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Abstract. Let Fπ be a finite, Galois-algebra extension of a number field F , with group

G. Suppose that Fπ/F is weakly ramified, and that the square root Aπ of the inverse

different D−1
π is defined. (This latter condition holds if, for example, |G| is odd.) B. Erez

has conjectured that the class (Aπ) of Aπ in the locally free class group Cl(ZG) of ZG

is equal to the Cassou-Noguès-Fröhlich root number class W (Fπ/F ) associated to Fπ/F .

This conjecture has been verified in many cases. We establish a precise formula for (Aπ) in

terms of W (Fπ/F ) in all cases that Aπ is defined and Fπ/F is tame, and are thereby able

to deduce that, in general, (Aπ) is not equal to W (Fπ/F ).
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1. Introduction

Let G be a finite group, and suppose that Fπ/F is a G-Galois algebra extension of number

fields. Write Dπ for the different of Fπ/F and Oπ for the ring of integers of Fπ. If P is any
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prime of Oπ, the power vP(Dπ) of P occurring in Dπ is given by

vP(Dπ) =
∞∑
i=0

(
|G(i)

P | − 1
)
,

where G
(i)
P denotes the i-th ramification group at P (see [23, Chapter IV, Proposition 4]).

This implies that if, for example, |G| is odd, then the inverse different D−1
π has a square

root, i.e. there exists a unique fractional ideal Aπ of Oπ such that

A2
π = D−1

π .

(Let us remark at once that if |G| is even, then D−1
π may well—but of course need not—also

have a square root.)

Recall that Fπ/F is said to be weakly ramified if G
(2)
P = 0 for all prime ideals P of Oπ. B.

Erez has shown that Fπ/F is weakly ramified if and only if Aπ is a locally free OFG-module

(see [10, Theorem 1]). Hence, if Fπ/F is weakly ramified, it follows that Aπ is a locally free

ZG-module, and so defines an element (Aπ) in the locally free class group Cl(ZG) of ZG.

The following result is due to Erez (see [10, Theorem 3]).

Theorem 1.1. Suppose that Fπ/F is tamely ramified, and that |G| is odd. Then Aπ is a

free ZG-module. �

Based on this and other results, S. Vinatier has made the following conjecture (cf. [30,

Conjecture] and [4, Section 1.2]):

Conjecture 1.2. Suppose that Fπ/F is weakly ramified, and that |G| is odd. Then Aπ is a

free ZG-module. �

The first detailed study of the Galois structure of Aπ when |G| is even is due to the third-

named author and Vinatier [4]. By studying the Galois structure of certain torsion modules

first considered by S. Chase [6], they proved the following result, and thereby were able to

exhibit the first examples for which (Aπ) 6= 0 in Cl(ZG) (see [4, Theorem 2]).

Theorem 1.3. Suppose that Fπ/F is tame and locally abelian (i.e. the decomposition group

at every ramified prime of Fπ/F is abelian). Assume also that Aπ exists. Then (Aπ) = (Oπ)

in Cl(ZG). �

A well-known theorem of M. Taylor asserts that, if Fπ/F is tame, then

(Oπ) = W (Fπ/F ), (1.1)

where W (Fπ/F ) denotes the Cassou-Noguès-Fröhlich root number class, which is defined in

terms of Artin root numbers attached to non-trivial irreducible symplectic characters of G.
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(In particular, if |G| is odd, and so has no non-trivial irreducible symplectic characters, then

W (Fπ/F ) = 0.)

We therefore see that Theorem 1.3 may be viewed as saying that if Fπ/F is tame and

locally abelian, and if Aπ exists, then we have

(Aπ) = (Oπ) = W (Fπ/F ).

In light of the results described above, Erez has made the following (unpublished) conjec-

ture:

Conjecture 1.4. Suppose that Fπ/F is weakly ramified, and that Aπ exists. Then

(Aπ) = W (Fπ/F ).

�

Conjecture 1.4 includes Vinatier’s Conjecture 1.2 as a special case, and was the motivation

for the work described in [4]. It also explains almost all previously obtained results on the

ZG-structure of Aπ. In a different direction, the conjecture is related to recent work of Bley,

Hahn and the second author [3] concerning metric structures arising from Aπ (for more

details of which see the PhD thesis [17] of the fourth author).

In this paper we show that, in general, Conjecture 1.4 fails for tame extensions. For each

tame extension Fπ/F we use the signs at infinity of certain symplectic Galois-Jacobi sums

to define an element J ∗∞(Fπ/F ) ∈ Cl(ZG). The class J ∗∞(Fπ/F ) is of order at most 2, and

is often, but not always, equal to zero. We prove the following result.

Theorem 1.5. Suppose that Fπ/F is tame, and that Aπ exists. Then

(Aπ)− (Oπ) = J ∗∞(Fπ/F )

i.e. (see (1.1))

(Aπ) = W (Fπ/F ) + J ∗∞(Fπ/F ). (1.2)

�

Our proof of Theorem 1.5 combines methods from [1] and [2] involving relative alge-

braic K-theory with the use of non-abelian Galois-Jacobi sums, the explicit computation by

Fröhlich and Queyrut of the local root numbers of dihedral representations and a detailed

representation-theoretic analysis of the failure (in the relevant cases) of induction functors

to commute with Adams operators. In particular, it is interesting to compare our use of

Galois-Jacobi sums with the methods of [4], where abelian Jacobi sums play a critical role.
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Remark 1.6. It remains an open question as to whether (1.2) continues to hold if the

tameness hypothesis is relaxed. �

For any integer m ≥ 1, we write H4m for the generalised quaternion group of order 4m.

The following result, which is obtained by combining Theorem 1.5 with work of Fröhlich on

root numbers (see [11]), gives infinitely many counterexamples to Conjecture 1.4.

Theorem 1.7. Let F be an imaginary quadratic field such that Cl(OF ) contains an element

of order 4. Then for any sufficiently large prime ` with ` ≡ 3 (mod 4), there are infinitely

many tame, H4`-extensions Fπ/F such that Aπ exists and (Aπ) 6= (Oπ) in Cl(ZH4`).

An outline of the contents of this paper is as follows. In Section 2 we recall certain basic

facts about relative algebraic K-theory from [1] and [2]. In Section 3, we discuss how ideals

in Galois algebras give rise to elements in certain relative K-groups. Section 4 contains a

description of the Stickelberger factorisation of certain tame resolvends (see [2, Section 7])

in the case of both rings of integers and square roots of inverse differents, while Section 5

develops properties of Stickelberger pairings, and explains how these may be used to give

explicit descriptions of the tame resolvends considered in the previous section. In Section 6

we recall a number of facts concerning Galois-Gauss sums. We define Galois-Jacobi sums,

and we establish some of their basic properties. In Section 7 we compute the signs of local

Galois-Jacobi sums at symplectic characters by combining an analysis of the behaviour of

Adams operators with respect to induction functors together with the theorem of Fröhlich

and Queyrut. In Section 9, we prove Theorem 1.5. Finally, in Section 10, we prove Theorem

1.7.

Acknowledgements: The first-named author learned of the work of [4] and of the

conjecture of Erez from conversations with Philippe Cassou-Noguès and Boas Erez. He is is

extremely grateful to them, as well as to Werner Bley and Cindy Tsang for their subsequent

interest in this project. We are also very grateful to Dominik Bullach for additional insight

into the manner in which counterexamples to Conjecture 1.4 can be derived from Theorem

1.5 (see Remark 10.9).

Notation and conventions.

For any field L, we write Lc for an algebraic closure of L, and we set ΩL := Gal(Lc/L).

If L is a number field or a non-archimedean local field (by which we shall always mean a

finite extension of Qp for some prime p), then OL denotes the ring of integers of L. If L is

an archimedean local field, then we adopt the usual convention of setting OL = L.
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Throughout this paper, F will denote a number field. For each place v of F , we fix

an embedding F c → F c
v , and we view ΩFv as being a subgroup of ΩF via this choice of

embedding. We write Iv for the inertia subgroup of ΩFv when v is finite.

The symbol G will always denote a finite group upon which ΩF acts trivially. If H is any

finite group, we write Irr(H) for the set of irreducible F c-valued characters of H and RH for

the corresponding ring of virtual characters. We write 1H (or simply 1 if there is no danger

of confusion) for the trivial character in RH .

If L is a number field or a local field, and Γ is any group upon which ΩL acts continuously,

we identify Γ-torsors over L (as well as their associated algebras, which are Hopf-Galois

extensions associated to AΓ := (LcΓ)ΩL) with elements of the set Z1(ΩL,Γ) of Γ-valued

continuous 1-cocycles of ΩL (see [24, I.5.2]). If π ∈ Z1(ΩL,Γ), then we write Lπ/L for the

corresponding Hopf-Galois extension of L, and Oπ for the integral closure of OL in Lπ. (Thus

Oπ = Lπ if L is an archimedean local field.) Each such Lπ is a principal homogeneous space

(p.h.s.) of the Hopf algebra MapΩL
(Γ, Lc) of ΩL-equivariant maps from Γ to Lc. It may

be shown that if π1, π2 ∈ Z1(ΩL,Γ), then Lπ1 ' Lπ2 if and only if π1 and π2 differ by a

coboundary. The set of isomorphism classes of Γ-torsors over L may be identified with the

pointed cohomology set H1(L,Γ) := H1(ΩL,Γ). We write [π] ∈ H1(L,Γ) for the class of

Lπ in H1(L,Γ). If L is a number field or a non-archimedean local field we write H1
t (L,Γ)

for the subset of H1(L,Γ) consisting of those [π] ∈ H1(L,Γ) for which Lπ/L is at most

tamely ramified. If L is an archimedean local field, we set H1
t (L,Γ) = H1(L,Γ). We denote

the subset of H1
t (L,Γ) consisting of those [π] ∈ H1

t (L,Γ) for which Lπ/L is unramified

at all (including infinite) places of L by H1
nr(L,Γ). (So, with this convention, if L is an

archimedean local field, we have H1
nr(L,Γ) = 0.)

If A is any algebra, we write Z(A) for the centre of A. If A is an R-algebra for some ring

R, and R→ R1 is an extension of R, we write AR1 := A⊗RR1 to denote extension of scalars

from R to R1.

2. Relative algebraic K-theory

The purpose of this section is briefly to recall a number of basic facts concerning relative

algebraic K-theory that we shall need. For a more extensive discussion of these topics, the

reader is strongly encouraged to consult [2, Section 5] as well as [1, Sections 2 and 3] and

[25, Chapter 15].

Let R be a Dedekind domain with field of fractions L of characteristic zero, and suppose

that G is a finite group upon which ΩL acts trivially. Let A be any finitely-generated

R-algebra satisfying A⊗R L ' LG.
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For any extension Λ of R, we write K0(A,Λ) for the relative algebraic K-group that

arises via the extension of scalars afforded by the map R → Λ. Each element of K0(A,Λ)

is represented by a triple [M,N ; ξ], where M and N are finitely generated, projective A-

modules, and ξ : M ⊗R Λ
∼−→ N ⊗R Λ is an isomorphism of A⊗R Λ-modules.

Recall that there is a long exact sequence of relative algebraic K-theory (see [25, Theorem

15.5])

K1(A)
ι−→ K1(A⊗R Λ)

∂1
A,Λ−−→ K0(A,Λ)

∂0
A,Λ−−→ K0(A)→ K0(A⊗R Λ). (2.1)

The first and last arrows in this sequence are induced by the extension of scalars map R→ Λ,

while the map ∂0
A,Λ sends the triple [M,N ; ξ] to the element [M ]− [N ] ∈ K0(A).

