
ON RUBIN’S VARIANT OF THE p-ADIC BIRCH AND
SWINNERTON-DYER CONJECTURE

A. AGBOOLA

Abstract. We study Rubin’s variant of the p-adic Birch and Swinnerton-Dyer conjecture
for CM elliptic curves concerning certain special values of the Katz two-variable p-adic
L-function that lie outside the range of p-adic interpolation.

1. Introduction

Let E/Q be an elliptic curve with complex multiplication by OK , the ring of integers of an

imaginary quadratic field K (necessarily of class number one). Let p > 3 be a prime of good,

ordinary reduction for E; then we may write pOK = pp∗, with p = πOK and p∗ = π∗OK .

Set K∞ := K(Eπ∞), K∗∞ := K(Eπ∗∞), and K∞ := K∞K∗∞. Write K∞ (resp. K∗
∞) for the

unique Zp extension of K unramified outside p (resp. p∗). Let O denote the completion

of the ring of integers of the maximal unramified extension of Qp. For any extension L/K

we set Λ(L) := Λ(Gal(L/K)) := Zp[[Gal(L/K)]], and Λ(L)O := O[[Gal(L/K)]]. We write

X(L) (resp. X∗(L)) for the Pontryagin dual of the p-primary Selmer group Sel(L,Eπ∞)

(resp. the p∗-primary Selmer group Sel(L,Eπ∗∞)) of E/L.

Let

ψ : Gal(K/K)→ Aut(Eπ∞)
∼−→ O×

K,p

∼−→ Z×p ,

ψ∗ : Gal(K/K)→ Aut(Eπ∗∞)
∼−→ O×

K,p∗
∼−→ Z×p

denote the natural Z×p -valued characters of Gal(K/K) arising via Galois action on Eπ∞ and

Eπ∗∞ respectively. We may identify ψ with the Grossecharacter associated to E (and ψ∗

with the complex conjugate ψ of this Grossencharacter), as described, for example, in [14,

p. 325]. We write T (resp. T ∗) for the p-adic (resp. p∗-adic) Tate module of E.

The two-variable Iwasawa main conjecture (proved by Rubin [16]) implies that X(K∞)

is a torsion Λ(K∞)-module whose characteristic ideal in Λ(K∞)O is generated by a twist of
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2 A. AGBOOLA

Katz’s two-variable p-adic L-function Lp by the character ψ. The function Lp satisfies a

p-adic interpolation formula that may be described as follows (see [14, Theorem 7.1] for the

version given here, and also [6, Theorem II.4.14]). For all pairs of integers j, k ∈ Z with

0 ≤ −j < k, and for all characters χ : Gal(K(Ep)/K)→ K
×
, we have

Lp(ψ
kψ∗jχ) = A · L(ψ−kψ

−j
χ−1, 0). (1.1)

Here L(ψ−kψ
−j
χ−1, s) denotes the complex Hecke L-function, and A denotes an explicit,

non-zero factor whose precise description need not concern us here.

Define

Lp(s) := Lp(ψ < ψ >s−1), L∗p(s) := Lp(ψ
∗ < ψ∗ >s−1)

for s ∈ Zp. The character ψ lies within the range of interpolation of Lp, and the p-adic Birch

and Swinnerton-Dyer conjecture for E (see [1, pages 133–134], [12, Theorem V.8]) predicts

that ords=1 Lp(s) is equal to the rank r of E(Q), and that

lim
s→1

Lp(s)

(s− 1)r
∼ [logp(ψ(γ1))]

r ·
(

1− ψ(p)

p

)
·
(

1− ψ(p∗)

p

)
· |X(K)(p)| ·RK,p,

where γ1 is a topological generator of Gal(K∞/K), X(K)(p) is the p-primary component of

the Tate-Shafarevich group X(K) of E/K, RK,p is the regulator associated to the algebraic

p-adic height pairing

{ , }K,p : Sel(K,T ∗)× Sel(K,T )→ OK,p

on E/K (see [10]), and the symbol ‘∼’ denotes equality up to multiplication by a p-adic

unit.

On the other hand, the character ψ∗ lies outside the range of interpolation of Lp and

the function L∗p(s) has not been studied nearly as much as Lp(s). The only results con-

cerning L∗p(s) of which the author is aware are due to Rubin (see [14], [15]). When r ≥ 1,

Rubin formulated a variant of the p-adic Birch and Swinnerton-Dyer conjecture for L∗p(s)

which predicts that that ords=1 L
∗
p(s) is equal to r − 1, and which gives a formula for

lims→1[L
∗
p(s)/(s − 1)r−1]. Under suitable hypotheses, Rubin showed that his conjecture

is equivalent to the usual p-adic Birch and Swinnerton-Dyer conjecture, and he proved both

conjectures when r = 1. In the case r = 1, he then used these results to give a striking

p-adic construction of a global point of infinite order in E(Q) directly from the special value

of a p-adic L-function.

When r = 0, however, the above analysis breaks down, and the situation is less clear. The

functional equation satisfied by Lp (see [6, II §6]) shows that ords=1 Lp(s) and ords=1 L
∗
p(s)

have opposite parity, and so when r = 0, one expects that ords=1 L
∗
p(s) is odd. This may

perhaps be viewed as being an analogue of a similar exceptional zero phenomenon observed
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in the work of Mazur, Tate and Teitelbaum concerning p-adic Birch and Swinnerton-Dyer

conjectures for elliptic curves without complex multiplication (see [9], [8]). As Rubin points

out (see [15, Remark on p. 74]), it is reasonable to guess that ords=1 L
∗
p(s) = 1. If this is so,

then one would like to determine the value of lims→1[L
∗
p(s)/(s− 1)].

In this paper we study an Iwasawa module naturally associated to L∗p(s) via the two-

variable main conjecture and, among other things, we prove that the above guess is indeed

correct. The Iwasawa module in question is the Pontryagin dual Xp∗(K
∗
∞,W

∗) of a certain

restricted Selmer group Σp∗(K
∗
∞,W

∗). This restricted Selmer group is defined by revers-

ing the Selmer conditions above p and p∗ that are used to define the usual Selmer group

Sel(K∗
∞,W

∗). The two-variable main conjecture implies that a characteristic power series

HK ∈ Λ(K∗
∞) of Xp∗(K

∗
∞,W

∗) may be viewed as being an algebraic p-adic L-function cor-

responding to L∗p(s). We study L∗p(s) by analysing the behaviour of HK .

A special case of our results may be described as follows. We define a compact restricted

Selmer group Σ̌p∗(K,T
∗) ⊆ H1(K,T ∗). The OK,p∗-module Σ̌p∗(K,T

∗) is free of rank |r− 1|,
and if r ≥ 1, then it lies in the usual Selmer group Sel(K,T ∗) associated to T ∗. The

OK,p∗-rank of Σ̌p∗(K,T
∗) governs the order of vanishing of L∗p(s) at s = 1 in the same way

that the OK,p-rank of Sel(K,T ) determines ords=1 Lp(s). We also define a similar group

Σ̌p(K,T ) ⊆ H1(K,T ), and we explain how to construct a p-adic height pairing

[ , ]K,p∗ : Σ̌p(K,T )× Σ̌p∗(K,T
∗)→ OK,p∗ .

If r ≥ 1, then in fact Σ̌p(K,T ) ⊆ Sel(K,T ), Σ̌p∗(K,T
∗) ⊆ Sel(K,T ∗), and, if the p∗-adic

Birch and Swinnerton-Dyer conjecture is true, then the p-adic height pairing [ , ]K,p∗ is non-

degenerate. We conjecture that [ , ]K,p∗ is also non-degenerate when r = 0 (see Remark

6.6).

Define

Xrel(p)(K) := Ker

H1(K,E)→
∏
v-p

H1(Kv, E)

 ,
and write Xrel(p)(K)(p∗) for its p∗-primary subgroup. Let Xrel(p)(K)(p∗)/ div denote the quo-

tient of Xrel(p)(K)(p∗) by its maximal divisible subgroup. It may be shown that Xrel(p)(K)(p∗)

has OK,p∗-corank one, and that Xrel(p)(K)(p∗)/ div is finite.
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Theorem A. Suppose that [ , ]K,p∗ is non-degenerate, and let γ be a topological generator of

Gal(K∗∞/K). Then, if r = 0, we have ords=1 L
∗
p(s) = 1, and

lim
s→1

L∗p(s)

s− 1
∼

logp(ψ
∗(γ)) · (1− ψ(p∗)) ·

|Xrel(p)(K)(p∗)/ div|
[H1(Kp∗ , T ) : locp∗(Σp(K,T )]

· RK,p∗ ,

where RK,p∗ is a p-adic regulator associated to [ , ]K,p∗.

