq(F,W )div]

∧

is dual to the cokernel of the map

Σq(F,W )div → Σq(F∞,W )ΓF .
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Since Σq(F,W ) ' Σq(F∞,W )ΓF (via Theorem 4.6(b)), it follows that this cokernel is iso-

morphic to Σq(F,W )/ div, which is finite.

We therefore deduce that the multiplicity of X in H
(F )
q,φ is equal to n

(F )
q (φ) if and only if

(Z∞)ΓF
is finite, which in turn is the case if and only if the cokernel of ξF is finite. Recall

that (see Theorem 4.5)

Xq(F∞,W )ΓF ' Hom(T,X q(F∞))Gal(F∞/F ),

and note that the homomorphism ξF may be written as the following composition of maps

Hom(T,X (q)(F∞))Gal(F∞/F ) → Hom(T,Y(q)(F∞))Gal(F∞/F ) → Σq(F,W )∧ →

→ [Σq(F,W )/ div]
∧

(see (7.4), (7.5)). It follows that the cokernel of ξF is finite if and only if the p-adic height

pairing [−,−]
(φ)
F,q∗ is non-degenerate.

We now see that if [−,−]
(φ)
F,q∗ is non-degenerate, then (Z∞)ΓF

is finite. This implies that

(Z∞)ΓF is also finite, whence it follows via Proposition 8.1 that (Z∞)ΓF = 0. Hence we have

H
(F )
q,φ

Xn
(F )
q (φ)

∣∣∣∣∣
X=0

∼ |(Z∞)ΓF
| ∼ |Σq(F,W )/ div| · |Coker(ξF )|.

Now

|Coker(ξF )| = [(Σq(F,W )div)
∧ : ξF (Xq(F∞,W )ΓF )]

= [Tp(Σq(F,W )) : ΨF (Σ̌q(F, T ))]

= R(φ∗)
F,q∗ · |

[
Ker(Σ̌q(F, T )→ Tp(Σq(F,W )))

]
|

= R(φ∗)
F,q∗ · |Σ̌q(F, T )tors|.

Hence
H

(F )
q,φ

Xn
(F )
q (φ)

∣∣∣∣∣
X=0

∼ |Σq(F,W )/ div| · |Σ̌q(F, T )tors| · R(φ∗)
F,q∗ ,

as claimed. �

Corollary 8.3. We have that

ords=1 Lq(φ, s) ≥ n(K)
q (φ),

with equality if and only if R(φ∗)
K,q∗ 6= 0. If R(φ∗)

K,q∗ 6= 0, then

L(nq(φ))
q (φ) ∼ |Σq(K,W )/ div| · |Σ̌q(K,T )tors| · R(φ∗)

K,q∗ ,

Proof. This is a direct consequence of Theorem 8.2 and its proof (see also Remark 4.8). �
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9. Restricted Selmer groups over K

In this section we shall use Poitou-Tate duality to study the relationships between the

ranks of different Selmer groups over K. Throughout this section, we take F = K, and so

(in accord with our earlier notation), we write

nq(φ) = n(K)
q (φ) := rkZp(Σq(K,T )). (9.1)

We set

nstr(φ) := rkZp(Selstr(K,T )), nrel(φ) := rkZp(Selrel(K,T )),

and we let rq(φ) denote the Zp-rank of the image of the localisation map

locq : Σq(K,T )→ H1(Kq, T ).

Lemma 9.1. We have that rkZp(H
1(Kq, T ) = 1. Hence rq(φ) is equal to 0 or 1.

Proof. The first assertion follows from [13, Proposition 1, p.109], while the second assertion

is an immediate consequence of the first. �

Lemma 9.2. We have that

nq(φ) = nstr(φ) + rq(φ). (9.2)

and

nq(φ) = nrel(φ) + rq∗(φ) (9.3)

Proof. The first equality follows at once from the exact sequence

0→ Selstr(K,T )→ Σq(K,T )
locq−−→ H1(Kq, T ),

while the second follows from

0→ Σq(φ)→ Selrel(K,T )
locq∗−−−→ H1(Kq∗ , T ).

�

Lemma 9.3. We have that

nrel(φ) = nq(φ)− rq∗(φ) + 1.