The map ∂1
A,Λ is defined as follows. The group K1(A ⊗R Λ) is generated by elements of

the form (V, φ), where V is a finitely generated, free A⊗R Λ-module, and φ : V
∼−→ V is an

A⊗R Λ-isomorphism. To define ∂1
A,Λ((V, φ)), we choose any projective A-submodule T of V

such that T ⊗A Λ = V , and we set

∂1
A,Λ((V, φ)) := [T, T ;φ].

It may be shown that this definition is independent of the choice of T .

Let Cl(A) denote the locally free class group of A. If Λ is a field (as will in fact always be

the case in this paper), then (2.1) yields an exact sequence

K1(A)
ι−→ K1(A⊗R Λ)

∂1
A,Λ−−→ K0(A,Λ)

∂0
A,Λ−−→ Cl(A)→ 0, (2.2)

and this is the form of the long exact sequence of relative algebraic K-theory that we shall

use in this paper.

We shall make heavy use of the fact that computations in relative K-groups and in locally

free class groups may be carried out using functions on the characters of G. Suppose that

L is either a number field or a local field, and write RG for the ring of virtual characters of

G. The group ΩL acts on RG via the rule given by

χω(g) = ω(χ(g)),

where ω ∈ ΩL, χ ∈ Irr(G), and g ∈ G. For each element a ∈ (LcG)×, we define Det(a) ∈
Hom(RG, (L

c)×) as follows. If T is any representation of G with character φ, then we set

Det(a)(φ) := det(T (a)). It may be shown that this definition is independent of the choice

of representation T , and so depends only upon the character φ.

The map Det is essentially the same as the reduced norm map

nrd : (LcG)× → Z(LcG)× (2.3)
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(see [2, Remark 4.2]): (2.3) induces an isomorphism

nrd : K1(LcG)
∼−→ Z(LcG)× ' Hom(RG, (L

c)×), (2.4)

and we have Det(a)(φ) = nrd(a)(φ).

Suppose now that we are working over a number field F (i.e. L = F above). We define

the group of finite ideles Jf (K1(FG)) to be the restricted direct product over all finite places

v of F of the groups Det(FvG)× ' K1(FvG) with respect to the subgroups Det(OFvG)×.

(We shall require no use of the infinite places of F in the idelic descriptions given below.

See e.g. [9, pages 226–228] for details concerning this point.)

For each finite place v of F , we write

locv : Det(FG)× → Det(FvG)× ⊆ HomΩFv
(RG, (F

c
v )×)

for the obvious localisation map.

Let E be any extension of F . Then the homomorphism

Det(FG)× → Jf (K1(FG))×Det(EG)×; x 7→ ((locv(x))v, x
−1)

induces a homomorphism

∆A,E : Det(FG)× → Jf (K1(FG))∏
v-∞Det(Av)×

×Det(EG)×.

Theorem 2.1. (a) There is a natural isomorphism

Cl(A)
∼−→ Jf (K1(FG))

Det(FG)×
∏

v-∞Det(Av)×
.

(b) There is a natural isomorphism

hA,E : K0(A, E)
∼−→ Coker(∆A,E).

(c) Let v be a finite place of F , and suppose that Lv is any extension of Fv. Then there

are isomorphisms

K0(Av, Lv) ' K1(LvG)/ι(K1(Av)) ' Det(LvG)×/Det(Av)
×.

Proof. Part (a) is due to A. Fröhlich (see e.g [15, Chapter I]). Part (b) is proved in [1,

Theorem 3.5], and a proof of part (c) is given in [2, Lemma 5.7]. �

Remark 2.2. Suppose that x ∈ K0(A, E) is represented by the idele [(xv)v, x∞] ∈ Jf (K1(FG))×
Det(EG)×. Then ∂0(x) ∈ Cl(A) is represented by the idele (xv)v ∈ Jf (K1(FG)). �
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Remark 2.3. Suppose that [M,N ; ξ] ∈ K0(OFG,E), and that M and N are locally

free A-modules of rank one. An explicit representative in Jf (K1(FG)) × Det(EG)× of

hA,E([M,N ; ξ]) may be constructed as follows.

For each finite place v of F , fix Av-bases mv of Mv and nv of Nv. Fix also an FG-basis

n∞ of NF , and choose an isomorphism θ : MF
∼−→ NF of FG-modules.

The element θ−1(n∞) is an FG-basis of MF . Hence, for each place v, we may write

mv = µv · θ−1(n∞),

nv = νv · n∞,

where µv, νv ∈ (FvG)×.

If we write θE : ME
∼−→ NE for the isomorphism afforded by θ via extension of scalars,

then we see that the isomorphism ξ ◦ θ−1
E : NE

∼−→ NE is given by n∞ 7→ ν∞ · n∞ for some

ν∞ ∈ (EG)×.

A representative of hA,E([M,N ; ξ]) is given by the image of [(µv·ν−1
v )v, ν∞] in Jf (K1(FG))×

Det(EG)×. �

Remark 2.4. We see from Theorem 2.1(b) and (c) that there are isomorphisms

K0(A, F ) ' Jf (K1(FG))∏
v-∞Det(Av)×

' HomΩF
(RG, Jf (F

c))∏
v-∞Det(Av)×

' ⊕v-∞K0(Av, Fv).

There is a natural injection

K0(A, F )→ K0(A, F c)

[M,N ; ξ]→ [M,N ; ξF c ],

where ξF c : MF c
∼−→ NF c is the isomorphism obtained from ξ : MF

∼−→ NF via extension of

scalars from F to F c. It is not hard to check that this map is induced by the inclusion map

Jf (K1(FG))→ Jf (K1(FG))×Det(F cG)×

(xv)v → [(xv)v, 1].

�

We now recall the description of the restriction of scalars map on relative K-groups and

locally free class groups in terms of the isomorphism given by Theorem 2.1(b).

Suppose that F/F is a finite extension, and that E is an extension of F . Then restriction

of scalars from OF to OF yields homomorphisms

K0(AOF , E)→ K0(A, E)
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and

Cl(AOF )→ Cl(A)

which may be described as follows (see e.g. [15, Chapter IV] or [27, Chapter 1]).

Let {ω} be any transversal of ΩF\ΩF . Then the map

Jf (K1(FG))×Det(EG)× → Jf (K1(FG))×Det(EG)×

[(yv)v, y∞] 7→
∏
ω

[(yv)v, y∞]ω

induces homomorphisms

NF/F : K0(AOF , E)→ K0(A, E) (2.5)

and

NF/F : Cl(AOF )→ Cl(A). (2.6)

These homomorphisms are independent of the choice of {ω} and are equal to the natural

maps on relative K-groups (resp. locally free class groups) afforded by restriction of scalars

from OF to OF .

We conclude this section by recalling the definitions of certain induction maps on relative

algebraic K-groups and on locally free class groups of group rings (see e.g. [15, Chapter II]

or [27, Chapter I]).

Suppose that G is a finite group, and that H is a subgroup of G. Let E be an algebraic

extension of F . Then extension of scalars from OFH to OFG yields natural homomorphisms

IndGH : K0(OFH,E)→ K0(OFG,E) (2.7)

and

IndGH : Cl(OFH)→ Cl(OFG). (2.8)

It may be shown that these homomorphisms are induced (via the isomorphisms described

in Theorem 2.1) by the maps

IndGH : Hom(RH , J(F c))→ Hom(RG, J(F c));

IndGH : Hom(RH , (F
c)×)→ Hom(RG, (F

c)×)

given by

(IndGH f)(χ) = f(χ |H), χ ∈ RG. (2.9)
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It is not hard to check from the definitions that the following diagram commutes:

K0(OFH,E)
IndG

H−−−→ K0(OFG,E)

∂0

y ∂0

y
Cl(OFH)

IndG
H−−−→ Cl(OFG).

(2.10)

3. Galois algebras and ideals

Let L be either a number field or a local field, and suppose that π ∈ Z1(ΩL, G) is a

continuous G-valued ΩL 1-cocycle. We may define an associated G-Galois L-algebra Lπ by

Lπ := MapΩL
(πG,Lc),

where πG denotes the set G endowed with an action of ΩL via the cocycle π (i.e. gω = π(ω)·g
for g ∈ πG and ω ∈ ΩL), and Lπ is the algebra of Lc-valued functions on πG that are fixed

under the action of ΩL. The group G acts on Lπ via the rule

ag(h) = a(h · g)

for all g ∈ G and h ∈ πG.

The Wedderburn decomposition of the algebra Lπ may be described as follows. Set

Lπ := (Lc)Ker(π),

so Gal(Lπ/L) ' π(ΩL). Then

Lπ '
∏

π(ΩL)\G

Lπ, (3.1)

and this isomorphism depends only upon the choice of a transversal of π(ΩL) in G. It

may be shown that every G-Galois L-algebra is of the form Lπ for some π, and that Lπ is

determined up to isomorphism by the class [π] of π in the pointed cohomology set H1(L,G).

In particular, every Galois algebra may be viewed as being a sub-algebra of the Lc-algebra

Map(G,Lc).

Definition 3.1. The resolvend map rG on Map(G,Lc) is defined by

rG : Map(G,Lc)→ LcG

a 7→
∑
g∈G

a(g) · g−1.

(This is an isomorphism of LcG-modules, but it is not an isomorphism of Lc-algebras because

it does not preserve multiplication.) �
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Suppose now that Lπ/L is a G-extension, and that L ⊆ Lπ is a non-zero projective

OLG-module. Then there are isomorphisms

Map(G,Lc) ' L⊗OL
Lc, LcG ' OLG⊗OL

Lc,

and so the triple [L, OLG; rG] yields an element of K0(OLG,L
c).

Proposition 3.2. Let Fπ/F be a G-extension of a number field F , and suppose that Li ⊆ Fπ

(i = 1, 2) are non-zero projective OFG-modules. For each place v of F , choose a basis li,v of

Li,v over OFvG, as well as a basis l∞ of Fπ over FG.

(a) The element [Li, OFG; rG] ∈ K0(OFG,F
c) is represented by the image of the idele

[(rG(li,v) · rG(l∞)−1)v, rG(l∞)−1] ∈ Jf (K1(FG))×Det(F cG)×.

(b) The element

[L1, OFG; rG]− [L2, OFG; rG] ∈ K0(OFG,F
c)

is represented by the image of the idele

[(rG(l1,v) · rG(l−1
2,v))v, 1] ∈ Jf (K1(FG))×Det(F cG)×.

(c) We have that

[L1, OFG; rG]− [L2, OFG; rG] ∈ K0(OFG,F ) ⊆ K0(OFG,F
c).

Proof. For each finite place v of F , write

li,v = xi,v · l∞,

with xi,v ∈ (FvG)×. Then it follows from Remark 2.3 that [Li, OFG; rG] ∈ K0(OFG,F
c)

is represented by the image of the idele [(xi,v)v, rG(l∞)−1] ∈ Jf (K1(FG)) × Det(F cG)×.

However

xi,v = rG(li,v) · rG(l∞)−1

(because the resolvend map is an isomorphism of F cG and F c
vG-modules), and this implies

(a). Part (b) now follows directly from (a).