We also obtain an exact (but much less explicit) formula for lims→1 L
∗
p(s)/(s − 1) by

applying the methods of [14] in our present setting (see Theorem 9.5 below).

Suppose now that r ≥ 1, and assume that X(K)(p) is finite. Then E(K)⊗OK OK,p∗ is a

free OK,p∗-module of rank r, and the kernel of the localisation map

E(K)⊗OK OK,p∗ → E(Kp∗)⊗OK OK,p∗

has OK,p∗-rank r − 1. Let y1, . . . , yr−1 be an OK,p∗-basis of this kernel, and extend it to

an OK,p∗-basis y1, . . . , yr−1, yp∗ of E(K)⊗OK OK,p∗ . We write x1, . . . , xr−1, yp for a similarly

constructed OK,p-basis of E(K) ⊗OK OK,p. The following result is a direct consequence of

Rubin’s precise formula for lims→1[L
∗
p(s)/(s − 1)r−1] (see [14, Corollary 11.3]). We give a

new proof of this result which is different from that contained in [14]. In particular, our

proof gives an alternative way of viewing the somewhat unusual regulator R∗p defined in [14,

§11].

Theorem B. Suppose that r ≥ 1 and that [ , ]K,p∗ is non-degenerate. Then ords=1 L
∗
p(s) =

r − 1, and

lim
s→1

L∗p(s)

(s− 1)r−1
∼

[logp(ψ
∗(γ))]r−1 · p−2 · |X(K)(p∗)| · logE,p∗(yp∗) · logE,p(yp) · RK,p∗ , (1.2)

where logE,p∗ (resp. logE,p) denotes the p∗-adic (resp. p-adic) logarithm associated to E.

An outline of the contents of this paper is as follows. In Section 2 we recall some basic

facts about twists of Iwasawa modules and derivatives of characteristic power series, and

we apply these results to describe the relationship between L∗p(s) and a characteristic power

series HK ∈ Λ(K∗
∞) of Xp∗(K

∗
∞,W

∗). In Section 3 we define various Selmer groups, and we

establish some of their properties. We describe how to construct an algebraic p-adic height

pairing on restricted Selmer groups in Section 4. In Section 5 we calculate (under certain

hypotheses) the leading term of a characteristic power series HF ∈ Λ(F ∗∞) of Xp∗(F
∗
∞,W

∗),

where F/K is any finite extension, and F ∗∞ := FK∗
∞. In Section 6 we study restricted Selmer
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groups overK, and we show that, under certain standard assumptions, ords=1 L
∗
p(s) = |r−1|.

We then give the proof of Theorem A in Section 7, and that of Theorem B in Section 8.

Finally, in Section 9, we explain how the methods of [14] may be used to give a formula for

the exact value of lims→1 L
∗
p(s)/(s− 1) when r = 0.

Acknowledgements. I am very grateful indeed to Karl Rubin for extremely helpful con-

versations and correspondence. Parts of this paper were written while I was visiting the

Université de Bordeaux I and the Centre de Recherches Mathématiques at the Université

de Montreal. I thank these institutions for their hospitality and support.

Notation and conventions. For each integer n ≥ 1, we write

Kn := K(Eπn), K∗n := K(Eπ∗n).

For each place v of K, we write kv for the residue field of v, and Ẽv/kv for the reduction

of the elliptic curve E modulo v. We set W := Eπ∞ and W ∗ := Eπ∗∞ .

Throughout this paper, F denotes a finite extension of K, and we set

Fn := FKn, F∞ := FK∞, F∞ := FK∞,

F∗n := FK∗n, F∗∞ := FK∗∞, F ∗∞ := FK∗
∞,

F∞ := FK∞.

For any extension L/K we write M(L) (resp. M∗(L)) for the maximal abelian pro-p

extension of L which is unramified away from p (resp. p∗), and we set

X (L) := Gal(M(L)/L), X ∗(L) := Gal(M∗(L)/L).

We let B(L) (resp. B∗(L)) denote the maximal abelian pro-p extension of L which is un-

ramified away from p (resp. p∗) and totally split at all places of L lying above p∗ (resp. p),

and we write

Y(L) := Gal(B(L)/L), Y∗(L) := Gal(B∗(L)/L).

If M is any Zp-module, then Mdiv denotes the maximal divisible submodule of M , and

we set M/ div := M/Mdiv. We write Mtors for the torsion submodule of M , and M∧ for the

Pontryagin dual of M . If M is a torsion OK,q-module, with q ∈ {p, p∗}, then we write Tq(M)

for the q-adic Tate module of M .

We set Dp := Kp/OK,p and Dp∗ := Kp∗/OK,p∗ .
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2. Twists and derivatives

In this section we shall recall some basic facts concerning twists of Iwasawa modules and

derivatives of characteristic power series. We then apply these results to a twist of the Katz

two-variable p-adic L-function Lp by the character ψ∗.

Let GF := Gal(F∞/F ), and suppose that ρ : GF → Z×p is any character. Then we have a

twisting map

Twρ : Λ(GF )→ Λ(GF )

associated to ρ which is induced by the map g 7→ ρ(g)g for all g ∈ GF . If M is a finitely

generated Λ(GF )-module with characteristic power series fM , then a routine computation

shows that Twρ(fM) is a characteristic power series of M(ρ−1) := M ⊗ ρ−1.

Set H := Ker(ρ). Then there is a natural quotient map

ΠGF /H : Λ(GF )→ Λ(GF/H),

and ΠGF /H(Twρ(fM)) is a characteristic power series of the Λ(GF/H)-module M(ρ−1)⊗Λ(GF )

Λ(GF/H). If ρ1 : GF → Z×p is any character which factors through GF/H, then

[Twρ(fM)](ρ1) = [ΠGF /H(Twρ(fM))](ρ1), (2.1)

and there is an isomorphism

M(ρ−1)⊗Λ(GF ) Λ(GF/H) ' (M ⊗Λ(GF ) Λ(GF/H))(ρ−1)

of Λ(GF/H)-modules. Hence we may study the values of Twρ(fM) at characters ρ1 which

factor through GF/H by studying the values of ΠG/H(Twρ(fM)) at such characters.

Suppose now that ρ is of infinite order, and let N be a finitely generated Λ(GF/H)-module

with characteristic power series fN ∈ Λ(GF/H). We may write

GF/H ' ∆×G,

where |∆| is prime to p, and G ' Zp. Let γ be a fixed topological generator of GF/H, and

let ΠG : Λ(GF/H) → Λ(G) be the natural quotient map. We identify Λ(G) with Zp[[t]] in

the usual way via the map ΠG(γ) 7→ 1 + t.

Let IGF /H denote the augmentation ideal of Λ(GF/H), and suppose that n ≥ 0 is the

largest integer such that fN ∈ InGF /H and fN /∈ In+1
GF /H. It is not hard to check that ΠG(fN)(t)

is a characteristic power series of the Λ(G)-module N∆, and that

((γ − 1)−nfN)(1) =
ΠG(fN)

tn

∣∣∣∣∣
t=0

, (2.2)

where 1 denotes the identity character of GF/H.
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For any character ν : GF/H → Z×p , we set ϑν := ν(γ)−1γ − 1. Then if m ≥ 0 is any

integer, it follows from the definitions that we have

(ϑ−mν fN)(ν) = [(γ − 1)−m Twν(fN)](1), (2.3)

where Twν : Λ(GF/H)→ Λ(GF/H) is the twisting map associated to ν.

We now recall how (2.3) is related to derivatives of certain p-adic analytic functions as

described in [14, §7]. Write < ν >: GF/H → Z×p for the composition of ν with the natural

projection Z×p → 1 + pZp, and suppose that χ : GF/H → Z×p is any character of order prime

to p. The map from Zp to Cp given by s 7→ fN(νχ < ν >s−1) defines an analytic function

on Zp. Define

ordνχ(fN) := ords=1 fN(νχ < ν >s−1),

and set

D(m)fN(νχ) :=
1

m!