Proof. We first observe that the Poitou-Tate exact sequence yields

0→ Σq(K,T )→ Selrel(K,T )
α−→ H1(Kq∗ , T )→ Σq∗(K,W

∗)∧. (9.4)

The cokernel of α is equal to the Pontryagin dual of the image of the localisation map

locq∗ : Σq∗(K,W
∗)→ H1(Kq∗ ,W

∗),
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and so has Zp rank rq∗(φ
∗). Hence

rkZp(Im(α)) = 1− rq∗(φ
∗),

and so

nrel(φ) = nq(φ)− rq∗(φ
∗) + 1,

as claimed. �

Proposition 9.4. We have that

|rq(φ)− rq∗(φ)| = |nq(φ)− nq∗(φ)| = 1.

Proof. The equality |rq(φ)− rq∗(φ)| = 1 follows from (9.3) and Lemma 9.3 (with q replaced

by q∗). The equality |nq(φ)−nq∗(φ)| = 1 is then a direct consequence of (9.2) for nq(φ) and

nq∗(φ). �

Proposition 9.5. If the p-adic height pairing [−,−]
(φ)
K,q is non-degenerate, then we have

rq(φ) = rq∗(φ
∗).

Proof. The pairing [−,−]
(φ)
K,q yields a pairing

[−,−]
(φ)
K,str : Selstr(K,T

∗)× Selstr(K,T )→ Zp

via restriction. We claim that if [−,−]
(φ)
K,q is non-degenerate, then so is [−,−]

(φ)
K,str. To see

why this is so, suppose that x ∈ Selstr(K,T
∗) satisfies [x, y]

(φ)
K,str for all y ∈ Selstr(K,T ). As

[−,−]
(φ)
K,q is non-degenerate by hypothesis, it follows that Selstr(K,T ) is strictly contained in

Σq(K,T ), and that rq(φ) = 1. It is not hard to check that for any z ∈ Σq(K,T ) satisfying

locq(z) 6= 0, we have that [α, z]
(φ)
K,q = 0 for all α ∈ Selstr(K,T

∗). This implies that [x, y]
(φ)
K,q = 0

for all y ∈ Σq(K,T ), which contradicts [−,−]
(φ)
K,q being non-degenerate.

It therefore follows that if [−,−]
(φ)
K,q is non-degenerate, then nq(φ) = nq∗(φ

∗) and nstr(φ) =

nstr(φ
∗). We deduce from Lemma 9.2 that rq(φ) = rq∗(φ

∗), as asserted. �

To continue our analysis, let us suppose that q is chosen so that rq(φ) = 1 (the other

possible cases will follow via symmetry). Then we have that rq(φ
∗) = rq∗(φ) = 0, nq(φ) =

nrel(φ), nq∗(φ) = nrel(φ) + 1, and

Σq(K,W )div = Selrel(K,W )div, Σq∗(K,W )div = Selstr(K,W )div.

Proposition 9.6. Suppose that rq(φ) = 1.

(a) We have that

| Selrel(K,W )/div|
|Σq(K,W )/div|

= [H1(Kq∗ , T
∗) : locq∗(Σq∗(K,T

∗))]. (9.5)
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(b) We have that

| Selrel(K,W )/div|
|Σq∗(K,W )/div|

=
[H1(Kq, T ) : locq(Selrel(K,T ))]

|H1(Kq, T )tors|| locq(Selrel(K,W ))/div|
. (9.6)

Proof. (a) Since rq(φ) = 1, we have (as remarked above) that Σq(K,W )div = Selrel(K,W )div,

and the Poitou-Tate exact sequence implies that there is an exact sequence

0→ Σq(K,W )→ Selrel(K,W )
locq∗−−−→ H1(Kq∗ ,W )

α−→ Σq∗(K,T
∗)∧.

The kernel of α is equal to the Pontryagin dual of the cokernel of the map

Σq∗(K,T
∗)→ H1(Kq∗ ,W )∧ ' H1(Kq∗ , T

∗),

and so (9.5) follows.

(b) There is an exact sequence

0→ Σq∗(K,W )→ Selrel(K,W )
locq−−→ locq(Selrel(K,W ))→ 0. (9.7)

If M is any cofinitely generated, torsion Zp-module, then we have

Ext1(Qp/Zp,M) 'M/div, Ext1(Qp/Zp,Mdiv) = Ext2(Qp/Zp,M) = 0.