To show part (c), we first recall that

K0(OFG,F ) ' ⊕v-∞K0(OFvG,Fv) ' ⊕v-∞Det(FvG)×/Det(OFvG)×,

and that an element c ∈ K0(OFG,F
c) lies in K0(OFG,F ) if it has an idelic representative

lying in Jf (K1(FG))×Det(FG)× ⊆ Jf (K1(FG))×Det(F cG)× (see Remark 2.4).

Now a standard property of resolvends implies that

rG(li,v)
ω = rG(li,v) · π(ω)
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for every ω ∈ ΩFv (see e.g. [2, 2.2]), and so we see that (rG(l1,v) · rG(l−1
2,v))v ∈ (FvG)×

for each v. (In fact, as we may take l1,v = l2,v for almost all v, we may suppose that

(rG(l1,v) · rG(l−1
2,v))v = 1 for almost all v.) Hence it now follows from (b) that [L1, OFG;F c]−

[L2, OFG;F c] ∈ K0(OFG,F ), as claimed. �

It is a classical result, due to E. Noether, that a G-extension Fπ/F is tamely ramified

if and only if Oπ is a locally free (and therefore projective) OFG-module. S. Ullom has

shown that if Fπ/F is tame, then in fact all G-stable ideals in Oπ are locally free. He also

showed that if any G-stable ideal B, say, in a G-extension Fπ/F is locally free, then all

second ramification groups at primes dividing B are equal to zero (see [29]). If Fπ/F is

any G-extension for which |G| is odd (and so the square root Aπ of the inverse different

automatically exists), then Erez has shown that Aπ is a locally free OFG-module if and

only if all second ramification groups associated to Fπ/F vanish, i.e. if and only if Fπ/F

is weakly ramified. In fact, as pointed out by the third-named author and Vinatier, [4, pp.

109, footnote 1] the proof of [10, Theorem 1] shows that if Fπ/F is any weakly ramified

extension such that Aπ exists, then Aπ is locally free.

Definition 3.3. Suppose that [π] ∈ H1
t (F,G), and that Aπ exists. We define

c = c(π) := [Aπ, OFG; rG]− [Oπ, OFG; rG] ∈ K0(OFG,F ) ⊆ K0(OFG,F
c).

�

4. Local decomposition of tame resolvends

Our goal in this section is to recall certain facts from [2, Section 7] concerning Stickelberger

factorisations of resolvends of normal integral basis generators of tame local extensions, and

to describe similar results concerning resolvends of basis generators of the square root of the

inverse different (when this exists).

Let L be a local field, and fix a uniformiser $ = $L of L. Set q := |OL/$LOL|.
Fix also a compatible set of roots of unity {ζm}, and a compatible set {$1/m} of roots

of $. (Hence if m and n are any two positive integers, then we have (ζmn)m = ζn, and

($1/mn)m = $1/n.)

Let Lnr (respectively Lt) denote the maximal unramified (respectively tamely ramified)

extension of L. Then

Lnr =
⋃
m≥1

(m,q)=1

L(ζm), Lt =
⋃
m≥1

(m,q)=1

L(ζm, $
1/m).
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The group Ωnr := Gal(Lnr/L) is topologically generated by a Frobenius element φ which

may be chosen to satisfy

φ(ζm) = ζqm, φ($1/m) = $1/m

for each integer m coprime to q. Our choice of compatible roots of unity also uniquely

specifies a topological generator σ of Ωr := Gal(Lt/Lnr) by the conditions

σ($1/m) = ζm ·$1/m, σ(ζm) = ζm

for all integers m coprime to q. The group Ωt := Gal(Lt/L) is topologically generated by φ

and σ, subject to the relation

φ · σ · φ−1 = σq. (4.1)

The reader may find it helpful to keep in mind the following explicit example, due to C.

Tsang (cf. [28, Proposition 4.2.2]), while reading the next two sections.

Example 4.1. (C. Tsang) Suppose that L contains the e-th roots of unity with (e, q) = 1,

and set M := L($
1/e
L ). Write $M := $

1/e
L ; then $M is a uniformiser of M . Set H :=

Gal(M/L) = 〈s〉, say.

Let n be an integer with 0 ≤ |n| ≤ e− 1, and let us consider the ideal

$n
MOM = $

n/e
L OM

as an OLH-module. Set

α =
1

e

e−1∑
i=0

$n+i
M =

1

e

e−1∑
i=0

$
(n+i)/e
L .

We wish to explain why

OLH · α = $n
M ·OM ,

and to give some motivation for the definition of the Stickelberger pairings in Definition 5.1

below.

Suppose that s($M) = ζ · $M , where ζ is a primitive e-th root of unity. Then for each

0 ≤ j ≤ e− 1, we have

sj(α) =
1

e

e−1∑
i=0

ζ(i+n)j$i+n
M .

Multiplying both sides of this last equality by ζ−(l+n)j, where 0 ≤ l ≤ e− 1 gives

sj(α)ζ−(l+n)j =
1

e

e−1∑
i=0

ζ(i−l)j$i+n
M .
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Now sum over j to obtain

e−1∑
j=0

sj(α)ζ−(l+n)j =
1

e

n∑
i=0

$i+n
M

e−1∑
j=0

ζ(i−l)j = $l+n
M .

So, if for any χ ∈ Irr(H), we choose the unique integer (χ, s)H,n in the set

{l + n | 0 ≤ l ≤ e− 1}

such that χ(s) = ζ(χ,s)H,n , then we see that

Det(rH(α))(χ) =
e−1∑
j=0

sj(α)ζ−(l+n)j = $
(χ,s)H,n

M . (4.2)

The cases n = 0 and n = (1− e)/2 (for e odd) correspond to the ring of integers and the

square root of the inverse different respectively, and we see the appearance of the relevant

Stickelberger pairing (see Definition 5.1 below) in each case.

It follows from (4.2) that

Bn := {$l+n
M : 0 ≤ l ≤ e− 1} ⊆ OLH · α.

As Bn is an OL-basis of the ideal $n
M ·OM , and as ζe ∈ OL, we see that

OLH · α = $n
M ·OM ,

i.e. α is a free generator of $n
M ·OM as an OLH-module. �

Definition 4.2. If g ∈ G, we set

βg :=
1

|g|

|g|−1∑
i=0

$i/|g|;

note that βg depends only upon |g|, and so in particular we have

βg = βγ−1gγ

for every γ ∈ G. We define ϕg ∈ Map(G,Lc) by setting

ϕg(γ) =

σi(βg) if γ = gi;

0 if γ /∈ 〈g〉.

Then

rG(ϕg) =

|g|−1∑
i=0

ϕg(g
i)g−i =

|g|−1∑
i=0

σi(βg)g
−i. (4.3)

�
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Suppose now that π ∈ Z1(ΩL, G), with [π] ∈ H1
t (L,G). Write s := π(σ) and t := π(φ).

We define, πr, πnr ∈ Map(Ωt, G) by setting

πr(σ
mφn) = π(σm) = sm, (4.4)

πnr(σ
mφn) = π(φn) = tn, (4.5)

so that

π = πr · πnr.

It may be shown that in fact πnr ∈ Hom(Ωnr, G), and so corresponds to a unramified G-

extension Lπnr of L. It may also be shown that πr ∈ Hom(Ωr, G), corresponding to a totally

(tamely) ramified extension Lnrπr/L
nr. If we write [π̃] for the image of [π] under the natural

restriction map H1(L,G)→ H1(Lnr, G), then [π̃] = [πr]. The element ϕs is a normal integral

basis generator of the extension Lnrπr/L
nr. (See [2, Section 7] for proofs of these assertions.)

If in addition |s| is odd, then the inverse different of Lπ/L has a square root Aπ, and

Aπ = $(1−|s|)/2|s| ·Oπ.

We can now state the Stickelberger factorisation theorem for resolvends of normal integral

bases.

Theorem 4.3. If anr ∈ Lπnr is any normal integral basis generator of Lπnr/L, then the

element a ∈ Lπ defined by

rG(anr) · rG(ϕs) = rG(a) (4.6)

is a normal integral basis generator of Lπ/L.

Proof. See [2, Theorem 7.9]. �

We shall now describe a similar result (due to C. Tsang when G is abelian) concerning

OLG-generators of the square root of the inverse different of a tame extension of L.

Definition 4.4. Suppose that g ∈ G and that |g| is odd. Set

β∗g =
1

|g|

|g|−1∑
i=0

$
1
|g| (i+

1−|g|
2

).

Define ϕ∗g ∈ Map(G,Lc) by

ϕ∗g(γ) =

σi(β∗g) if γ = gi;

0 if γ /∈ 〈g〉.

Then

rG(ϕ∗g) =

|g|−1∑
i=0

ϕg(g
i)g−i =

|g|−1∑
i=0

σi(β∗g)g
−i. (4.7)
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Theorem 4.5. (cf. [2, Theorem 7.9]) If anr is any choice of n.i.b. generator of Lπnr/L,

then the element b of Lπ defined by

rG(b) = rG(anr) · rG(ϕ∗s) (4.8)

satisfies Aπ = OLG · b.

Proof. To ease notation, set N := Lnr and H := 〈s〉.
Write [π̃] ∈ H1(N,G) for the image of [π] ∈ H1(L,G) under the restriction mapH1(L,G)→

H1(N,G). Then Aπ̃ = ON ·Aπ, because N/L is unramified. Hence, to establish the desired

result, it suffices to show that

Aπ̃ = ONG · b. (4.9)

As rG(anr) ∈ (ONG)×, (4.9) is equivalent to the equality

Aπ̃ = ONG · ϕ∗s. (4.10)

Now

Nπ̃ '
∏
H\G

N π̃, (4.11)

where N π̃ = N($1/|s|) (cf. (3.1)), and this isomorphism induces a decomposition

Aπ̃ =
∏
H\G

Aπ̃, (4.12)

where

Aπ̃ = A(N π̃) = $(1−|s|)/2|s| ·ON

is the square root of the inverse different of the extension N π̃/N .

It therefore follows from the definition of ϕ∗s that (4.10) holds if and only if

Aπ̃ = ONH · β∗s . (4.13)

This last equality follows exactly as in [28, Proposition 4.2.2], and a proof is given by taking

n = (1− e)/2 (for e odd) in Example 4.1 above. �

Proposition 4.6. Suppose that [π] ∈ H1
t (L,G) and that s := π(σ) is of odd order. Then

the class

c(π) := [Aπ, OLG; rG]− [Oπ, OLG; rG] ∈ K0(OLG,L) ' Det(LG)×/Det(OLG)×

is represented by Det(rG(ϕ∗s)) ·Det(rG(ϕs))
−1 ∈ Det(LG)×.

Proof. This is a direct consequence of Theorems 4.3 and 4.5, together with the proof of

Proposition 3.2(c). �



INVERSE DIFFERENT 17

5. Stickelberger pairings and resolvends

Our goal in this section is to describe explicitly the elements Det(rG(ϕs)) and Det(rG(ϕ∗s))

constructed in the previous section. We begin by recalling the definition of two Stickelberger

pairings. The first of these is due to L. McCulloh, while the second is due to C. Tsang in

the case of abelian G. See [2, Definition 9.1] and [28, Definition 2.5.1].

Definition 5.1. Let ζ = ζ|G| be a fixed, primitive, |G|-th root of unity. Suppose first that

G is cyclic. For g ∈ G and χ ∈ Irr(G), write χ(g) = ζr for some integer r.