(
d

ds

)m

fN(νχ < ν >s−1)

∣∣∣∣∣
s=1

.

We write

f
(m)
N (νχ) := D(m)fN(νχ),

and we extend these definitions to Λ(GF ) via the quotient map ΠGF /H. A routine calculation

shows that we have

D(m)(ϑmν (νχ)) = {logp(ν(γ))}m,

and

D(m)(ϑmν fN)(νχ) = {logp(ν(γ))}mfN(νχ) = [{logp(ν(γ))}m Twν(fN)](χ). (2.4)

We can now see from (2.2), (2.3) and (2.4) that if nν := ordν(fN), then we may write

fN = ϑnνν Fν with Fν ∈ Λ(GF/H), and we have

f
(nν)
N (ν) = lim

s→1

fN(ν < ν >s−1)

(s− 1)nν

= D(nν)(ϑnνν Fν)(ν)

= [{logp(ν(γ))}nν Twν(Fν)](1)

= {logp(ν(γ))}nν · ΠG(Twν(Fν))(0)

= {logp(ν(γ))}nν ·
ΠG(Twν(fN))

tnν

∣∣∣∣∣
t=0

. (2.5)

We shall now apply the above discussion to the case in which F = K, M = X (K∞),

ρ = ν = ψ∗, H = Gal(K∞/K∗∞), G = Gal(K∗
∞/K) and χ = 1.

Recall that the two-variable main conjecture asserts that X (K∞) is a torsion Λ(K∞)-

module, and that the Katz two-variable p-adic L-function Lp is a characteristic power series
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of X (K∞) in Λ(K∞)O. We therefore see that Twψ∗(Lp) ∈ Λ(K∞)O is a characteristic power

series of X (K∞)(ψ∗−1). Let IK∗
∞ denote the kernel of the natural map Λ(K∞) → Λ(K∗

∞).

Fix any characteristic power series HK ∈ Λ(K∗
∞) of the Λ(K∗

∞)-module

X (K∞)(ψ∗−1)⊗Λ(K∞) (Λ(K∞)/IK∗
∞) ' X (K∞)(ψ∗−1)/IK∗

∞X (K∞)(ψ∗−1).

Then we deduce from (2.1), (2.2) and (2.5) that

ords=1 L
∗
p(s) = ordt=0HK , (2.6)

and if we set nψ∗ := ords=1 L
∗
p(s), then

L(nψ∗ )
p (ψ∗) = lim

s→1

L∗p(s)

(s− 1)nψ∗
∼ {logp(ψ

∗(γ))}nψ∗ · HK

tnψ∗

∣∣∣∣∣
t=0

, (2.7)

where ‘∼’ denotes equality up to multiplication by a p-adic unit (in fact, in this case, we

have equality up to multiplication by an element of O×).

3. Selmer Groups

In this section we shall define various Selmer groups that we require, and establish some

of their properties.

For any place v of F , we define H1
f (Fv,W ) to be the image of E(Fv) ⊗ Dp under the

Kummer map

E(Fv)⊗Dp → H1(Fv,W ),

and we define H1
f (Fv,W

∗) in a similar manner. Note that H1
f (Fv,W ) = 0 if v - p. We also

set

H1
f (Fv, Eπn) := Im[E(Fv)/π

nE(Fv)→ H1(Fv, Eπn)],

H1
f (Fv, Eπ∗n) := Im[E(Fv)/π

∗nE(Fv)→ H1(Fv, Eπ∗n)].

Suppose that M ∈ {W,W ∗, Eπn , Eπ∗n} and that q ∈ {p, p∗} . If c ∈ H1(F,M), then we

write locv(c) for the image of c in H1(Fv,M). We define

• the true Selmer group Sel(F,M) by

Sel(F,M) =
{
c ∈ H1(F,M) | locv(c) ∈ H1

f (Fv,M) for all v
}

;

• the relaxed Selmer group Selrel(F,M) by

Selrel(F,M) =
{
c ∈ H1(F,M) | locv(c) ∈ H1

f (Fv,M) for all v not dividing p
}

;

• the strict Selmer group Selstr(L,M) by

Selstr(F,M) = {c ∈ Sel(F,M) | locv(c) = 0 for all v dividing p} ;



BIRCH AND SWINNERTON-DYER CONJECTURE 9

• the q-strict Selmer group Selstr(q)(F,M) by

Selstr(q)(F,M) = {c ∈ Sel(F,M) | locv(c) = 0 for all v dividing q} ;

• the q-restricted Selmer group (or simply restricted Selmer group for short when q is

understood) Σq(F,M) by

Σq(F,M) = {c ∈ Selrel(F,M) | locv(c) = 0 for all v dividing q} .

(The terminology ‘restricted Selmer group’ is meant to reflect a choice of a combination of

relaxed and strict Selmer conditions at places above p.)

We also define

Šel?(F, T ) := lim←−
n

Sel?(F,Eπn), Šel?(F, T
∗) := lim←−

n

Sel?(F,Eπ∗n),

Σ̌q(F, T ) := lim←−
n

Σq(F,Eπn), Σ̌q(F, T
∗) := lim←−

n

Σq(F,Eπ∗n).

If L/K is an infinite extension, we define

Sel?(L,M) = lim−→ Sel?(L
′,M), Σq(L,M) = lim−→Σq(L

′,M),

Šel?(L, T ) = lim−→ Šel?(L
′, T ), Šel?(L, T

∗) = lim−→ Šel?(L
′, T ∗),

where the direct limits are taken with respect to restriction over all subfields L′ ⊂ L finite

over K.

For any extension L/K, we set

Sel?(L,M)∧ = X?(L,M), Σq(L,M)∧ = Xq(L,M).

Theorem 3.1. Let L be any field such that F∗∞ ⊆ L ⊆ F∞. Then there is an isomorphism

Xp∗(L,W
∗) ' X (L)(ψ∗−1) (3.1)

of Λ(L)-modules.

Proof. This is simply the analogue for restricted Selmer groups of a well-known theorem of

Coates concerning true Selmer groups (see [4, Theorem 12]). We first observe that, since

F∗∞ ⊆ L, we have isomorphisms of Λ(L)-modules

X (L)(ψ∗−1) ' Hom(T ∗,X (L)), X (L)(ψ∗−1)∧ ' Hom(X (L),W ∗).

Hence, in order to establish the desired result, it suffices to show that there is a natural

isomorphsim

Σp∗(L,W
∗)

∼−→ Hom(X (L),W ∗). (3.2)

This may be proved in exactly the same way as [4, Theorem 12]. �
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The following result is a ‘control theorem’ for restricted Selmer groups.

Proposition 3.2. (a) Let IF∗∞ denote the kernel of the quotient map ΠF∗∞ : Λ(F∞) →
Λ(F∗∞). Then the kernel of the restriction map

Σp∗(F∗∞,W ∗)→ Σp∗(F∞,W
∗)[IF∗∞ ]

is finite. A characteristic power series in Λ(F∗∞) of the Pontryagin dual of the cokernel of

this map is given by

eF = (γ − ψ∗−1(γ))−1
∏
v|p∗

(γv − ψ∗−1(γv)),

where γ is a topological generator of Gal(F∗∞/F ), and, for each place v of F∗∞ lying above

p∗, γv denotes a topological generator of Gal(F∗∞,v/Fv) ≤ Gal(F∗∞/F ).

Hence if f ∈ Λ(F∞) is a characteristic power series of Xp∗(F∗∞,W ∗), then e−1
F ΠF∗∞(f) ∈

Λ(F∗∞) is a characteristic power series of Xp∗(F∗∞,W ∗).

(b) Suppose that L is any field such that F ⊆ L ⊆ F∗∞, and write IL for the kernel of the

quotient map Λ(F∗∞)→ Λ(L). Then the restriction map

Σp∗(L,W
∗)→ Σp∗(F∗∞,W ∗)[IL]

is an isomorphism.

Hence the dual of this restriction map is an isomorphism of Λ(L)-modules:

Xp∗(F∗∞,W ∗)/ILXp∗(F∞,W ∗)
∼−→ Xp∗(L,W

∗).