Since rq(φ) = 1, and H1(Kq,W ) is of Zp-corank one, we have that

Hom(Qp/Zp, locq(Selrel(K,W ))) = Hom(Qp/Zp, locq(Selrel(K,W ))div)

= Hom(Qp/Zp, H
1(Kq,W )div)

= H1(Kq, T )/H1(Kq, T )tors.

Hence, applying the functor Hom(Qp/Zp,−) to the exact sequence (9.7) yields

0→ Σq∗(K,T )→ Selrel(K,T )→ H1(Kq, T )/H1(Kq, T )tors →

→ Σq∗(K,W )/div → Selrel(K,W )/div → locq(Selrel(K,W ))/div → 0,

and this immediately implies (9.6). �

Recall that H
(K)
q,φ ∈ Λ(K∞) denotes a characteristic power series of Xq(K∞,W ). Let us

set

H
(K)
q,φ (0)∗ :=

H
(K)
q,φ

Xnq(φ)

∣∣∣∣∣
X=0

.
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Theorem 9.7. Suppose that rq(φ) = 1, and that the p-adic height pairings [−,−]
(φ)
K,q and

[−,−]
(φ)
K,q∗ are non-degenerate. Then we have

| Selrel(K,W )/div| ∼

H
(K)
q,φ (0)∗

|Σq(K,T )tors|R(φ)
K,q

· [H1(Kq∗ , T
∗) : locq∗(Σq∗(K,T

∗))] ∼

H
(K)
q∗,φ(0)∗

|Σq∗(K,T )tors|R(φ)
K,q∗

· [H1(Kq, T ) : locq(Selrel(K,T ))]

|H1(Kq, T )tors|| locq(Selrel(K,W ))/div|
.

Proof. This follows directly from Theorem 8.2 and Proposition 9.6. �

10. Elliptic units and the two-variable p-adic L-function

In this section we shall first briefly recall some basic facts concerning elliptic units and

the construction of the Katz two-variable p-adic L-function (see [10]). We then explain how

elliptic units may be used to construct canonical elements in restricted Selmer groups and

we describe how certain special values of the p-adic L-function may be expressed in terms

of these canonical elements.

Throughout this section N∞ will denote a Z×p -extension of K.

10.1. Elliptic units. Recall that f denotes the conductor of the elliptic curve E/K. Let

a be any ideal of OK with (a, 6fp) = 1, and write I(a) for the set of ideals of OK that are

coprime to a. If m ∈ I(a), we write wm for the number of roots of unity in K congruent to

1 modulo m.

Suppose that L ⊂ C is any lattice with complex multiplication by OK . Then we may

define an elliptic function Θ(z;L, a) by

Θ(z;L, a) :=
∆(L)

∆(a−1L)

∏
u

∆(L)

(P(z, L)− P(u, L)6)
;

here the product is over all non-zero u ∈ a−1L/L, ∆ denotes the modular discriminant, and

P is the Weierstrass P-function. If m ∈ I(a) is not a prime power, then then Θ(1; m, a) is a

unit in the ray class field K(m). For any prime l ∈ I(a), we have the following distribution

relation:

NK(ml)/K(m)Θ(1; ml, a)wm/wml =

Θ(1; m, a) if l | m;

Θ(1; m, a)1−σ−1
l otherwise.

It follows from the distribution relation that {Θ(1; fpk, a)}k>0 is a norm-compatible sequence

in K(fp∞)/K, and that if a and b are any two ideals in OK that are coprime to 6fp then

Θ(1; fpk, a)σb−N(b) = Θ(1; fpk, b)σa−N(a). (10.1)
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For any finite extension F/K with K ⊆ F ⊆ K(fp∞), we choose any m > 0 such that

F ⊆ K(fpm), and we set

θ(F ; a) := NK(fpm)/F (Θ(1; fpm, a));

this is independent of the choice of m. We set

θ(K∞; a) := [θ(Kn; a)] ∈ E(K∞)

The following result is very similar to [23, Proposition 3.2].