(1) We define

〈χ, g〉G = {r/|G|},

where 0 ≤ {r/|G|} < 1 denotes the fractional part of r/|G|.
Alternatively (cf. Example 4.1), if we choose r to be the unique integer in the set

{l : 0 ≤ l ≤ |G| − 1} such that χ(g) = ζr, then

〈χ, g〉G = r/|G|.

(2) Suppose that |G| is odd, and choose r ∈ [(1 − |G|)/2, (|G| − 1)/2] to be the unique

integer such that χ(g) = ζr. Define

〈χ, g〉∗G = r/|G|.

We extend each of these to pairings

QRG ×QG→ Q

via linearity. Finally, we extend the definitions to arbitrary finite groups G by setting

〈χ, s〉G := 〈χ |〈s〉, s〉〈s〉

and

〈χ, s〉∗G := 〈χ |〈s〉, s〉∗〈s〉,

where the second definition of course only makes sense when the order |s| of s is

odd. �

We shall make use of the following alternative descriptions of the above Stickelberger

pairing using the standard inner product on RG (see [2, Proposition 9.2]). For each element

s ∈ G, write ζ|s| = ζ
|G|/|s|
|G| , and define a character ξs of 〈s〉 by ξs(s

i) = ζ i|s|. Set

Ξs :=
1

|s|

|s|−1∑
j=1

jξjs .
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For |s| odd, we also define

Ξ∗s :=
1

|s|

(|s|−1)/2∑
j=1

j(ξjs − ξ−js ).

Let (−,−)G denote the standard inner product on RG.

Proposition 5.2.

(a) If s ∈ G and χ ∈ RG, we have

〈χ, s〉G = (IndG〈s〉(Ξs), χ)G.

(b) If furthermore |s| is odd, then we have

〈χ, s〉∗G = (IndG〈s〉(Ξ
∗
s), χ)G.

(c) If |s| is odd, then

Ξ∗s − Ξs = −
(|s|−1)/2∑
j=1

ξ−js .

(d) For s odd, write

d(s) := −
(|s|−1)/2∑
j=1

ξ−js .

Then, for each χ ∈ RG, we have

〈χ, s〉∗G − 〈χ, s〉G = (IndG〈s〉(d(s)), χ)G.

Proof. Part (a) is proved in [2, Proposition 9.2]. The proof of (b) is the same mutatis

mutandis. Part (c) follows directly from the definitions of Ξs and Ξ∗s, and then (d) follows

from (a) and (b). �

We may use Proposition 5.2 to describe the relationship between the two Stickelberger

pairings in Definition 5.1 when |s| is odd.

In the sequel, for any finite group Γ (which will be clear from context), and any natural

number k, we write ψk for the k-th Adams operator on RΓ. Thus, if χ ∈ RΓ and γ ∈ Γ,

then one has ψk(χ)(γ) = χ(γk). In particular, we recall that, for all k, ψk commutes with

the restriction and inflation functors, as well as with the action of ΩQ on RΓ (see [10,

Proposition-Definition 3.5]). If L is a number field or a local field, we also write ψk for the

homomorphism

Hom(RΓ, (L
c)×)→ Hom(RΓ, (L

c)×)

defined by setting

ψk(f)(χ) = f(ψk(χ))

for f ∈ Hom(RΓ, (L
c)×) and χ ∈ RΓ.
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Proposition 5.3. Suppose that s ∈ G is of odd order, and set H := 〈s〉.

(a) If 1 ≤ j ≤ |s| − 1, then

(Ξ∗s, ξ
j)H = (Ξs, ξ

2j − ξj)H
= (Ξs, ψ2(ξj)− ξj)H .

(b) (C. Tsang) For each χ ∈ RG, we have

〈χ, s〉∗G = 〈ψ2(χ)− χ, s〉G.

Proof. (a) If 1 ≤ j ≤ |s|/2, then we have

(Ξs, ξ
2j
s − ξjs)H =

2j − j
|s|

=
j

|s|
,

while if |s|/2 ≤ j ≤ s− 1, then

(Ξs, ξ
2j
s − ξjs)H =

(2j − |s|)− j
|s|

=
j − |s|
|s|

.

Thus in each case we have

(Ξ∗s, ξ
j
s)H = (Ξs, ξ

2j
s − ξjs)H ,

and this establishes the claim.

(b) Proposition 5.2(b), together with Frobenius reciprocity, gives

〈χ, s〉∗G = (IndG〈s〉(Ξ
∗
s), χ)G

= (Ξ∗s, χ |H)H .

The desired result now follows from part (a), together with the fact that, for any χ ∈ RG,

we have the equality

ψ2(χ) |H= ψ2(χ |H).

�

The following result describes the elements Det(rG(ϕs)) and Det(rG(ϕ∗s)) in terms of

Stickelberger pairings. In what follows, we retain the notation and conventions of Section 4.

Proposition 5.4. Suppose that χ ∈ RG and s ∈ G.

(a) We have

Det(rG(ϕs))(χ) = $〈χ,s〉G .

(b) If |s| is odd, then we have

Det(rG(ϕ∗s))(χ) = $〈χ,s〉
∗
G .
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(c) For |s| odd, we have

[Det(rG(ϕ∗s)) ·Det(rG(ϕs))
−1](χ) = $〈χ,s〉

∗
G−〈χ,s〉G

= $〈ψ2(χ)−2χ,s〉G

=
Det(rG(ϕs))(ψ2(χ))

Det(rG(ϕs))(2χ)
.

That is to say,

Det(rG(ϕ∗s)) ·Det(rG(ϕs))
−1 = ψ2(Det(rG(ϕs))) ·Det(rG(ϕs))

−2.

Proof. Part (a) is proved in [2, Proposition 10.5(a)]. The proof of (b) is very similar, using

[28, Proposition 4.2.2], which in fact shows the result for G abelian. Part (c) follows from

parts (a) and (b), and Proposition 5.3. �

Corollary 5.5. Suppose that [π] ∈ H1
t (L,G), and that s := π(σ) is of odd order. Then a

representing homomorphism for the class

c(π) = [Aπ, OLG; rG]− [Oπ, OLG; rG]

in

K0(OLG,L) ' Det(LG)×

Det(OLG)×
' HomΩL

(RG, (L
c)×)

Det(OLG)×

is the map fπ ∈ HomΩL
(RG, (L

c)×) given by

fπ(χ) = $〈ψ2(χ)−2χ,s〉G .

Proof. This follows from Propositions 4.6 and 5.4(c). �

6. Galois-Gauss and Galois-Jacobi sums

Let L be a local field of residual characteristic p. Suppose that [π] ∈ H1
t (L,G), and recall

that we have (see (3.1))

Lπ '
∏

π(ΩL)\G

Lπ.

Set H := π(ΩL) = Gal(Lπ/L), and write τ ∗(Lπ/L, −) ∈ Hom(RH , (Q
c)×) for the adjusted

Galois-Gauss sum homomorphism associated to Lπ/L (see [14, Chapter IV, (1.7)]). We

define τ ∗(Lπ/L, −) ∈ Hom(RG, (Q
c)×) by composing τ ∗(Lπ/L, −) with the natural map

RG → RH .

For a finite group Γ, we write Irrp(Γ) for the set of Qc
p-valued irreducible characters of Γ

and RΓ,p for the free abelian group on Irrp(Γ). We fix a local embedding Locp : Qc → Qc
p,

and we shall identify Irr(Γ) with Irrp(Γ) via this choice of embedding.
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For each rational prime l 6= p, we fix a semi-local embedding Locl : Qc → (Qc)l :=

Qc ⊗Q Ql. (Caveat: note that this is not the same thing as a local embedding Qc → Qc
l !)

For each rational prime l, write Qt
l for the maximal, tamely ramified extension of Ql.

We shall require the following results.

Proposition 6.1. Fix a rational prime l.

(a) Let K be an unramified extension of Ql. Then, for any integer k, we have that

ψk(Det(OKG)×) ⊆ Det(OKG)×.

(b) Let Γ be a finite group with abelian p-Sylow subgroups. Then, for any integer k,

ψk(Det(OQt
p
Γ)×) ⊆ Det(OQt

p
Γ)×.

(c) Suppose that l 6= p. Then

Locl(τ
∗(Lπ/L, −)) ∈ Det(OQ(µp),lG)×.

Proof. Parts (a) and (b) are results of Cassou-Noguès and Taylor. For part (a) see, e.g. [27,

Chapter 9, Theorem 1.2], and note that for this particular result we do not need to assume

that (k, |G|) = 1. For part (b) see [5, pp. 83, Remark].

Part (c) follows from [14, Chapter IV, Theorems 30], where analogous results are proved

for τ ∗(Lπ/L, −); the corresponding results for τ ∗(Lπ/L, −) are then a direct consequence

of the definition of τ ∗(Lπ/L, −). �

The following result is entirely analogous to [14, Chapter IV, Lemma 2.1]. Recall that if

f ∈ Hom(RΓ, (Q
c
p)
×), then ω ∈ ΩQp acts on f by the rule

fω(χ) = f(χω
−1

)ω.

Lemma 6.2. Let L/Qp be a finite extension, and let {ν} be any right transversal of ΩL in

ΩQp. Suppose that f ∈ HomΩLnr (RΓ, (Q
c
p)
×). Then (cf. (2.5) and (2.6)):

NL/Qpf :=
∏
ν

f ν ∈ HomΩQnr
p

(RΓ, (Q
c
p)
×).

Proof. It suffices to show that this result holds with respect to a particular choice of transver-

sal of ΩL in ΩQp .

We first observe that, as ΩQnr
p

is normal in ΩQp , ΩL ·ΩQnr
p

is a subgroup of ΩQp . We choose

a right transversal {ω} of ΩL · ΩQnr
p

in ΩQp .

Next, we choose a right transversal {σ} of ΩL ∩ΩQnr
p

in ΩQnr
p

. It follows that {σ} is also a

right transversal of ΩL in ΩL · ΩQnr
p

. We now deduce that {σω} is a right transversal of ΩL

in ΩQp . We also note that

ΩL ∩ ΩQnr
p

= ΩLnr ∩ ΩQnr
p
,
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and that (since ΩQnr
p

is normal in ΩQp),

ω−1
i (ΩLnr ∩ ΩQnr

p
)ωi = ω−1

i ΩLnrωi ∩ ΩQnr
p

for any ωi ∈ {ω}.
Now suppose that f ∈ HomΩLnr (RΓ, (Q

c
p)
×) and that ωi ∈ {ω}. Then

fωi ∈ Homω−1
i ΩLnrωi

(RΓ, (Q
c
p)
×),

and so

fωi ∈ Hom(ω−1
i ΩLnrωi)∩ΩQnr

p
(RΓ, (Q

c
p)
×).

Now observe that, for fixed ωi ∈ {ω}, {ω−1
i σωi}σ is a right transversal of ω−1

i ΩLnrωi∩ΩQnr
p

in ΩQnr
p

, and so ∏
σ

(fωi)ω
−1
i σωi ∈ HomΩQnr

p
(RΓ, (Q

c
p)
×).