Proof. Let N denote the maximal extension of F∞ that is unramified away from all places

of F∞ lying above p. Consider the following commutative diagram:

0 −−−→ Σp∗(F∗∞,W ∗) −−−→ H1(N/F∗∞,W ∗)
locp∗−−−→

∏
v|p∗ H

1(Nv/F∗∞,v,W
∗)

α

y y y
0 −−−→ Σp∗(F∞,W

∗)[IF∗∞ ] −−−→ H1(N/F∞,W ∗)[IF∗∞ ]
locp∗−−−→

∏
v|p∗ H

1(Nv/F∞,v,W
∗)

in which the vertical arrows are the obvious restriction maps.

Applying the Snake Lemma (together with the inflation-restriction exact sequence) to this

diagram yields the exact sequence

0→ Ker(α)→ H1(F∞/F∗∞,W ∗)
g1−→

∏
v|p∗

H1(F∞,v/F∗∞,v,W
∗)→

→ Coker(α)→ H2(F∞/F∗∞,W ∗)
g2−→

∏
v|p∗

H2(F∞,v/F∗∞,v,W
∗)→ 0. (3.3)
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Now,

H1(F∞/F∗∞,W ∗) ' Hom(Gal(F∞/F∗∞),W ∗),∏
v|p∗

H1(F∞,v/F∗∞,v,W
∗) '

∏
v|p∗

Hom(Gal(F∞,v/F∗∞,v),W
∗), (3.4)

and, as Gal(F∞/F∗∞) ' ∆× Zp with p - ∆, we have

H2(F∞/F∗∞,W ∗) ' H0(F∞/F∗∞,W ∗) ' W ∗,∏
v|p∗

H2(F∞,v/F∗∞,v,W
∗) '

∏
v|p∗

H0(F∞,v/F∗∞,v,W
∗) '

∏
v|p∗

W ∗.

We now deduce that g1 is non-zero, and therefore has finite kernel (since H1(F∞/F∗∞,W ∗)

is divisible), and that g2 is injective. It follows from (3.3) that Ker(α) is finite, and that

there is an exact sequence

0→ Ker(α)→ H1(F∞/F∗∞,W ∗)
g1−→

∏
v|p∗

H1(F∞,v/F∗∞,v,W
∗)→ Coker(α)→ 0. (3.5)

It follows from (3.4) that

CharΛ(F∗∞)

(
H1(F∞/F∗∞,W ∗)

)∧
= γ − ψ∗−1(γ);

CharΛ(F∗∞)

∏
v|p∗

H1(F∞,v/F∗∞,v,W
∗)

∧

=
∏
v|p∗

(γv − ψ∗−1(γv)).

Hence we deduce from (3.5) that

CharΛ(F∗∞)(Coker(α))∧ = eF = (γ − ψ∗−1(γ))−1
∏
v|p∗

(γv − ψ∗−1(γv)),

as asserted.

(b) In this case we consider the commutative diagram

0 −−−→ Σp∗(L,W
∗) −−−→ H1(N/L,W ∗)

locp∗−−−→
∏

v|p∗ H
1(Nv/Lv,W ∗)

β1

y β2

y β3

y
0 −−−→ Σp∗(F∗∞,W ∗)[IL] −−−→ H1(N/F∗∞,W ∗)

locp∗−−−→
∏

v|p∗ H
1(N/F∗∞,v,W

∗)

We have that

Ker(β2) = H1(F∗∞/L,W ∗) = 0,

Ker(β3) =
∏
v|p∗

H1(F∗∞,v/Lv,W
∗) = 0,

Coker(β2) = H2(F∗∞/L,W ∗) = 0,
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(see [12, p. 40], for example), and so the Snake Lemma implies that β1 is an isomorphism,

as claimed. �

Corollary 3.3. For any field L with F ⊆ L ⊆ F∗∞, we have an isomorphism

Xp∗(L, T
∗) ' X (F∞)(ψ∗−1)/IL(X (F∞)(ψ∗−1) (3.6)

of Λ(L)-modules.

Proof. This follows directly from Proposition 3.2 and Theorem 3.1. �

Remark 3.4. If we take F = K in Proposition 3.2, then it is easy to check that eK ∈
Λ(K∗∞)×. We therefore see from Proposition 3.2(a) and Corollary 3.3 that the element

HK ∈ Λ(K∗
∞) fixed in Section 2 is a characteristic power series of Xp∗(K

∗
∞,W

∗). �

Definition 3.5. For any finite extension F/K and any prime q of K we define

X(F )rel(q) := Ker

H1(F,E)→
∏
v-q

H1(Fv, E)

 ,
and we set

E1,q(F ) := Ker

E(F )⊗OK OK,q →
∏
v|q

E(Fv)

 .
�

Lemma 3.6. Let F/K be any finite extension, and let q ∈ {p, p∗}. Then Σ̌q(F, Tq) is a free

OK,q-module.

Proof. It follows from the definitions that Σ̌q(F, Tq)tors ⊆ Šel(F, Tq). The desired result now

follows from the fact that the restriction of the localisation map

Šel(F, Tq)→
∏
v|q

E(Fv)⊗OK OK,q

to Šel(F, Tq)tors is injective. �

4. The p-adic height pairing on restricted Selmer groups

In this section we shall explain how the methods described by Perrin-Riou in [10] and [12]

may be used to construct a p-adic height pairing

[ , ]F,p∗ : Σp(F, T )× Σp∗(F, T
∗)→ OK,p∗ .

We begin by describing the p-adic Leopoldt hypotheses with which we shall work.
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Definition 4.1. Let M/K be any finite extension, and consider the diagonal injection

iM : O×
M →

∏
v|p

O×
M,v.

Let iM(O×
M) denote the p-adic closure of iM(O×

M) in
∏

v|pO
×
M,v, and set

δ(M) := rkZ(O×
M)− rkZp(iM(O×

M)).

The weak p-adic Leopoldt hypothesis for F asserts that the numbers δ(L′) are bounded as

L′ runs through all finite extensions of F contained in F∗∞. The strong p-adic Leopoldt

hypothesis for F asserts that the numbers δ(L′) are all equal to zero.

We remark that the strong Leopoldt hypothesis is known to hold for all abelian extensions

of K (see [2]). �

Recall that B(F∗∞) denotes the maximal abelian pro-p extension of F∗∞ which is unramified

away from p and totally split at all places above p∗, and that Y(F∗∞) = Gal(B(F∗∞)/F∗∞).

The main ingredient in the construction of [ , ]F,p∗ is the following result.

Theorem 4.2. If the weak p-adic Leopoldt hypothesis holds for F then there is a natural

isomorphism

ΨF : Σ̌p(F, T )
∼−→ Hom(T ∗,Y(F∗∞))Gal(F∗∞/F ).

The proof of this theorem is very similar to that of [10, Théorème 3.2]. We shall therefore

just describe the main outlines of the proof, and we refer the reader to [10] for some of the

details which we omit.

In order to describe the proof of Theorem 4.2, we require a number of intermediary results.

Lemma 4.3. There is an isomorphism of Gal(F∗n/F )-modules

H1(F∗n, Eπn)
∼−→ Hom(Eπ∗n ,F∗×n /F∗×pnn ); f 7→ f̃ . (4.1)

For each place v of F∗n, there is also a corresponding local isomorphism

H1(F∗n,v, Eπn)
∼−→ Hom(Eπ∗n ,F∗×n,v/F∗×p

n

n,v ).

Proof. See [10, Lemme 3.8]. The isomorphism (4.1) is defined as follows. Let f ∈ H1(F∗n, Eπn),
and write

wn : Eπn × Eπ∗n → µpn

for the Weil pairing. We identify F∗×n /F∗×pnn with H1(F∗n, µpn) via Kummer theory. If

u ∈ Eπ∗n , then f̃(u) ∈ H1(F∗n, µpn) is defined to be the element represented by the cocycle

σ 7→ wn(f(σ), u)

for all σ ∈ Gal(F/F∗n). �
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Lemma 4.4. For each place v of F∗n with v - p∗, there is an isomorphism

E(F∗n,v)/πnE(F∗n,v)
∼−→ Hom(Eπ∗n , O

×
F∗n,v/O

×pn
F∗n,v).