Proposition 10.1. Suppose that the Z×p -extension N∞/K is linearly disjoint from the cy-

clotomic extension K(µp∞)/K. Then there exists

θ(N∞) = [θ(Nn)] ∈ E(N∞)

such that

θ(N∞; a) = θ(N∞)σa−N(a) (10.2)

for all ideals a in OK with (a, 6fp) = 1.

Proof. Since µp * N∞, the Chebotarev density theorem implies that for each n, we may find

an ideal bn that is coprime to 6fp and is such that σbn fixes Nn and acts non-trivially on µp.

This implies that

σbn −N(bn) = 1−N(bn)

is a unit in Zp[Gal(Nn/K)]. It therefore follows from (10.1) that

θ(Nn; a) ∈ (σa −N(a)) ·H1(Nn,Zp(1)),

(where here we have abused notation slightly and identified θ(Nn; a) with its image in

H1(Nn,Zp(1))). We set

θ(Nn) := θ(Nn; a)(σa−N(a))−1

;

this is well-defined, since by assumption H1(Nn,Zp(1)) is Zp-torsion-free, and θ(Nn) is also

independent of a. The elements θ(Nn) are norm-coherent, and θ(N∞) := [θ(Nn)] satisfies

(10.2), as required. �
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10.2. p-adic L-functions. If k, j are integers, recall that a Grossencharacter of type (k, j)

is defined to be a K-valued function ε which is defined on integral ideals of OK coprime to a

fixed ideal m such that if a = αOK with α ≡ 1 (mod m), then ε(a) = αkαj. For any ideal m

of OK , we write L∞,m(ε, s) for the C-valued completed Hecke L-function attached to ε with

the Euler factors dividing m removed. If ε is a Grossencharacter of conductor dividing m,

then it has an associated p-adic Galois character

εq : Gal(K(mp∞))→ C×
p ; σa → iq(ε(a)),

where q ∈ {p, p∗} and iq : K ↪→ Kq is the natural embedding afforded by q.

A result of Katz (see [10, Theorem II.4.14]) asserts that there exists a p-adic measure

µq ∈ Λ(K(fp∞))O such that if ε is any Grossencharacter of type (k, j) with 0 ≤ −j < k and

of conductor dividing fp∞, then there is an interpolation formula:

αq(ε)

∫
εqdµq =

(
1− ε(q)

p

)
· L∞,fq∗(ε

−1, 0).

Here αq(ε) is an explicit, non-zero constant (whose precise description we shall not need),

the integral is over Gal(K(fp∞)/K), and we view the right-hand side of the equality as lying

in Cp via the embedding iq.

Definition 10.2. We define the Katz two-variable p-adic L-function Lq by the interpolation

formula

Lq(ε) =

∫
Gal(K(fp∞)/K)

εqdµq

for all Grossencharacters ε of conductor dividing fp∞, and we view Lq as lying in Λ(K(fp∞))O.

Hence, if ε is of type (k, j) with 0 ≤ −j < k, then

αq(ε)
−1Lq(ε) =

(
1− ε(q)

p

)
· L∞,fq∗(ε

−1, 0).

If εq factors through Gal(F/K) for some subextension F/K of K(fp∞)/K, then∫
Gal(K(fp∞)/K)

εqdµq =

∫
Gal(F/K)

εqdµq,

and so we have that

Lq(ε) = (Lq|F )(ε), (10.3)

where Lq|F denotes the image of Lq under the natural projection map

Λ(K(fp∞))O → Λ(F )O.

�
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Theorem 10.3. Let N∞ ⊆ K(fp∞) be a Z×p -extension of K. Assume that N∞/K is linearly

disjoint from the cyclotomic extension K(µp∞)/K. Let Θ(Nn)q = locq(Θ(Nn)), and write

Θ(N∞)q = locq(Θ(N∞)) = [Θ(Nn)q]

for the image of Θ(N∞) in Uq(N∞) (see Proposition 10.1).

(a) Suppose that N∞/K is totally ramified at q, and write

ColN∞,q/Kq : Uq(N∞)→ Λ(N∞)O

for the Coleman map associated to N∞,q/Kq. Then we have that

ColN∞,q/Kq(Θ(N∞)q) = Lq|N∞ .