Hence finally we obtain∏
ω,σ

(fω)ω
−1σω =

∏
ω,σ

fσω ∈ HomΩQnr
p

(RΓ, (Q
c
p)
×),

as required. �

Proposition 6.3. Let aπ be any n.i.b. generator of Lπ/L. Suppose also that the square root

Aπ of the inverse different of Lπ/L exists (i.e. that s := π(σ) is of odd order), and that

Aπ = OLG · bπ. Then:

(a) NL/Qp [Det(rG(bπ))−1 · ψ2(Det(rG(aπ))) ·Det(rG(aπ))−1] ∈ Det(OQt
p
G)×.

(b) (i) Locp[(τ
∗(Lπ/L, −))]−1 · NL/Qp [Det(rG(aπ))] ∈ Det(OQt

p
G)×.

(ii) Locp[ψ2(τ ∗(Lπ/L, −))]−1 · NL/Qp [ψ2(Det(rG(aπ)))] ∈ Det(OQt
p
G)×.

(c) Locp[ψ2(τ ∗(Lπ/L, −)) · (τ ∗(Lπ/L, −))−1]−1 · NL/Qp [Det(rG(bπ))] ∈ Det(OQt
p
G)×.

(d) Locp[ψ2(τ ∗(Lπ/L, −)) · (τ ∗(Lπ/L, −))−2]−1 · NL/Qp [Det(rG(bπ)) ·Det(rG(aπ))−1]

belongs to Det(OQt
p
G)×.

(e) With the notation of Proposition 4.6, the element

Locp[ψ2(τ ∗(Lπ/L, −)) · (τ ∗(Lπ/L, −))−2]−1 · NL/Qp [Det(rG(ϕ∗s)) ·Det(rG(ϕs))
−1]

belongs to Det(OQt
p
G)×.

Proof. (a) Recall from [2, Definition 7.12] that, for any n.i.b. generator aπ of Lπ/L, one has

rG(aπ) = u · rG(anr) · rG(ϕs),

where u ∈ (OLG)× and rG(anr) ∈ (OLnrG)×. Furthermore, u · anr is also a n.i.b generator

of Lπnr/L.
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Hence

Det(rG(aπ) · rG(ϕs)
−1) = Det(u · anr) ∈ Det(OLnrG)×,

and Lemma 6.2 implies that also

NL/Qp [Det(rG(aπ) · rG(ϕs)
−1)] ∈ Det(OQnr

p
G)×,

It now follows from Proposition 6.1 that the product

NL/Qp [(Det(rG(aπ)) ·Det(rG(ϕs))
−1)−1 · ψ2

(
Det(rG(aπ)) ·Det(rG(ϕs))

−1
)
] (6.1)

belongs to Det(OQnr
p
G)×.

Part (a) now follows from (6.1), together with Proposition 5.4(c) and the Stickelberger

factorisation of rG(bπ) (see Theorem 4.5).

(b) Let Oπ denote the integral closure of OL in Lπ and fix an element α ∈ Lπ such that

Oπ = OLH · α. It follows from [14, Chapter IV, Theorem 31] that there exists an element

w ∈ (OQt
p
H)× such that

Locp(τ
∗(Lπ/L,−))−1 · NL/Qp Det(rH(α)) = Det(w) (6.2)

Under our hypotheses, the inertia subgroup of H is cyclic of order |s| coprime to p. Hence

Proposition 6.1(b) implies that

Locp[ψ2(τ ∗(Lπ/L, −))]−1 · NL/Qp [ψ2(Det(rH(α)))] (6.3)

belongs to ψ2(Det(OQt
p
H)×) ⊆ Det(OQt

p
H)× ⊆ Det(OQt

p
G)×.

Next, we construct a map aπ ∈ Map(G,Lc) associated to α by setting

aπ(γ) :=

{
γ̃(α), if γ = π(γ̃) for γ̃ ∈ ΩL;

0, otherwise.

It is easy to see from (3.1) that aπ ∈ Lπ and satisfies that Oπ = OLG · a. In particular, for

each χ ∈ RG, we have

Detχ(rG(aπ)) = Detχ
(∑
γ∈G

aπ(γ)γ−1
)

= Detχ
(∑
γ∈H

γ̃(α)γ−1
)

= Detresχ(rH(α)),

with res := resGH : R+G→ RH . This implies that

NL/Qp [Det(rG(aπ))] = NL/Qp [Det(rH(α))],

NL/Qp [ψ2(Det(rG(aπ)))] = NL/Qp [ψ2(Det(rH(α)))].
(6.4)

We now see from the definition of τ ∗(Lπ/L,−) that (i) follows from (6.2), (6.4), while

part (ii) is a consequence of (6.3) and (6.4).

(c) Follows from (a) and (b) above.
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(d) Follows from (b)(i) together with (c).

(e) Follows from (d) above.

�

Proposition 6.3(d) and (e) motivate the following definition.

Definition 6.4. We retain the notation established above. Define the adjusted Galois-Jacobi

sum homomorphism associated to Lπ/L, J∗(Lπ/L, −) ∈ Hom(RG, (Q
c)×), by

J∗(Lπ/L, −) := ψ2(τ ∗(Lπ/L, −)) · (τ ∗(Lπ/L, −))−2.

It follows from the Galois action formulae for Galois-Gauss sums (see [14, pp. 119 and

152]) that in fact J∗(Lπ/L, −) ∈ HomΩQ
(RΓ, (Q

c)×). �

Remark 6.5. Let τ(Lπ/L, −) ∈ Hom(RH , (Q
c)×) denote the (unadjusted) Galois-Gauss

sum associated to Lπ/L, and write τ(Lπ/L, −) ∈ Hom(RG, (Q
c)×) for the composition

of τ(Lπ/L, −) with the natural map RG → RH . We remark that the Galois-Jacobi sum

J(Lπ/L, −) ∈ Hom(RG, (Q
c)×) defined by

J(Lπ/L, −) := ψ2(τ(Lπ/L, −)) · (τ(Lπ/L, −))−2

is a special case of the non-abelian Jacobi sums first introduced by A. Fröhlich (see [13]). �

Proposition 6.6.

(a) Suppose that l 6= p. Then

Locl(J
∗(Lπ/L,−)) ∈ Det(ZlG

×).

(b) Using the notation of Proposition 6.3, we have

Locp(J
∗(Lπ/L, −))−1 · NL/Qp [Det(rG(bπ)) ·Det(rG(aπ))−1] ∈ Det(ZpG

×).

Hence

Locp(J
∗(Lπ/L, −))−1 · NL/Qp [Det(rG(ϕ∗s)) ·Det(rG(ϕs))

−1] ∈ Det(ZpG
×).

Proof. (a) Recall that J∗(Lπ/L, −) ∈ HomΩQ
(RG, (Q

c)×), and that Q(µp)/Q is unramified

at l. It therefore follows from Proposition 6.1 (a) and (c), together with Taylor’s fixed point

theorem for determinants (see [27, Chapter 8, Theorem 1.2]), that

Locl(J
∗(Lπ/L, −)) ∈ [Det(OQl(µp)G

×)]ΩQl = Det(ZlG
×),

as claimed.
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(b) As both of the functions Locp(J
∗(Lπ/L, −)) and NL/Qp [Det(rG(bπ)) · Det(rG(aπ))−1]

lie in HomΩQp
(RG, (Q

c
p)
×), we see from Proposition 6.3(d) that

Locp(J
∗(Lπ/L, −))−1·NL/Qp [Det(rG(bπ))·Det(rG(aπ))−1] ∈ [Det(OQt

p
G×)]ΩQp = Det(ZpG

×).

The final assertion now follows at once from the Stickelberger factorisations of rG(aπ) and

rG(bπ) (see Theorems 4.3 and 4.5). �

7. Symplectic Galois-Jacobi sums I

In this section we fix data L,G and π as in Section 6. We write Symp(G) for the set of

irreducible symplectic characters of G. For each χ ∈ Irr(G), we write τ(Lπ/L, χ) for the

associated (unadjusted) Galois-Gauss sum, and

J(Lπ/L, −) := ψ2(τ(Lπ/L, −)) · (τ(Lπ/L, −))−2

for the (unadjusted) Galois-Jacobi sum (see Remark 6.5).

We shall prove the following result concerning symplectic Galois-Jacobi sums.

Theorem 7.1. Suppose that χ ∈ Symp(G). Then J(Lπ/L, χ) is a strictly positive real

number.

We see from the decomposition (3.1) that it is enough to prove this result after replac-

ing the Galois algebra Lπ by the field Lπ and the group G by the Galois group π(ΩL) =

Gal(Lπ/L). In the sequel, we shall therefore restrict to the case that Lπ/L is a finite Galois

extension of p-adic fields and G is its Galois group.

To prove Theorem 7.1, it is therefore enough to show that for each χ in Symp(G) the

quotient τ(L, ψ2(χ))/τ(L, 2χ) is a strictly positive real number.

To verify this, we recall that, since each such χ is real-valued, the definition of the local

root number W (L, χ) implies that

τ(L, χ) = W (L, χ) ·NLf(Lπ/L, χ)1/2.

(cf. [18, Chapter II, Section 4, Definition]). Hence, since NLf(Lπ/L, χ)1/2 > 0, it is enough

to prove the following result.

Theorem 7.2. Let E/F be a tamely ramified Galois extension of non-archimedean local

fields that has odd ramification degree and set G := Gal(E/F ). Then for each χ in Symp(G)

one has W (F, ψ2(χ)) = W (F, 2χ) = 1.

This sort of result is, in principle, hard to prove both because root numbers of symplectic

characters are difficult to compute and because Adams operators do not in general commute
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with induction functors. We therefore prove two preliminary results that help address these

problems.

The first of these results is entirely representation-theoretic in nature.

In the sequel, for any finite group Γ and character φ in RΓ, we write Tr(φ) for the real-

valued character φ+ φ.

Lemma 7.3. Let ∆ be a subgroup of a finite group Γ, fix a character φ of ∆ and consider

the virtual character

I2
Γ(φ) := ψ2(IndΓ

∆(φ))− IndΓ
∆(ψ2(φ)).

For elements γ and δ of Γ, we set γδ := δγδ−1.

(a) Let T be a set of coset representatives of ∆ in Γ. Then for every γ ∈ Γ, one has

(I2
Γ(φ))(γ) =

∑
τ

φ((γτ )2),

where the sum runs over all τ ∈ T for which (γτ )2 ∈ ∆ and γτ /∈ ∆.

(b) If ∆ is a subnormal subgroup of Γ of odd index, then I2
Γ(φ) = 0.

(c) Assume Γ is a semi-direct product of a supersolvable group by an abelian normal

subgroup Υ.

(i) Then for every irreducible character µ of Γ, there exists a subgroup Υ′ of Γ that

contains Υ and a linear character λ of Υ′ such that µ = IndΓ
Υ′(λ).

In addition, if Υ ⊆ ∆, the index of ∆ in Γ is a power of 2 and Γ has cyclic Sylow

2-subgroups, then the following claims are also valid.

(ii) If φ is real-valued, then I2
Γ(φ) is an integral linear combination of characters of

the form IndΓ
∆′λ and Tr(φ′), where ∆′ runs over subgroups of Γ that contain ∆,

λ over homomorphisms ∆′ → {±1} and φ′ over elements of RΓ.

(iii) If φ is induced from a proper normal subgroup of ∆ of 2-power index that contains

Υ, then I2
Γ(φ) = 0.