Proof. See [10, Lemme 3.11]. �

Corollary 4.5. Suppose that h ∈ H1(F∗n, Eπn). Then h ∈ Σp(F∗n, Eπn) if and only if, for

each u ∈ Eπn, the following local conditions are satisfied:

(a) h̃(u) ∈ F∗×pnn,v for all v | p;
(b) pn | vF∗n(h̃(u)) for all v - p∗.

(Note that we impose no local conditions at places lying above p∗.)

Proof. This follows directly from Lemmas 4.3 and 4.4. �

In what follows, we set Gn := Gal(F∗n/F ), and we write Jn for the group of finite ideles

of F∗n. We let Vn denote the subgroup of Jn consisting of those elements whose components

are equal to 1 at all places dividing p and are units at all places not dividing p∗. We set

Cn := Jn/VnF∗×n , Ωn :=
∏
v|p

µpn(F∗n,v),

and we note that the order of Ωn is bounded as n varies.

Proposition 4.6. There is an exact sequence

Hom(Eπ∗n ,Ωn)
Gn → Hom(Eπ∗n , Cn)

Gn ηn−→ Σp(F,Eπn)→ 0.

Proof. The proof of this Proposition is identical, mutatis mutandis, to that of [10, Proposition

3.13]. �

Now let η′n be the map obtained from ηn via passage to the quotient by the kernel of ηn,

and write Cn(p) for the p-primary part of Cn. Then it may be shown exactly as on [10, pp.

387–389] that passing to inverse limits over the maps η′−1
n yields an isomorphism

ΞF : lim←− Σ̌p(F,Eπn) = Σp(F, T )
∼−→ Hom(T ∗, lim←−Cn(p))

Gal(F∗∞/F ).

(Here the inverse limit lim←−Cn(p) is taken with respect to the norm maps F∗×n → F∗×n−1.)

The proof of Theorem 4.2 is completed by the following result.

Proposition 4.7. If the weak p-adic Leopoldt hypothesis holds for F , then there is an iso-

morphism

Hom(T ∗, lim←−Cn(p))
Gal(F∗∞/F ) ' Hom(T ∗,Y(F∗∞))Gal(F∗∞/F ).

Proof. This may be shown in the same way as [10, Lemme 3.18]. �



BIRCH AND SWINNERTON-DYER CONJECTURE 15

We now explain how the isomorphism ΨF may be used to construct a p-adic height pairing

[ , ]F,p∗ : Σ̌p(F, T )× Σ̌p∗(F, T
∗)→ OK,p∗ .

We first recall (see Proposition 3.2(b)) that the restriction map

Σp∗(F,W
∗)→ Σp∗(F∗∞,W ∗) (4.2)

is injective, and that there is a natural isomorphism (see Theorem 3.1)

Σp∗(F∗∞,W ∗)
∼−→ Hom(X (F∗∞),W ∗). (4.3)

It follows from the local conditions defining the restricted Selmer group Σp∗(F,W
∗) that

(4.2) and (4.3) induce an injection

Σp∗(F,W
∗)→ Hom(Y(F∗∞),W ∗), (4.4)

and taking Pontryagin duals yields a surjection

Hom(T ∗,Y(F∗∞))→ Xp∗(F,W
∗). (4.5)

Composing this with the natural surjection

Xp∗(F,W
∗)→ [Σp∗(F,W

∗)div]
∧

and taking Gal(F∗∞/F )-invariants yields a homomorphism

βF : Hom(T ∗,Y(F∗∞))Gal(F∗∞/F ) → [Σp∗(F,W
∗)div]

∧.

Next, we observe that we have a canonical isomorphism

[Σp∗(F,W
∗)div]

∧ ' HomOK,p∗ (Tp∗(Σp∗(F,W
∗)div), OK,p∗)

= HomOK,p∗ (Tp∗(Σp∗(F,W
∗)), OK,p∗),

where the last equality holds because

Tp∗(Σp∗(F,W
∗)div = Tp∗(Σp∗(F,W

∗)).

Also, for each n ≥ 1, we have a surjective map

Σp∗(F,Eπ∗n)→ Σp∗(F,W
∗)π∗n

with finite kernel. Via passage to inverse limits, these yield a map

Σ̌p∗(F, T
∗)→ Tp∗(Σp∗(F,W

∗))

which is an isomorphism because Σ̌p∗(F, T
∗) is OK,p∗-free (see Lemma 3.6).

It follows from the above discussion that we may view βF as a homomorphism

βF : Hom(T ∗,Y(F∗∞))Gal(F∗∞/F ) → HomOK,p∗ (Σ̌p∗(F, T
∗), OK,p∗).
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We thus obtain a map

βF ◦ΨF : Σ̌p(F, T )→ HomOK,p∗ (Σ̌p∗(F, T
∗), OK,p∗),

and this yields the desired pairing

[ , ]F,p∗ : Σ̌p(F, T )× Σ̌p∗(F, T
∗)→ OK,p∗ .

It is natural to conjecture that this pairing is always non-degenerate (see Remark 6.6).

If x1, . . . , xm is anOK,p-basis of Σ̌p(F, T ) (resp. if y1, . . . , ym is anOK,p∗-basis of Σ̌p∗(F, T
∗)),

then we define the regulator RF,p∗ associated to [ , ]F,p∗ by

RF,p∗ := det([xi, yj]F,p∗). (4.6)

5. The leading term

We retain the notation of the previous section. Write ΓF := Gal(F ∗∞/F ), fix a topological

generator γF of ΓF , and identify Λ(F ∗∞) with the power series ring Zp[[t]] via the map

γF 7→ t + 1. Let HF ∈ Λ(F ∗∞) be a characteristic power series of Xp∗(F
∗
∞,W

∗). In this

section we shall calculate the leading coefficient of HF , assuming that the strong Leopoldt

hypothesis holds for F and that [ , ]F,p∗ is non-degenerate.

Proposition 5.1. Suppose that F satisfies the strong p-adic Leopoldt hypothesis. Then the

Λ(F ∗∞)-module Xp∗(F
∗
∞,W

∗) has no finite, non-trivial submodules.

Proof. It is straightforward to show that a slight modification of the arguments given in

[7, §4] establishes the fact that if F satisfies the strong p-adic Leopoldt hypothesis, then

the Λ(F ∗∞)-module X(F ∗∞) has no finite, non-trivial submodules. For brevity, we omit the

details. The desired result now follows from Proposition 3.2 and Theorem 3.1. �

Theorem 5.2. Let HF ∈ Λ(F ∗∞) be a characteristic power series of Xp∗(F
∗
∞,W

∗). Assume

that the strong p-adic Leopoldt hypothesis holds for F , and that [ , ]F,p∗ is non-degenerate.

Set m := rkOK,p∗ (Σ̌p∗(F, T
∗)). Then ordt=0HF = m, and

HF

tm

∣∣∣∣∣
t=0

∼ |Σp∗(F,W
∗)/ div| · RF,p∗ . (5.1)

Proof. We begin by noting that there is a surjective homomorphism

Xp∗(F
∗
∞,W

∗)→ [Σp∗(F,W
∗)div]

∧.
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This implies that HF is divisible by tm. If we write Z∞ for the kernel of this map, then the

Snake Lemma yields the following exact sequence:

0→ (Z∞)ΓF → Xp∗(F
∗
∞,W

∗)ΓF ξF−→ [Σp∗(F,W
∗)div]

∧ →

→ (Z∞)ΓF → Xp∗(F
∗
∞,W

∗)ΓF → [Σp∗(F,W
∗)div]

∧ → 0.

The kernel of the last map

Xp∗(F
∗
∞,W

∗)ΓF → [Σp∗(F,W
∗)div]

∧

is dual to the cokernel of the map

Σp∗(F,W
∗)div → Σp∗(F

∗
∞,W

∗)ΓF .

Since Σp∗(F,W
∗) ' Σp∗(F

∗
∞,W

∗)ΓF (via Proposition 3.2(b)), it follows that this cokernel is

isomorphic to Σp∗(F,W
∗)/ div, which is finite.