(b) If N∞/K is unramified at q, and

Colnr
N∞,q/Kq

: Uq(N∞)→ Λ(N∞)O

denotes the unramified Coleman map associated to N∞,q/Kq, then we have that

Colnr
N∞,q/Kq

(Θ(N∞)q) = Lq|N∞ .

(c) Let χ : Gal(K(fp∞)/K) → Z×p be any character which factors through Gal(N∞/K),

and suppose that Θ(N∞)q ∈ (ϑ
(χ)
K )d ·Uq(N∞) for some integer d ≥ 1. Then, because Uq(N∞)

is ϑ
(χ)
K -torsion free (see [10, Chapter III, Proposition 1.3]), we may write

Θ(N∞)q = (ϑ
(χ)
K )d ·Θq(N∞)(d) (10.4)

for a unique Θq(N∞)(d) ∈ Uq(N∞). Define

µ(d)
q := ColN∞,q/Kq(Θq(N∞)(d)).

Then we have that

L(d)
q (χ) =

∫
Gal(N∞/K)

χqdµ
(d)
q .

In particular, ords=1 Lq(χ, s) is the highest power of ϑ
(χ)
K that divides Uq(N∞).

Proof. (a) Let

NK(fp∞)q/N∞,q : Uq(K(fp∞))→ Uq(N∞); [un] 7→ [un]

be defined by

un = NK(fpk)q/Nn,q
(uk)

for any K(fpk) containing Nn. (This does not depend upon the choice of k.) Let

ColK(fp∞)q/Kq : Uq(N(fp∞))→ Λ(N(fp∞))O
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be the Coleman map associated to N(fp∞)q/Kq. Then there is a commutative diagram

Uq(K(fp∞))
ColK(fp∞)q/Kq−−−−−−−−−→ Λ(N(fp∞)O

NK(fp∞)q/N∞,q

y y
Uq(N∞)

ColN∞,q/Kq−−−−−−−→ Λ(N∞)O,

(10.5)

where the right-hand vertical arrow is the natural quotient map.

For each ideal a in OK that is coprime to 6pf, let

θ(K(fp∞; a))q = locq(θq(K(fp∞; a))) ∈ Uq(K(fp∞)).

It is shown in [10, Proposition III.1.4] that

ColK(fp∞)q/Kq(θ(K(fp∞; a))q) = (σa −N(a)) · µq,

and this implies that

(ColK(fp∞)q/Kq(θ(K(fp∞; a))q))|N∞ = (σa −N(a)) · (Lq)|N∞ . (10.6)

We also see from (10.5) and Proposition 10.1 that

(ColK(fp∞)q/Kq(θ(K(fp∞; a))q))|N∞ = ColN∞,q/Kq(θ(N∞; a)q)

= (σa −N(a)) · ColN∞,q/Kq(θ(N∞)q) (10.7)

The desired result now follows from (10.6) and (10.7).

(b) The proof of (b) is almost identical to that of (a).

(c)This follows directly from parts (a) and (b) together with the definition of L(d)
q (χ) (see

(3.5)). �

11. Canonical elements in restricted Selmer groups

We shall now apply the results of Section 10 to construct canonical elements in restricted

Selmer groups from twisted elliptic units. These elements are closely related to certain

special values of the two-variable p-adic L-function Lq via Theorem 10.3.

Throughout this section we assume that φ and φ∗ are Z×p -valued characters of Gal(K(fp∞)/K)

of infinite order, such that the extensions K∞/K and K∗∞/K are linearly disjoint from

K(µp∞)/K.

Definition 11.1. (a) Let d(φ∗) denote the largest non-negative integer such that

Θ(K∗∞) ∈ (ϑ
(φ∗)
K )d(φ∗) · E(K∗∞).
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A theorem of Yager (see [10, Chapter III, Proposition 4.5]) implies that E(K∗∞) is ϑ
(φ∗)
K -

torsion free, and so we may write

Θ(K∗∞) = (ϑ
(φ∗)
K )d(φ∗) ·Θ(K∗∞)(d(φ∗))

for a unique Θ(K∗∞)(d(φ∗)) ∈ E(K∗∞). We define y(K∗∞;φ) = [y(K∗n;φ)] ∈ lim←−(K∗n, T ) by

y(K∗∞;φ) := Twφ∗−1(Θ(K∗∞)(d(φ∗)) (11.1)

and y(φ) ∈ H1(K,T ) by

y(φ) := y(K∗0;φ) = y(K;φ). (11.2)

We write

y(K∗∞;φ)q := locq(y(K∗∞;φ)) ∈ lim←−H
1(K∗n,q, T ),

and

y(φ)q := locq(y(φ)) ∈ H1(Kq, T ).