(d) Assume Γ is generalized quaternion, ∆ is the cyclic subgroup of Γ of index 2 and φ

is irreducible (and hence linear). Then φ2 is trivial on the centre Z of Γ and

ψ2

(
IndΓ

∆φ
)

= InfΓ
Γ/Z

(
Ind

Γ/Z
∆/Z(φ2)

)
+ InfΓ

Γ/∆(χΓ/∆)− 1Γ,

where we regard φ2 as a character of ∆/Z and write χΓ/∆ for the unique non-trivial

homomorphism Γ/∆→ (Qc)×.

Proof. Part (a) follows directly from the explicit formula for induced characters and the fact

that for each γ ∈ Γ, and τ ∈ T one has (γτ )2 ∈ ∆ whenever γτ ∈ ∆.
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To prove part (b), we fix a chain of subgroups

∆ = Γ(1) ⊂ ... ⊂ Γ(t− 1) ⊂ Γ(t) = Γ (7.1)

such that each Γ(i) is normal in Γ(i+ 1). Then the equality

I2
Γ(φ) =

i=t−1∑
i=1

IndΓ
Γ(i+1)

(
I2
Γ(i+1),Γ(i)(Ind

Γ(i)
∆ φ)

)
, (7.2)

where

I2
Γ(i+1),Γ(i)(χ) = ψ2(Ind

Γ(i+1)
Γ(i) χ)− Ind

Γ(i+1)
Γ(i) (ψ2(χ)),

reduces us to the case ∆ is normal in Γ. In this case, the claim follows immediately from

the formula in part (a) and the fact that, under the stated conditions, for every γ ∈ Γ and

τ ∈ T one has (γτ )2 ∈ ∆⇐⇒ γτ ∈ ∆.

Turning to part (c), we note first that, under the stated hypothesis on Γ, claim (c)(i)

follows from [22, Section 8.5, Exercise 8.10] and the argument of [22, Section 8.2, Proposition

25].

To verify (c)(ii) and (c)(iii) we assume the additional hypotheses on Γ and note, in par-

ticular, that since Γ has cyclic Sylow 2-subgroups, Cayley’s normal 2-complement theorem

implies that Γ, and therefore also its quotient Γ/Υ, has a normal 2-complement. Writing

Υ1/Υ for the normal 2-complement of Γ/Υ, the given assumptions imply Υ1 ⊆ ∆ and so,

since Γ/Υ1 is cyclic of 2-power order, there exists a chain of subgroups (7.1) in which Γ(i)

has index 2 in Γ(i + 1) for each i. The corresponding equality (7.2) then reduces claims

(c)(ii) and (c)(iii) to the case that ∆ has index two in Γ. In this case |T | = 2 and, for every

γ ∈ Γ and τ ∈ T , one has (γτ )2 ∈ ∆ and, in addition, γτ /∈ ∆⇐⇒ γ /∈ ∆ and so the formula

in part (a) implies

(I2
Γ(φ))(γ) =

0, if γ ∈ ∆,∑
τ∈T φ((γτ )2), if γ /∈ ∆.

(7.3)

Now, by (c)(i), every irreducible character of Γ has the form µ = IndΓ
Υ′(λ), where Υ′ is a

suitable subgroup of Γ that contains Υ and λ a linear character of Υ′. Further, if Υ′ 6⊂ ∆,

then the index of Υ′ in Γ is odd so µ has odd degree and so, by [20, Theorem A], is real-

valued if and only if it is a homomorphism of the form Υ′ → {±1}. Claim (c)(ii) follows

directly from this fact and the observation that I2
Γ(φ) is real-valued if φ is real-valued.

To prove claim (c)(iii), we assume φ = Ind∆
∆′φ

′, where ∆′ is a normal subgroup of ∆ that

contains Υ and is of 2-power index. In this case, the formula (7.3) implies that if I2
Γ(φ) is

non-zero, then there exists an element of Γ \∆ whose square belongs to ∆′. However, since

Υ1 ⊆ ∆′, the image in the (cyclic) group Γ/∆′ of any element in Γ \∆ has order divisible

by 4 and so its square cannot belong to ∆′. This proves (c)(iii).
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Next, under the hypotheses of (d), for every γ ∈ Γ one has γ2 ∈ ∆ and hence(
ψ2(IndΓ

∆φ)
)
(γ) = (IndΓ

∆φ)(γ2) = φ2(γ) + φ2(γ−1).

In particular, since φ2(z) = 1 for every z ∈ Z, this formula implies ψ2(IndΓ
∆φ) is the inflation

of a character function on the dihedral group Γ/Z, and then the displayed formula in part

(d) is verified by an easy explicit computation. �

In the sequel, for each finite Galois extension E/F of p-adic fields, and each complex

character χ of Gal(E/F ) we abbreviate the root number W (F, χ) to W (χ).

Part (c) of the following result relies on the central result of Fröhlich and Queyrut in [16].

Proposition 7.4. Let E/F be a finite Galois extension of p-adic fields. Set G := Gal(E/F )

and assume that the inertia subgroup of G has odd order.

(a) For all φ in RG one has W (Tr(φ)) = 1.

(b) If H is a normal subgroup of G and G/H is cyclic, then for each φ in RH one has

W (IndGHφ) =

W (φ), if G/H has odd order,

W (φ)W (χG/H)φ(1), if G/H has even order,

where, in the second case, χE′/F is the non-trivial character of Gal(E ′/F ), with E ′

the quadratic extension of F in E.

(c) Assume G is dihedral of order congruent to 2 modulo 4, write L for the unique

quadratic extension of F in E and set H := Gal(E/L). Then for each homomorphism

φ : H → (Qc)×, one has W (IndGHφ) = W (χG/H), where χG/H is the non-trivial

character of G/H.

Proof. It is enough to prove claim (a) in the case that φ is a character of G, represented

by a homomorphism Tφ : G→ GLd(Q
c). In this case, the general result of [18, Chapter II,

Section 4, Corollary] implies that

W (Tr(φ)) = W (φ)W (φ̄) = detφ(ρF (−1)),

where detφ is the homomorphism Gab → (Qc)× induced by sending each g in G to det(Tφ(g))

and ρF is the reciprocity map F× → Gab. In addition, −1 belongs to O×F and so is sent by

ρF to an element of the inertia subgroup of Gab of order dividing two. In particular, since

this inertia group has odd order, one has ρF (−1) = 1 and so detφ(ρF (−1)) = 1. This proves

claim (a).
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To prove part (b), we use the inductivity of local root numbers in degree zero to compute

W (IndGHφ) =W (IndGH(φ− φ(1)1H))W (IndGH1H)φ(1)

=W (φ− 1H)W (IndGH1H)φ(1)

=W (φ)W (1H)−1
∏

θ∈(G/H)∗

W (θ)φ(1),

where (G/H)∗ denotes the group of homomorphisms G/H → (Qc)×, and the last equality is

true because IndGH1H is equal to the sum of θ over (G/H)∗. Now, if G/H is odd, respectively

even, then the only real-valued functions in (G/H)∗ are 1G, respectively 1G and χG/H , and

all other homomorphisms occur in complex conjugate pairs. The result of part (b) therefore

follows from the above displayed formula after isolating the conjugate pairs in the product

that occurs in the final term, applying the result of part (a) to each of these pairs, and

noting that W (1H) = W (1G) = 1.

To prove part (c) we recall that, by a result of Fröhlich and Queyrut [16, Section 4,

Theorem 3], one has W (φ) = φ(ρL(x)), where ρL is the reciprocity map L× → H and x is

any element of L \ F with x2 ∈ F×. In addition, since φ is of dihedral-type, it is trivial on

restriction to F× (cf. [16, Section 3, Lemma 1]) and so φ(ρL(x))2 = φ(ρL(x2)) = φ(1) = 1.

On the other hand, the order of φ is odd (since it divides |H| = |G|/2 which, under the

given hypothesis on |G|, is odd) and so φ(ρL(x))2 = 1 implies φ(ρL(x)) = 1 and hence also

W (φ) = 1.

This last equality then combines with a straightforward application of the general result

of part (b) to prove the formula in part (c). �

We are now ready to prove Theorem 7.2. At the outset we note that G is the semi-

direct product of its inertia subgroup I by the cyclic quotient group G/I. We further note

that, by assumption, the group I is cyclic of odd order, and hence, in particular, that G is

supersolvable.

Fix χ in Symp(G). Then, since χ is tamely ramified, one has W (χ) ∈ {±1} (cf. [14,

Chapter III, Theorem 21(iii)]) and so W (2χ) = W (χ)2 = 1. It is therefore enough for us to

prove that W (ψ2(χ)) = 1.

Next we note that, by Lemma 7.3(c)(i), there exists a subgroup J of G that contains I

and a linear character φ of J such that one has χ = IndGJ φ. In particular, since J contains

I and G/I is cyclic, there exists a normal subgroup H of G with J E H E G and such that

H/J is cyclic of 2-power order and G/H is cyclic of odd order.

Then one has χ = IndGHχ
′ with χ′ := IndHJ φ and we claim that χ′ belongs to Symp(H).

To see this we note χ′ is an irreducible character of H (since χ is irreducible) and so, by the
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Frobenius-Schur Theorem (cf. [9, Theorem (73.13)]), the sum cH(χ′) := |H|−1
∑

h∈H χ(h2)

belongs to {−1, 0, 1} and is equal to −1 if and only if χ′ is symplectic. In addition, since H

is normal in G and of odd index one has g2 ∈ H ⇐⇒ g ∈ H for each g ∈ G and so

cG(χ) = cG(IndGHχ
′) = |G|−1

∑
g∈G

(IndGHχ
′)(g2)

= |G|−1
∑
τ∈T

∑
h∈H

(χ′)τ (h2)

= |T |−1
∑
τ∈T

cH((χ′)τ )

where T is a set of coset representatives of H in G and (χ′)τ is the irreducible character of H

that sends each element h to χ′(hτ ). In particular, since both cG(χ) = −1 (as χ ∈ Symp(G))

and each cH((χ′)τ ) belongs to {−1, 0, 1}, the displayed equality implies that cH((χ′)τ ) = −1

for all τ . Thus one has cH(χ′) = −1 and so χ′ ∈ Symp(H), as claimed.

Now, sinceG/H is cyclic of odd order, one hasW (ψ2(χ)) = W (IndGH(ψ2(χ′)) = W (ψ2(χ′)),

where the first equality follows from Lemma 7.3(b) and the second from Proposition 7.4(b).

Thus, if necessary after replacing G by H (and χ by χ′), we can assume in the sequel that

χ has 2-power degree.

Next we note that, since G is supersolvable, an induction theorem of Martinet (cf. [18,

Chapter III, Theorem 5.2]) implies that either χ = Tr(IndGH′φ
′), where φ′ is a linear character

of some subgroup H ′ of G, or that χ is the induction to G of a quaternion character of a

subgroup. In view of Proposition 7.4(a), we can therefore also assume in the sequel that there

exists a subgroup J1 of G that has 2-power index, and hence contains I, and a quaternion

character φ1 of J1 such that χ = IndGJ1
φ1.