We therefore deduce that the multiplicity of t in HF is equal to m if and only if (Z∞)ΓF is

finite, which in turn is the case if and only if the cokernel of ξF is finite. Recall (see Theorem

3.1)

Xp∗(F
∗
∞,W

∗)ΓF ' Hom(T ∗,X (F∗∞))Gal(F∗∞/F ),

and that the homomorphism ξF may be written as the following composition of maps

Hom(T ∗,X (F ∗∞))Gal(F∗∞/F ) → Hom(T ∗,Y(F ∗∞))Gal(F∗∞/F ) → Σp∗(F,W
∗)∧ → [Σp∗(F,W

∗)/ div]
∧

(see (4.4), (4.5)). Hence the cokernel of ξF is finite if and only if the p-adic height pairing

[ , ]F,p∗ is non-degenerate.

We now see that if [ , ]F,p∗ is non-degenerate, then (Z∞)ΓF is finite. This implies that

(Z∞)ΓF is also finite, whence it follows via Proposition 5.1 that (Z∞)ΓF = 0. Hence we have

HF

tm

∣∣∣∣∣
t=0

∼ |(Z∞)ΓF | ∼ |Σp∗(F,W
∗)/ div| · |Coker(ξF )|.

Now

|Coker(ξF )| = [(Σp∗(F,W
∗)div)

∧ : ξF (Xp∗(F
∗
∞,W

∗)ΓF )]

= [Tp∗(Σp∗(F,W
∗)) : ΨF (Σ̌p(F, T ))]

= RF,p∗ ·
[
Ker(Σ̌p∗(F, T

∗)→ Tp∗(Σp∗(F,W
∗)))

]
= RF,p∗ .

Hence
HF

tm

∣∣∣∣∣
t=0

∼ |Σp∗(F,W
∗)/ div| · RF,p∗ ,
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as claimed. �

6. Restricted Selmer groups over K

In this section we shall analyse various properties of restricted Selmer groups over K. The

main tool for doing this is the Poitou-Tate exact sequence (see e.g. [5, Theorem 1.5] or [11,

Proposition 4.1.1]).

We write SF for the set of places of F lying above p, and GF,SF for the Galois group over

F of the maximal abelian extension of F that is unramified away from all places in SF .

Proposition 6.1. There are isomorphisms

Šelstr(F, T
∗) ' H2(GF,SF ,W )∧, Šelstr(F, T ) ' H2(GF,SF ,W

∗)∧.

Proof. The middle of the Poitou-Tate exact sequence yields

0→ Selstr(F,Eπ∗n)
∧ → H2(GF,SF , Eπn)→

⊕
v∈SF

H2(Fv, Eπn).

Dualising, and using the fact that, via Tate local duality, we haveH2(Fv, Eπn)
∧ ' H0(Fv, Eπ∗n)

for each place v of F gives⊕
v∈SF

H0(Fv, Eπ∗n)→ H2(GF,SF , Eπn)
∧ → Selstr(F,Eπ∗n)→ 0.

By passing to limits we obtain⊕
v∈SF

H0(Fv, T
∗)→ H2(GF,SF ,W )∧ → Šelstr(F, T

∗)→ 0,

and this establishes the first isomorphism, since the first term of this last sequence is equal

to zero.

The second isomorphism may be proved in a similar manner. �

Recall that r = rkOK (E(K)).

Proposition 6.2. Suppose that r ≥ 1. Then

rkOK,p∗ (Šelstr(K,T
∗)) = rkOK,p∗ (Šelstr(p∗)(K,T

∗))

= rkOK,p∗ (Šel(K,T ∗))− 1.

Proof. Since r ≥ 1, the image of the localisation map

Sel(K,T ∗)→ E(Kp∗)⊗OK,p∗
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is infinite. The result now follows from the fact that

rkOK,p∗ [E(Kp∗)⊗OK,p∗ ] = rkOK,p∗

∏
v|p

E(Kv)⊗OK,p∗

 = 1.

�

Lemma 6.3. (a) The cohomology group H1
f (Kp∗ , T ) is finite, and

|H1
f (Kp∗ , T )| ∼ |Ẽp∗(kp∗)| ∼ 1− ψ(p∗)

in Zp.

(b) We have

H1
f (Kp∗ , T ) = H1(Kp∗ , T )tors,

and H1(Kp∗ , T )/H1
f (Kp∗ , T ) is OK,p∗-free of rank one.

Proof. Part (a) follows directly from [4, Lemma 1].

To prove part (b), we observe that, via Tate local duality, the dual ofH1(Kp∗ , T )/H1
f (Kp∗ , T )

is equal to E(Kp∗)⊗Dp∗ , and this last group is divisible of OK,p∗-corank one. �

Proposition 6.4. (a) Suppose that r ≥ 1. Then

rkOK,p∗ (Šelrel(K,T
∗)) = rkOK,p∗ (Šel(K,T ∗)),

and

[Šelrel(K,T
∗) : Šel(K,T ∗)] ∼ |Ẽp∗(kp∗)|.

(b) Suppose that r = 0. Then

rkOK,p∗ (Šelrel(K,T
∗)) = 1.

Proof. The Poitou-Tate exact sequence yields

0→ Šel(K,T ∗)→ Šelrel(K,T
∗)

α−→
⊕
v|p

H1(Kv, T
∗)

H1
f (Kv, T ∗)

→ Sel(K,W )∧. (6.1)

The cokernel of α is the Pontryagin dual of the image of the localisation map

Sel(K,W )→
⊕
v|p

H1
f (Kv,W ),

and so has OK,p∗-rank one if r ≥ 1 and rank zero if r = 0. As

rkOK,p∗ [⊕v|p(H
1(Kv, T

∗)/H1
f (Kv, T

∗))] = 1,

we therefore deduce that rkOK,p∗ (Šelrel(K,T
∗)) is equal to rkOK,p∗ (Šel(K,T ∗)) if r ≥ 1, and

is equal to one if r = 0. In particular, we have that Šelrel(K,T
∗)/Šel(K,T ∗) is finite if r ≥ 1.
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Now suppose that r ≥ 1. As H1(Kp, T
∗)/H1

f (Kp, T
∗) is OK,p∗-free of rank one (Lemma

6.3(b)) and Šelrel(K,T
∗)/Šel(K,T ∗) is finite, (6.1) implies that there is an exact sequence

0→ Šelrel(K,T
∗)

Šel(K,T ∗)
→ H1(Kp∗ , T

∗)

H1
f (Kp∗ , T ∗)

α′−→ Sel(K,W )∧.

Since E(Kp∗)⊗Dp = 0, it follows that α′ is the zero map. The dual ofH1(Kp∗ , T
∗)/H1

f (Kp∗ , T
∗)

is isomorphic to H1
f (Kp∗ , T ), and Lemma 6.3(a) implies that

|H1
f (Kp∗ , T )| ∼ |Ẽp∗(kp∗)|.

Hence [Šelrel(K,T
∗) : Šel(K,T ∗)] ∼ |Ẽp∗(kp∗)|, as claimed. �

Proposition 6.5. Suppose that r ≥ 1. Then

Σ̌p∗(K,T
∗) = Šelstr(p∗)(K,T

∗).

In particular, we have

rkOK,p∗ (Σ̌p∗(K,T
∗)) = rkOK,p∗ (Šel(K,T ∗))− 1.

Proof. From Proposition 6.4(a), we have

rkOK,p∗ (Šelrel(K,T
∗)) = rkOK,p∗ (Šel(K,T ∗)).

This implies that

rkOK,p∗ (Σp∗(K,T
∗)) = rkOK,p∗ (Šelstr(p∗)(K,T

∗))

= rkOK,p∗ (Šel(K,T ∗))− 1. (6.2)

It follows from the definitions of Σ̌p∗(K,T
∗) and Šelstr(p∗)(K,T

∗) that we have the following

exact sequence

0→ Šelstr(p∗)(K,T
∗)→ Σ̌p∗(K,T

∗)
β−→ H1(Kp∗ , T

∗)

H1
f (Kp, T ∗)

→ Coker(β)→ 0,

where β is induced by the obvious localisation map. From (6.2), we see that Σ̌p∗(K,T
∗)/Šelstr(p∗)(K,T

∗)

is finite. Hence, as H1(Kp, T
∗)/H1

f (Kp, T
∗) is OK,p∗-free of rank one (see Lemma 6.3(b)), it

follows that β is the zero map. This implies that

Σ̌p∗(K,T
∗) = Šelstr(p∗)(K,T

∗)

as claimed.