(b) Recall the definition of Θq(K∗∞)(d) ∈ Uq(K∗∞) given in (10.4). If Θq(K∗∞)(d) is defined,

then we define yq(K∗∞;φ)(d) ∈ lim←−H
1(K∗n/Kq, T ) by

yq(K∗∞;φ)(d) = [yq(K∗n;φ)(d)] := Twφ∗−1(Θq(K∗∞)(d)) (11.3)

and yq(φ)(d) ∈ H1(Kq, T ) by

yq(φ)(d) := yq(K∗0;φ)(d) = yq(K;φ)(d). (11.4)

�

Remark 11.2. It follows from the definition of d(φ) that we have

Θ(K∞)q ∈ (ϑ
(φ)
K )d(φ) · E(K∞) ⊆ (ϑ

(φ)
K )d(φ) · Uq(K∞)

for each q ∈ {p, p∗}. Hence, if d(φ) ≥ 1, then Theorem 10.3(c) implies that

Lp(φ) = Lp∗(φ) = 0.

Since rankΛ(K∞)(Uq(K∞) = 1, it follows that

rankΛ(K∞)[Hom(Uq(K∞)/E(K∞),W )Gal(K∞/K)] ≤ 1,

and so

ϑ
(φ)
K · Uq(K∞) ⊆ E(K∞).

We therefore see that

d(φ) ≤ ords=1 Lq(φ, s) ≤ d(φ) + 1. (11.5)

If R(φ∗)
K,q∗ 6= 0, then Theorem 8.2 implies that

ords=1 Lq(φ, s) = ords=1 Lq∗(φ
∗, s),
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and so

|d(φ)− d(φ∗)| ≤ 1.

It seems reasonable to expect that d(φ) > 1 does not occur very often. �

We now turn to the relationship between the canonical elements y(φ) and special values

of Lq when φ∗ is LLT at q.

Theorem 11.3. Suppose that φ∗ is LLT at q, and recall the notation of Definition 6.8.

(a) We have

LogV (y(φ)q) = Eulq(φ
∗−1) · Ω(φ∗−1

q ) · L(d(φ∗))
q (φ∗)

(b) If m ≥ 1 and yq(φ)(m) is defined, then we have

LogV (yq(φ)(m)) = Eulq(φ
∗−1) · Ω(φ∗−1

q ) · L(m)
q (φ∗).

Proof. This follows directly from Theorems 6.9 and 10.3 �

Corollary 11.4. (a) Suppose that φ∗ is LLT at q∗. Then we have that y(φ) ∈ Σq(K,T ) if

and only if L(d(φ∗))
q∗ (φ∗) = 0.

(b) If y(φ) ∈ Σq(K,T ), and φ∗ is LLT at q, then y(φ) is of infinite order if and only if

L(d(φ∗))
q (φ∗) 6= 0.

Proof. We first note that y(φ) ∈ Σq(K,T ) if and only if y(φ)q∗ = 0. Theorem 11.3(a) implies

that y(φ)q = 0 if and only if L(d(φ∗))
q∗ (φ∗) = 0, and this establishes (a).

If y(φ) ∈ Σq(K,T ), then y(φ) is of infinite order if and only if y(φ)q is also of infinite

order. Part (b) now also follows from Theorem 11.3(a). �

Theorem 11.5. Suppose that

y(φ) ∈ Σq(K,T ), y(φ∗) ∈ Σq∗(K,T
∗),

and that both φ and φ∗ are LLT at q. Then we have that

[y(φ∗), y(φ)]
(φ)
K,q = Eulq(φ

∗−1) · Eulq(φ
−1) · Ω(φ∗−1

q ) · Ω(φ−1
q )

× L(d(φ)+1)
q (φ) · L(d(φ∗))

q (φ∗).