This implies J1 has a quotient Q isomorphic to a generalized quaternion group and that

φ1 = InfJ1
Q (IndQP θ), (7.4)

where P is the cyclic subgroup of Q of index 2 and θ a homomorphism P → (Qc)×. Let J ′1
denote the inverse image of P under the quotient map J1 → Q, and set φ′1 := Inf

J ′1
P θ (so φ′1

is a linear character of J ′1). Then the subgroup J ′1 is of index 2 in J1, and (7.4) implies

φ1 = IndJ1

J ′1
φ′1. (7.5)

Now, as J ′1 has 2-power index in G, it contains I. Thus, since G/I is cyclic, one has J ′1 E G

and G/J ′1 is cyclic of 2-power order. In particular, since the degree (ψ2(φ1))(1) = φ1(1) is

even, one therefore has

W (ψ2(χ)) = W (ψ2(IndGJ1
φ1)) = W (IndGJ1

(ψ2(φ1))) = W (ψ2(φ1)),
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where the second equality follows from Lemma 7.3(c)(iii) (after taking account of (7.5)) and

the third from Proposition 7.4(b).

In addition, since Q is the Galois group of a tamely ramified extension of p-adic fields

that has odd ramification degree, it is the semi-direct product of a cyclic (inertia) subgroup

of odd order by a cyclic group. In particular, since such a group can have no quotient

isomorphic to H8, the group Q must be isomorphic to H4m, with m odd. In view of (7.4),

we can therefore apply Lemma 7.3(d) (with Γ,∆ and φ taken to be Q,P and θ) to deduce

that

W (ψ2(φ1)) = W (ψ2(IndQP θ)) = W (Ind
Q/N
P/N (λ))W (χQ/P ),

where N denotes the centre of Q (so N is the unique subgroup of P of order two) and λ

denotes θ2, regarded as a homomorphism P/N → (Qc)×.

Finally, since the group Q/N is generalized dihedral with |Q/N | = 2m ≡ 2 modulo 4, and

the inertia subgroup of Q/N has odd order, the theorem of Fröhlich and Queyrut implies

(via Proposition 7.4(c)) that W (Ind
Q/N
P/N (λ)) = W (χQ/P ). Upon subsituting this fact into

the last two displayed formulas, we deduce that W (ψ2(χ)) = W (χQ/P )2 = 1.

This completes the proof of Theorem 7.1.

8. Symplectic Galois-Jacobi Sums II

We retain the notation of the previous two sections. For any real number x, we write

sgn(x) ∈ {±1} for the sign of x. In this section we shall examine sgn(J∗(Lπ/L, χ)) for

χ ∈ Symp(G). This will in turn lead to the definition of J ∗∞(Fπ/F ) ∈ Cl(ZG) for F a

number field and [π] ∈ H1
t (F,G).

Recall that for each χ ∈ RG, the adjusted Galois-Gauss sum is defined (in [14, Chapter

IV, Section 1]) by setting

τ ∗(L, χ) := τ(L, χ)y(L, χ)−1z(L, χ),

for suitable roots of unity y(L, χ) and z(L, χ) in Qc. [14, Chapter IV, Theorem 29(i)] implies

that y(K,χ) = 1 for all χ in Symp(G). One can also check (directly from the definitions)

that z(L, ψ2(χ)) = z(L, χ)2 and hence that z(L, χ) = z(L, ψ2(χ)) = 1 for each χ in Symp(G).

Recall that Theorem 7.1 asserts that J(Lπ/L, χ) > 0 whenever χ ∈ Symp(G). The

following result is now a direct consequence of the definition of the adjusted Galois-Jacobi

sum J∗(Lπ/L, χ).

Theorem 8.1. Suppose that χ ∈ Symp(G). Then

sgn(J∗(Lπ/L, χ) = sgn(y(Lπ/L, ψ2(χ))).

�
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The following Propostion shows that sgn(y(Lπ/L, ψ2(χ))) = −1 is possible.

Proposition 8.2. Let M/L be a tamely ramified Galois extension with Γ := Gal(M/L) '
H4m, with m odd. Suppose that the inertia subgroup Γ0 of Γ is odd. Then for each χ ∈
Symp(G), we have y(M/L,ψ2(χ)) = −1.

Proof. For ease of notation, we write e.g. y(χ) rather than y(M/L, χ).

To prove the desired result, we shall use Lemma 7.3. Let ∆ be the cyclic subgroup of

Γ of index 2. Then all irreducible symplectic characters of Γ can be written in the form

χ = IndΓ
∆φ, where φ is a linear character of ∆. It is easy to see that the order of φ does not

divide 2 (for otherwise IndΓ
∆φ would be an orthogonal character of Γ; see [18, Chapter III,

Theorem 3.1]), and that φ (and hence also φ2) is non-trivial on Γ0 (since Γ0 has odd order).

Let Z denote the centre of Γ and let χΓ/∆ denote the unique non-trivial homomorphism

Γ/∆→ (Qc)×. Using the formula in Lemma 7.3(d), one can compute that

y(ψ2(χ)) = y(ψ2(IndΓ
∆φ))

= y(InfΓ
Γ/Z(Ind

Γ/Z
∆/Z(φ2))) · y(InfΓ

Γ/∆(χΓ/∆)) · y(1Γ)−1

= (−1)deg(n0)detn0(σ) · (−1)χΓ/∆(σ) · (−1)1Γ(σ)−1

= 1 · 1 · (−1) = −1,

where φ2 is regarded as a character of Γ/Z, σ is the Frobenius element in Γ/Γ0 lifted to Γ,

and n0 := n(InfΓ
Γ/Z(Ind

Γ/Z
∆/Z(φ2))) denotes the unramified part (cf. [14, Chapter I, (5.6)]) of

InfΓ
Γ/Z(Ind

Γ/Z
∆/Z(φ2)). The third equality above holds since clearly InfΓ

Γ/∆(χΓ/∆) and 1Γ are

both linear and unramified. The fourth equality follows from the fact that n0 = 0 (since

φ2 is irreducible and ramified, by [14, Chapter III, Proposition 1.3(ii)] the unramified part

n(Ind
Γ/Z
∆/Z(φ2)) = 0 and therefore n0 = 0). �

The above discussion motivates the following definition.

Definition 8.3. We define J∗∞(Lπ/L,−) ∈ HomΩQ
(RG, J(Qc)) by its values on χ ∈ Irr(G)

as follows:

J∗∞(Lπ/L, χ)v =

sgn(J∗(Lπ/L, χ)) if χ ∈ Symp(G) and v|∞;

1 otherwise.

We write J∗∞(Lπ/L) for the element of K0(ZG,Q) represented by the homomorphism

J∗∞(Lπ/L,−). Similarly, we also write J∗(Lπ/L) for the element of K0(ZG,Q) represented

by J∗(Lπ/L,−). �
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Theorem 8.4. We have

J∗(Lπ/L,−) · J∗∞(Lπ/L,−)−1 ∈ Det(QcG),

and so

∂0(J∗(Lπ/L)) = ∂0(J∗∞(Lπ/L)).

Proof. To ease notation, set f = J∗(Lπ/L,−) · J∗∞(Lπ/L,−)−1.

Then, since f ∈ HomΩQ
(RG, (Q

c)×) the Hasse-Schilling-Maass Norm Theorem (cf. [8,

Theorem (7.48)]) implies that the first equality is equivalent to asserting that f(χ) is a

strictly positive real number for every χ in Symp(G). This in turn follows at once from the

definition of J∗∞(Lπ/L,−).

The second equality is now an immediate consequence of the fact that ∂0(Det(QcG)) =

0. �

Suppose now that F is a number field, and that [π] ∈ H1
t (F,G). We also recall that

Fπ,v := Fπ ⊗F Fv ' Fv,πv (see e.g. [19, (2.4)]).

Definition 8.5. We set

J∗(Fπ/F ) :=
∑
v-∞

J∗(Fv,πv/Fv) ∈ K0(ZG,Q),

and

J∗∞(Fπ/F ) :=
∑
v-∞

J∗∞(Fv,πv/Fv) ∈ K0(ZG,Q).

(Note that the infinite sums make sense as J∗∞(Fv,πv/Fv) = J∗(Fv,πv/Fv) = 0 for all places v

that are unramified in Fπ/F .)

We define J ∗(Fπ/F ) ∈ Cl(ZG) by

J ∗(Fπ/F ) := ∂0(J∗(Fπ/F )), J ∗∞(Fπ/F ) := ∂0(J∗∞(Fπ/F ))

(see 2.2). �

Proposition 8.6. Suppose that F is a number field, and [π] ∈ H1
t (F,G). Then

J ∗(Fπ/F ) = J ∗∞(Fπ/F ).

Proof. This is a direct consequence of Theorem 8.4 and Definition 8.5. �
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9. Proof of Theorem 1.5

Let [π] ∈ H1
t (F,G), and write

c(π) = [Aπ, OFG; rG]− [Oπ, OFG; rG] ∈ K0(OFG,F ) ⊆ K0(OFG,F
c).

For each finite place v of F , we write [πv] for the image of [π] in H1
t (Fv, G).

Recall that

K0(OFG,F ) ' HomΩF
(RG, Jf (F

c))∏
v-∞Det(OFvG)×

.

A representing homomorphism in HomΩF
(RG, Jf (F

c)) of c(π) is f = (fv)v defined by

fv(χ) = $〈ψ2(χ)−2χ,sv〉G
v ,

using the notation of Corollary 5.5. Let Ram(π) denote the set of finite places of F at which

Fπ/F is ramified. If v /∈ Ram(π), then sv = 1 and so fv = 1.

Definition 9.1. Suppose that v ∈ Ram(π). Then we define c(π; v) ∈ K0(OFG,F ) to be the

element represented by f (v) = (f
(v)
w )w ∈ HomΩF

(RG, Jf (F
c)) given by

f (v)
w (χ) =

fv(χ) = $
〈ψ2(χ)−2χ,sv〉G
v if w = v;

1 otherwise.

Lemma 9.2. We have

c(π) =
∑

v∈Ram(π)

c(π; v). (9.1)

Proof. It follows from the definitions that

f =
∏

v∈Ram(π)

f (v),

and this implies the result. �

We can now prove Theorem 1.5.

Theorem 9.3. Suppose that [π] ∈ H1
t (F,G) and that Aπ is defined. Then

∂0(NF/Q(c(π)) · J ∗∞(Fπ/F )−1 = 0,

and so there is an equality

(Aπ)− (Oπ) = J ∗∞(Fπ/F ),

i.e. (see (1.1))

(Aπ)−W (Fπ/F ) = J ∗∞(Fπ/F ),

in Cl(ZG).
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Proof. Lemma 9.2 implies that in order to show that

∂0(NF/Q(c(π)) · J ∗∞(Fπ/F )−1 = 0,

it suffices to show that

∂0(NF/Q(c(π; v)) · J ∗∞(Fv,πv/Fv)
−1 = 0

for each v ∈ Ram(π). Theorem 8.4 implies that this is equivalent to showing that

∂0(NF/Q(c(π; v)) · J ∗(Fv,πv/Fv)−1 = 0

for each v ∈ Ram(π).

We see from the description of Cl(ZG) given in Theorem 2.1(a) that this last equality will

in turn follow if, for each v ∈ Ram(π), we show that

J∗(Fv,πv/Fv,−)−1 · (NF/Q(f (v))) ∈
∏
l

Det(ZlG)×.

To show this last inclusion, we first observe that Proposition 6.6(a) implies that the

inclusion holds at all rational primes l not lying below v.

For each rational prime l that lies below v, we fix an embedding Locl : Qc → Qc
l and

use it to identify Irr(Γ) with Irrl(Γ). We recall in particular that such an isomorphism

RG → RG,l in turn induces an isomorphism HomΩF
(RG, (Q

c)×l )→ HomΩFv
(RG,l, (Q

c
l )
×) (cf.