The final assertion of the Proposition is a direct consequence of Proposition 6.2. �
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Remark 6.6. Suppose that r ≥ 1. Then it follows from Proposition 6.5, together with

the definition of [ , ]K,p∗ that the pairing [ , ]K,p∗ is simply the restriction of Perrin-Riou’s

algebraic p-adic height pairing { , }K,p∗ to Šelstr(p∗)(K,T
∗)× Šelstr(p)(K,T ). Hence, if r ≥ 1

and { , }K,p∗ is non-degenerate, then so is [ , ]K,p∗ . We conjecture that the pairing [ , ]K,p∗ is

also non-degenerate when r = 0. �

Proposition 6.7. Suppose that r = 0. Then

rkOK,p∗ (Σ̌p∗(K,T
∗)) = 1.

Proof. We have an injection

0→ Σ̌p∗(K,T
∗)→ Šelrel(K,T

∗),

and we know that rkOK,p∗ (Šelrel(K,T
∗)) = 1 (Proposition 6.4(b)). Hence rkOK,p∗ (Σ̌p∗(K,T

∗))

is either zero or one.

Suppose that rkOK,p∗ (Σ̌p∗(K,T
∗)) = 0. Then the proof of Theorem 5.2 shows that the

characteristic power series HK ∈ Λ(K∗
∞) of Xp∗(K,W

∗) does not vanish at t = 0. This

implies that ords=1 L
∗
p(s) = 0 (see (2.6)). On the other hand, it follows from the functional

equation satisfied by the two-variable p-adic L-function Lp (see [6, Chapter II, §6]) that the

orders of the zeros at s = 1 of Lp(s) and Lp∗(s) have opposite parity. Since r = 0, the order

of X(K) is known to be finite (see [13]), and so

ords=1 Lp(s) = rkOK,p∗ (Sel(K,T ∗)) = 0.

This implies that ords=1 L
∗
p(s) ≥ 1, which is a contradiction.

It therefore follows that rkOK,p∗ (Σ̌p∗(K,T
∗)) = 1 as claimed. �

Corollary 6.8. Assume that [ , ]K,p∗ is non-degenerate.

(a) If r ≥ 1 and X(K)(p∗) is finite, then

ords=1 L
∗
p(s) = r − 1.

(b) If r = 0, then

ords=1 L
∗
p(s) = 1.

Proof. This follows directly from Propositions 6.5 and 6.7, and (2.6). �

Remark 6.9. Corollary 6.8(b) confirms the expectation expressed in [15, Remark on p.74]

(see also [14, §11, Remarks(2)]). It would be interesting to know if there is any way of

showing that rkOK,p∗ (Σp∗(K,T
∗)) = 1 when r = 0 without appealing to the functional

equation satisfied by Lp. �
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Proposition 6.10. (a) Suppose that r ≥ 1, and assume that X(K)(p∗) is finite. Then

Xrel(p)(K)(p∗) is also finite, and we have

|Xrel(p)(K)(p∗)| = |X(K)(p)| · [E(Kp)⊗OK,p : locp(Sel(K,T ))].

(b) Suppose that r = 0. Then Xrel(p)(K)(p∗) has OK,p∗-corank one.

Proof. (a) For each n ≥ 1, we define Bn via exactness of the sequence

0→X(K)π∗n → H1(K,E)π∗n →
∏
v

H1(Kv, E)π∗n → Bn → 0.

Then there exists a map hn : H1(Kp, E)π∗n → Bn, and the sequence

0→X(K)π∗n →Xrel(p)(K)π∗n → H1(Kp, E)π∗n
hn−→ Bn (6.3)

is exact. Passing to direct limits over n in (6.3) yields the sequence

0→X(K)(p∗)→Xrel(p)(K)(p∗)→ H1(Kp, E)(p∗)
lim−→hn
−−−→ lim−→Bn. (6.4)

It follows from a theorem of Cassels (see [3, p.198]) that the dual of Bn is isomorphic

to Sel(K,Eπn). Tate local duality implies that the dual of H1(Kp, E)π∗n is isomorphic to

E(Kp)/π
nE(Kp) and that the kernel of lim−→hn is isomorphic to the dual of the cokernel of

the localisation map

locp : Šel(K,T )→ E(Kp)⊗OK,p.

If r ≥ 1, then this cokernel is finite, and we therefore deduce that

[Xrel(p)(K)(p∗) : X(K)(p∗)] = [E(Kp)⊗OK,p : locp(Šel(K,T ))].

Hence, we have

|Xrel(p)(K)(p∗)| = |X(K)(p∗)| · [E(Kp)⊗OK,p : locp(Šel(K,T ))]

as claimed.

(b) If r = 0, then Šel(K,T ) is trivial, because X(K) is known to be finite, and E(K)(p) =

0. This implies that Coker(locp) = E(Kp) ⊗ OK,p is OK,p-free of rank one. It now follows

from (6.4) that Xrel(p)(K)(p∗) has OK,p∗-corank one. �

Proposition 6.11. Suppose that r ≥ 1, and assume that X(K)(p∗) is finite. Then

|Σp∗(K,W
∗)/ div| = |Xrel(p)(K)(p∗)| · [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))].
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Proof. Let y1, . . . , yr−1 be anOK,p∗-basis ofE1,p∗(K), and extend it to anOK,p∗-basis y1, . . . , yr−1, yp∗

of E(K)⊗OK OK,p∗ . There is an exact sequence

0→ OK,p∗ · yp∗ → E(Kp∗)⊗OK OK,p∗ → U → 0,

with

|U | = [E(Kp∗)⊗OK OK,p∗ : locp∗(E(K)⊗OK OK,p∗)]

= [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))].

Tensoring this sequence with Dp∗ yields an exact sequence

0→ V → (OK,p∗ · yp∗)⊗OK Dp∗ → E(Kp∗)⊗OK Dp∗ → 0,

with |U | = |V |. As

E(K)⊗OK OK,p∗ ' E1,p∗(K)⊕ (OK,p∗ · yp∗),

it follows that the kernel of the localisation map

E(K)⊗OK Dp∗ → E(Kp∗)⊗OK Dp∗

is isomorphic to (E1,p∗(K)⊗OK Dp∗)⊕ V .

Define

X(K)rel := Ker

H1(K,E)→
∏
v-p

H1(Kv, E)

 ;

then we have an exact sequence

0→ E(K)⊗Dp∗ → Selrel(K,W
∗)→Xrel(K)(p∗)→ 0.

Now consider the following commutative diagram, in which the vertical arrows are the

obvious localisation maps:

0 −−−→ E(K)⊗Dp∗ −−−→ Selrel(K,W
∗) −−−→ Xrel(K)(p∗) −−−→ 0y y y

0 −−−→ E(Kp∗)⊗Dp∗ −−−→ H1(Kp∗ ,W
∗) −−−→ H1(Kp∗ , E)(p∗) −−−→ 0

Applying the Snake Lemma to this diagram yields the exact sequence

0→ (E1,p∗(K)⊗Dp∗)⊕ V → Σp∗(K,W
∗)→Xrel(p)(K)(p∗)→ 0.

As Xrel(K)(p∗) is finite (see Proposition 6.10) and E1,p∗(K)⊗OK Dp∗ is divisible, it follows

that

Σp∗(K,W
∗)/ div = |Xrel(K)(p∗)| · |V |

= |Xrel(p)(K)(p∗)| · [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))],
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as asserted. �

7. Proof of Theorem A

Proposition 7.1. Suppose that r = 0. Then

|Σp∗(K,W
∗)/ div| ∼ (1− ψ(p∗)) ·

|X(K)rel(p)(p
∗)/ div|

[H1(Kp∗ , T ) : locp∗(Σp(K,T ))]
.