Proof. Since φ is LLT at q and y(φ∗) ∈ Σq∗(K,T
∗), Corollary 11.4(a) implies that L(d(φ))

q (φ) =

0. This in turn implies that

locq(Θ(K∞)(d(φ))) ∈ ϑφ · Uq(K∞)

and it follows from the definitions that in fact

locq(Θ(K∞)(d(φ))) = ϑφ ·Θ(d(φ)+1)
q (K∞).
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Applying Proposition 7.7 together with (6.9), we obtain

[y(φ∗), y(φ)]
(φ)
K,q = yq(φ

∗)(d(φ)+1) ∪ y(φ)q

= LogV ∗(yq(φ
∗)(d(φ)+1)) · LogV (y(φ)q).

The desired result now follows from Theorem 11.3. �

Our next result relates the value of L(d(φ)+1)
q (φ) to that of L(d(φ∗))

q (φ∗) when both φ and

φ∗ are LLT at q. We remark that at least one of the characters φ or φ∗ always lies outside

the range of interpolation of Lq.

Theorem 11.6. Suppose that

y(φ) ∈ Σq(K,T ), y(φ∗) ∈ Σq∗(K,T
∗),

and that both φ and φ∗ are LLT at q. Suppose also that [y(φ∗), y(φ)]
(φ)
K,q 6= 0. Then we have

L(d(φ)+1)
q (φ) =

Eulq(φ
∗−1) · Ω(φ∗−1

q ) · [y(φ∗), y(φ)]
(φ)
K,q

Eulq(φ−1) · Ω(φ−1
q ) · LogV (y(φ)q)2

· L(d(φ∗))
q (φ∗).

Proof. If [y(φ∗), y(φ)]
(φ)
K,q 6= 0, then y(φ) is of infinite order, and so Corollary 11.4(a) implies

that L(d(φ∗))
q (φ∗) 6= 0. Theorem 11.3(a) implies that

L(d(φ∗))
q (φ∗) =

LogV (y(φ)q)
2

Eulq(φ∗−1)2 · Ω(φ∗−1
q )2 · L(d(φ∗))

q (φ∗)
,

and substituting this into the expression for [y(φ∗), y(φ)]
(φ)
K,q afforded by Theorem 11.5 es-

tablishes the desired result. �

12. Complex conjugate characters

In this section we shall apply our earlier results to formulate a common generalisation of

the main theorems of [23] and [2] to CM modular forms of higher weight.

We begin with the following definition.

Definition 12.1. We say that φ and φ∗ are complex conjugate if they are interchanged by

the involution on characters of Gal(K/K) induced by the action of complex conjugation.

Remark 12.2. Suppose that q ∈ {p, p∗}. It follows from e.g. [10, III.1.4] that the measures

µq and µq∗ are interchanged by the action of complex conjugation on Λ(K(fp∞)). Hence, if

φ and φ∗ are complex conjugate, then we have the equality

Lq(φ) = Lq∗(φ
∗),

after identifying Kq and Kq∗ with Qp. Also, if φ is LLT at q, then φ∗ is LLT at q∗. �
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Theorem 12.3. Suppose that φ and φ∗ are complex conjugate. Suppose also that Lq(φ) 6= 0,

and that both φ and φ∗ are LLT at q. Then:

(a) d(φ) = d(φ∗) = 0.

(b) We have that nq∗(φ) = nq(φ
∗) = 1, and so Lq∗(φ) = Lq(φ

∗) = 0.

(c) y(φ) and y(φ∗) are of infinite order, with

y(φ) ∈ Σq∗(K,T ), y(φ∗) ∈ Σq(K,T
∗).

(d) Lq(φ
∗) = 0 and L(1)

q (φ∗) 6= 0.

(e) R(φ)
K,q∗ 6= 0.

(f) Let

x(φ) ∈ Σq∗(K,T ), x(φ∗) ∈ Σq(K,T
∗)

be any elements of infinite order. Then we have the following equality in Qp:

Eulq(φ
−1) · Ω(φ−1

q ) · [x(φ∗), x(φ)]
(φ)
K,q∗ · Lq(φ)

= Eulq∗(φ
−1) · Ω(φ−1

q∗ ) · LogV (x(φ)q∗) · LogV ∗(x(φ
∗)q) · L(1)

q∗ (φ).

Proof. (a) This follows immediately from the fact that Lq(φ) = Lq∗(φ
∗) 6= 0 (cf. Remark

12.2).