[14, Chapter II, Lemma 2.1]). Then, reasoning analogously to the proof of [14, Theorem 19,

pp. 114–116], one can deduce from Proposition 6.6(b) that

NFv/Ql
(fv) · Locl

(
NF/Q(f (v))

)−1 ∈ Det(ZlG).

This establishes the desired inclusion at rational primes lying below v and completes the

proof of the desired result.

�

Remark 9.4. Let us make some remarks concerning Theorem 9.3 when Fπ/F is locally

abelian.

Suppose that v ∈ Ram(π). Set sv := π(σv), and write Hv := 〈sv〉. Proposition 5.2(d)

with G = Hv and Proposition 5.3(b) imply that for each χ ∈ RHv , we have

〈χ, sv〉∗Hv
− 〈χ, sv〉Hv = (d(sv), χ)Hv

= 〈ψ2(χ)− χ, sv〉Hv .

Now suppose also that Fv contains a primitive |sv|-th root of unity. This implies in

particular that the extension F πv
v /Fv is abelian. Let b(π; v) ∈ K0(FHv, F ) be the element
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represented by ρ(v) = (ρ
(v)
w )w ∈ HomΩF

(RHv , Jf (F
c)) defined by

ρ(v)
w (χ) =

$
(d(sv),χ)Hv
v = $

〈ψ2(χ)−χ,sv〉Hv
v if w = v;

1 otherwise

Observe that without the hypothesis concerning the number of roots of unity in Fv, we

would only have that ρ(v) ∈ Hom(RHv , Jf (F
c)) rather than ρ(v) ∈ HomΩF

(RHv , Jf (F
c)). We

also see from the definitions of c(π; v) and b(π; v) (see also (2.7) and (2.9)) that c(π; v) =

IndGHv
b(π; v).

Hence if for every v ∈ Ram(π), Fv contains a primitive |sv|-th root of unity–which is

precisely what happens if Fπ/F is locally abelian–then we have

c(π) =
∑

v∈Ram(π)

IndGHv
b(π; v), (9.2)

and so (using (2.10))

∂0(c(π)) =
∑

v∈Ram(π)

∂0(IndGHv
b(π; v))

=
∑

v∈Ram(π)

IndGHv
∂0(b(π; v))

= 0.

We now deduce from Theorem 9.3 that J ∗∞(Fπ/F ) = 0.

A comparison of (9.2) and (9.1) highlights the crucial difference between the locally abelian

case and the general case. In both cases, the class c(π) may be decomposed into a sum over

the places v ∈ Ram(π) of classes c(π; v) ∈ K0(OFG,F
c). However, in the locally abelian

case, these classes c(π; v) are induced from cyclic subgroups of G, while in the general case

they are not. This is why Theorem 9.3 may be proved in the locally abelian case using

abelian Jacobi sums thereby showing that in this situation J ∗∞(Fπ/F ) = 0), which is what

is done in [4]. �

10. Proof of Theorem 1.7

Let F be any imaginary quadratic field such that Cl(OF ) contains an element of order

4. In this section we shall construct infinitely many counterexamples to Conjecture 1.4 by

showing that if ` is any sufficiently large prime with ` ≡ 3 (mod 4) and G is the generalised

quaternion group H4`, then there are infinitely many tame G-extensions Fπ/F of fields such

that Aπ exists and J ∗∞(Fπ/F ) 6= 0. Hence, for these extensions, (Oπ) 6= (Aπ) in Cl(ZG).

This will prove Theorem 1.7.
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In what follows we fix an imaginary quadratic field F such that Cl(OF ) contains an element

of order 4. To prove Theorem 1.7, it will suffice to prove the following result, which we shall

derive as a consequence of works of Fröhlich (see [11]).

Lemma 10.1. Suppose that ` is a sufficiently large prime and that G ' H4`. Then, there

exists a G-extension Fπ/F of fields such that:

(a) Fπ/F is ramified at only a single prime p of F with p - `;
(b) The prime p does not split in Fπ/F ;

(c) The ramification index of p is equal to `;

Before we prove this result, we shall first show that Lemma 10.1 implies Theorem 1.7.

Proof of Theorem 1.7. First we note that the decomposition subgroup of G at p is equal to

H4`. We also recall that, for an odd prime `, the generalised quaternion group H4` has a

single, irreducible, non-trivial symplectic character χ, say.

If q is unramified in Fπ/F , then one has sgn(y(Fπ,q/Fq, ψ2(χ))) = 1. On the other hand,

Theorem 8.1 and Proposition 8.2 imply that

sgn(J∗(Fπ,p/Fp, χ)) = sgn(y(Fπ,p/Fp, ψ2(χ))) = −1.

In particular, if we now assume in addition that ` ≡ 3 (mod 4), then it follows from [14,

Chapter II, Proposition 4.4] that the element J ∗∞(Fπ/F ) ∈ Cl(ZG) (see Definition 8.3 and

8.5, and Proposition 8.6) is non-trivial. (We remark in passing that if instead ` ≡ 1 (mod 4),

then the same argument shows that J ∗∞(Fπ/F ) = 0.) �

The remainder of this section will be devoted to the construction of the extensions de-

scribed in Lemma 10.1.

Let L be an unramified, cyclic extension of F of degree 4. We write E/F for the quadratic

subextension of L/F and write ϕE/F for the quadratic character of E/F on ideals of F . We

also view this as an idele class character of F . If ω denotes the idele class character of E

that cuts out the extension L/E, then ω is of quaternion type (i.e. the restriction of ω to

J(F ) is equal to ϕE/F—see [11, p. 405].)

For each prime `, the symbol η` will denote a primitive `-th root of unity. Then, following

[11, Theorem 4], we consider the following conditions on primes.

Property 10.2. Let ` be an odd prime such that:

(a) [F (η`) : F ] is even;

(b) E 6⊆ F (η` + η−1
` );

(c) the class number of E is not divisible by `.
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We remark that these properties are satisfied for all sufficiently large `. (We observe, in

particular, that in our case 10.2(b) is automatically satisfied for sufficiently large ` since

E/F is unramified.)

Henceforth we therefore fix a prime ` satisfying 10.2 and abbreviate η` to η. We then

write Σ− for the set of primes p of F satisfying the following properties (see [11, (8.5)]).

Property 10.3. Let p be a finite prime of F such that:

(a) The prime p is inert in E/F (ie. ϕE/F (p) = −1);

(b) NF/Q ≡ −1 (mod `).

In what follows, if p ∈ Σ−, we write pE for the unique prime of E lying above p.

Our argument relies on the following result of Fröhlich (see [11, pp. 432–434]). We state

the result, and then describe an outline of the proof. We refer the reader to [11] for complete

details.

Theorem 10.4. There are infinitely many primes in Σ− (in fact a subset of positive Cheb-

otarev density) for which the following statement is true: there exists a non-trivial idele class

character θ of E of order `, and of dihedral type (i.e. the restriction of θ to J(F ) is trivial)

which is ramified at pE and which is unramified at all other finite places of E.

Proof. We remark that necessary conditions for such a θ to exist are given in [11, Section 8,

Lemma 5]. The existence of θ is demonstrated on pp. 433–434 of loc.cit. via the following

argument.

Recall that η is a primitive `-th root of unity, and set

M := E(η).

(Note that this field is denoted by L in [11, p. 433, l. 9], which is an unfortunate clash of

notation with the field L defined earlier in loc. cit. (see [11, p. 407]).

Write M̃ for the extension of M obtained by adjoining the elements

{y1/` | y ∈ O×E}.

It is shown in loc. cit. that, for each prime p of F satisfying the following Frobenius

conditons, there exists an idele class character θ of E satisfying the properties we seek:

Property 10.5. For every prime P of M̃ lying above p, the Frobenius element δ =

(P, M̃/F ) satisfies:

(F1) δ2 = 1;

(F2) δ|E is non-trivial (so p does not split in E/F );

(F3) δ |F (η) is non-trivial (so p satisfies Property 10.3(b) above).
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The set of primes p of F satisfying Property 10.5 has positive Chebotarev density, and all

such primes lie in Σ−. �

Let θ be an idele class character of E as constructed in Theorem 10.4, and let N/E denote

the extension cut out by θ. Then N/E is cyclic of order `, ramified (necessarily totally) at

pE, and at no other primes of E. As θ is of dihedral type, the extension N/F is dihedral of

order 2`.

Set ψ := ωθ. Then ψ is an idele class character of E of quaternion type, and we deduce

that Fπ(ψ) := NL is an H4` extension of F . (Note that the field that we call Fπ(ψ) is denoted

by the symbol Fψ in [11].) The extension Fπ(ψ)/F is ramified only at p, with ramification

index `. We have the following diagram of fields and corresponding idele class characters

(where we write ϕ for ϕE/F ):

F

E

LN

Fπ(ψ) = NL

M = E(η)

M̃

ϕ

ωθ

To complete the proof of Lemma 10.1, it suffices to show that, in Theorem 10.4, there are

infinitely many choices of p (and so of θ) such that the decomposition group of p in Fπ(ψ)/F

is not abelian. This is equivalent to imposing an additional Frobenius condition on p. In

order to do this, we require the following lemma.

Lemma 10.6. The extension M̃/E and L/E are linearly disjoint. Hence [M̃L : M̃ ] = 2.

Proof. The extension M̃/E has a unique quadratic sub-extension, viz. the unique quadratic

sub-extension of M/E (recall that M = E(η)). This extension is ramified at places above

p, and so cannot be equal to the unramified quadratic extension L/E. �

We now fix an element δ1 ∈ Gal(M̃L/F ) which maps under the obvious quotient map

onto the element δ ∈ Gal(M̃/F ) constructed in the proof of Theorem 10.4 (see (10.5)), and

we consider the set of primes p of F satisfying the following Frobenius condition:

Property 10.7. For every prime Q of M̃L lying above p,

(F4) the Frobenius element (Q, M̃L/F ) lies in the conjugacy class of δ1.
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The set of primes p satisfying (10.7) has positive Chebotarev density, and plainly if p

satisfies (10.7), then it also satisfies (10.5).

Suppose that p satisfies (10.7). Then the corresponding extension Fπ(ψ)/F constructed

above is an H4`-extension unramified outside p, in which p is non-split and ramified, with

ramification index `. Hence Fπ(ψ)/F an extension satistisfying the conditions of Lemma 10.1.

This completes the proof of Lemma 10.1.

Remark 10.8. It is shown in [11, Theorem 4] that for the extensions Fπ(ψ)/F constructed

above satisfying the conditions of Lemma 10.1, we have

W (Fπ(ψ)/F ) = ϕE/F (p) = −1.

This implies that (Oπ(ψ)) 6= 0 (see (1.1)), and so, since J ∗∞(Fπ(ψ)/F ) 6= 0, it follows from

Theorem 1.5 that (Aπ(ψ)) = 0. �

Remark 10.9. Dominik Bullach has explained to us how explicit counterexamples to Con-

jecture 1.4 can also be derived from Theorem 1.5 by using general results of Neukirch on the

embedding problem (see [21]) rather than the explicit computations of Fröhlich in [11]. �
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[11] A. Fröhlich, Artin root numbers, conductors, and representations for generalized quaternion groups,

Proc. London Math. Soc. 28 (1974), no. 3, 402–428.



INVERSE DIFFERENT 41
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