(b) Since Lq(φ) = Lq∗(φ
∗) 6= 0, Theorem 8.2 implies that nq(φ) = nq∗(φ

∗) = 0. Now it

follows from Proposition 9.4 that nq∗(φ) = nq(φ
∗) = 1. Finally, Theorem 8.2 implies that

Lq∗(φ) = Lq(φ
∗) = 0, as claimed.

(c)It follows from (a), (b), and Theorem 11.3 that LogV (y(φ)q) = 0 (whence y(φ) ∈
Σq∗(K,T )) and that LogV (y(φ)q∗) 6= 0 (whence y(φ) is of infinite order). The argument

concerning y(φ∗) is similar.

(d) As d(φ∗) = 0, and Lq(φ
∗) = 0, this follows from Remark 11.2.

(e) Part (d) implies that Lq(φ)L(1)
q (φ∗) 6= 0. Hence Theorem 11.5 implies that [y(φ∗), y(φ)]

(φ)
k,q∗ 6=

0, and so we see that R(φ)
K,q∗ 6= 0 because nq∗(φ) = nq(φ

∗) = 1.

(f) Since nq∗(φ) = nq(φ
∗) = 1, we have that

[y(φ∗), y(φ)]
(φ)
K,q∗

LogV (y(φ)q∗) · LogV ∗(y(φ
∗)q)

=
[x(φ∗), x(φ)]

(φ)
K,q∗

LogV (x(φ)q∗) · LogV ∗(x(φ
∗)q)

.

The result now follows from Theorems 11.3 and 11.5. �

Let us now set q = p and consider the complex conjugate characters

φk := ψk+1ψ∗−k, φ∗k := ψ−kψ∗k+1, (k ≥ 0).
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The character φk is naturally associated to the CM modular form of weight 2k+ 2 attached

to ψ and lies within the range of interpolation of Lp, with

Lp(φk) = Ak · L(ψ2k+1, k + 1), (12.1)

where Ak is an explicit, non-zero constant whose precise description need not concern us.

On the other hand, the character φ∗k lies outside the range of interpolation of Lp, and the

behaviour of Lp at φ∗k is less well-understood.

Let W (φk) denote the Artin root number of φk, so W (φk) = ±1. A theorem of Greenberg

and Rohrlich implies that if W (φk) = 1 for some k ≥ 0, then Lp(φk′) = 0 for only finitely

many k′ ≥ 0 with k′ ≡ k (mod p− 1) (see [12, Theorem 4] or [21, p.184]). Rohrlich has also

shown that if W (φk) = −1, then L(1)(ψ2k′+1, k′ + 1) = 0 for only finitely many k′ ≥ 0 with

k′ ≡ k (mod p − 1). It seems reasonable to expect that an analogous result holds for Lp,

namely that if W (φk) = −1, then L(1)
p (φk′) = 0 for only finitely many k′ ≥ 0 with k′ ≡ k

(mod p− 1), and Greenberg (unpublished) has shown that this would follow from a suitable

generalisation of the results of [15].

(I) Suppose that Lp(φk) 6= 0, and that φk and φ∗k are LLT at p. Then Theorem 12.3 with

φ = φk and q = p yields a generalisation of [2, Theorem A] to the case of CM modular forms

of heigher weight.

(II) Suppose that φk and φ∗k are LLT at p, that d(φ) = 0, and that Lp(φk) = 0.

Then L(1)
p (φk) 6= 0, and d(φk) = d(φ∗k) = 0, so Lp(φ

∗
k) 6= 0. Theorem 12.3 with φ = φ∗k and

q = p yields a generalisation of [23, Theorem 10.1].

Remark 12.4. It would be interesting to know whether or not d(φk) = 0 whenever L(1)
p (φk) 6=

0 and R(φk)
K,p 6= 0. To show this, it would suffice (via an argument very similar to that given

in [22, Proposition 11.6]) to show that if x ∈ Σp(K,T ) is of infinite order, then x cuts out an

infinitely ramified extension of K∞. If k = 1 and x is given by a point of infinite order on an

elliptic curve, then this is true. However, it does not seem obvious that a similar assertion

holds if k > 1 and x ∈ Σp(K,T ). �
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