Proof. Consider the following diagram in which all columns are exact and f1, f2 are the

obvious localisation maps:

0 −−−→ Σp∗(K,W
∗) −−−→ Xrel(p)(K)(p∗)y y y

0 −−−→ E(K)⊗Dp∗ = 0 −−−→ Selrel(K,W
∗) −−−→ Xrel(K)(p∗) −−−→ 0y yf1

yf2

0 −−−→ E(Kp∗)⊗Dp∗ −−−→ H1(Kp∗ ,W
∗) −−−→ H1(Kp∗ , E)(p∗) −−−→ 0y y y

E(Kp∗)⊗Dp∗ −−−→ Coker(f1) −−−→ Coker(f2)

Applying the Snake Lemma to this diagram yields an exact sequence

0→ Σp∗(K,W
∗)→Xrel(p)(K)(p∗)→ E(Kp∗)⊗Dp∗ → Coker(f1)→ Coker(f2)→ 0. (7.1)

Let us first determine Coker(f1). The Poitou-Tate exact sequence gives

0→ Σp∗(K,W
∗)→ Selrel(K,W

∗)
f1−→ H1(Kp∗ ,W

∗)→ Σ̌p(K,T )∧ → H2(GK,SK ,W
∗),

where GK,SK denotes the Galois group over K of the maximal extension of K that is un-

ramified away from p. Since r = 0, Propositions 6.1 and 6.2 imply that H2(GK,SK ,W
∗) = 0,

and so we have

Coker(f1) ' Σ̌p(K,T )∧. (7.2)

In particular, it follows from Lemma 3.6 and Proposition 6.7 that Coker(f1) is divisible of

OK,p∗-corank one.

In order to determine Coker(f2), we observe that E(Kp∗)⊗Dp∗ is divisible of OK,p∗-corank

one, and the kernel of the map

E(Kp∗)⊗Dp∗ → Coker(f1)

in (7.1) is isomorphic to Xrel(p)(K)(p∗)/Σp∗(K,W
∗). This last group is finite, because both

Xrel(p)(K)(p∗) and Σp∗(K,W
∗) have OK,p∗-corank one (see Propositions 6.10(b) and 6.7). It

therefore follows that Coker(f2) = 0.
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From (7.1) and (7.2), we obtain the sequence

0→
Xrel(p)(K)(p∗)

Σp∗(K,W ∗)
→ E(Kp∗)⊗Dp∗ → Σ̌p(K,T )∧ → 0. (7.3)

Dualising this sequence yields

0→ Σ̌p(K,T )→ H1(Kp∗ , T )

H1
f (Kp∗ , T )

→
[
Xrel(p)(K)(p∗)

Σp∗(K,W ∗)

]∧
→ 0.

We therefore have∣∣∣∣[Xrel(p)(K)(p∗)

Σp∗(K,W ∗)

]∧∣∣∣∣ =

∣∣∣∣Xrel(p)(K)(p∗)

Σp∗(K,W ∗)

∣∣∣∣
=

∣∣∣∣Xrel(p)(K)(p∗)/ div

Σp∗(K,W ∗)/ div

∣∣∣∣
= [H1(Kp∗ , T ) : locp∗(Σ̌p(K,T ))] · |H1

f (Kp∗ , T )|−1,

which in turn implies that

|Σp∗(K,W
∗)/ div| =

|Xrel(p)(K)(p∗)/ div|
[H1(Kp∗ , T ) : locp∗(Σ̌p(K,T ))]

· |H1
f (Kp∗ , T )|.

Since

|H1
f (Kp∗ , T )| ∼ 1− ψ(p∗)

(see Lemma 6.3), we finally obtain

|Σp∗(K,W
∗)/ div| ∼ (1− ψ(p∗)) ·

|X(K)rel(p)(p
∗)/ div|

[H1(Kp∗ , T ) : locp∗(Σp(K,T ))]
,

as claimed. �

Proof of Theorem A. We first note that, as [ , ]K,p∗ is non-degenerate (by hypothesis),

we have ords=1 L
∗
p(s) = 1 (Corollary 6.8(b)). Hence from (5.1), (2.7), Proposition 7.1 and

Remark 3.4, we have

lim
s→1

L∗p(s)

s− 1
∼ logp(ψ

∗(γ)) · HK

t

∣∣∣∣∣
t=0

∼ logp(ψ
∗(γ)) ·

∣∣Σp∗(K,W
∗)/ div

∣∣ · RK,p∗

∼ logp(ψ
∗(γ)) · (1− ψ(p∗) ·

|Xrel(p)(K)(p∗)/ div|
[H1(Kp∗ , T ) : locp∗(Σp(K,T ))]

· RK,p∗ .

This completes the proof of Theorem A. �
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8. Proof of Theorem B

Suppose now that r ≥ 1. Then E(K)⊗OK,p∗ is a free OK,p∗-module of rank r. Proposition

6.2 implies that the kernel of the localisation map

locp∗ : E(K)⊗OK OK,p∗ → E(Kp∗)⊗OK,p∗

has OK,p∗-rank r − 1. Let y1, . . . , yr−1 be an OK,p∗-basis of this kernel, and extend it to an

OK,p∗-basis y1, . . . , yr−1, yp∗ of E(K)⊗OK,p∗ .

Proposition 8.1. With the above assumptions and notation, we have

[E(Kp∗)⊗OK OK,p∗ : locp∗(E(K)⊗OK OK,p∗)] ∼ p−1 logE,p∗(yp∗),

where logE,p∗ denotes the p∗-adic logarithm associated to E. Similarly, we also have

[E(Kp)⊗OK OK,p : locp(E(K)⊗OK OK,p)] ∼ p−1 logE,p(yp),

when yp ∈ E(Kp)⊗OK OK,p is defined analogously to yp∗.

Proof. We give the proof of the first assertion; that of the second is of course essentially

identical.

We first observe that, from the definitions, we have

[E(Kp∗)⊗OK OK,p∗ : locp∗(E(K)⊗OK OK,p∗)] = [E(Kp∗)⊗OK,p∗ : locp∗(OK,p∗ · yp∗)].

Let E0 denote the kernel of reduction modulo p∗ of E, so we have an exact sequence

0→ E0(Kp∗)→ E(Kp∗)→ Ẽp∗(kp∗)→ 0.

Set

Z := OK,p∗ · yp∗ , Z0 := locp∗(Z) ∩ E0(Kp∗), C := locp∗(Z)/Z0.

Write λp∗ for the restriction of locp∗ to Z. We have the following commutative diagram:

0 −−−→ Z0 −−−→ Z −−−→ C ⊗OK OK,p∗ −−−→ 0yρ

yλp∗

yρ′

0 −−−→ E0(K
∗
p )⊗OK OK,p∗ −−−→ E(Kp∗)⊗OK OK,p∗ −−−→ Ẽp∗(kp∗)⊗OK OK,p∗ −−−→ 0

Observe that ρ is injective since λp∗ is injective, and that Ẽp∗(kp∗)⊗OK OK,p∗ = 0 because

Ẽp∗(kp∗)(p) = Ẽp∗(kp∗)(p) (see e.g. [12, p. 28]). Applying the Snake Lemma to the diagram

yields the exact sequence

0→ Ker(ρ′)→ Coker(ρ)→ Coker(λp∗)→ 0,

and so we have

|Coker(λp∗)| = |C ⊗OK OK,p∗|−1 · |Coker(ρ)|.
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Set k = [Z : Z0] = |C ⊗ OK,p∗|; then kyp∗ is an OK,p∗-generator of Z0. Since there is an

isomorphism

logE,p∗ : E0(Kp∗)
∼−→ p∗OK,p∗ ,

it follows that we have

|Coker(ρ)| ∼ p−1 logE,p∗(kyp∗) = kp−1 logE,p∗(yp∗).

Therefore

|Coker(λp∗)| ∼ p−1 logE,p∗(yp∗),

and this establishes the desired result. �

Corollary 8.2. Suppose that r ≥ 1 and assume that X(K)(p∗) is finite. Then

|Xrel(p)(K)(p∗)| = p−1 · |X(K)(p∗)| · logE,p(yp).

Proof. This follows directly from Propositions 6.10(a) and 8.1. �

Proof of Theorem B. By hypothesis, [ , ]K,p∗ is non-degenerate, r ≥ 1, and X(K)(p) is

finite; hence we have that ords=1 L
∗
p(s) = r − 1 (Corollary 6.8(a)). Proposition 6.11 and

Corollary 8.2 imply that

|Σp∗(K,W
∗)/ div| = |Xrel(p)(K)(p∗)| · [E(Kp∗)⊗OK OK,p∗ : locp∗(Šel(K,T ∗))]

∼ p−2 · |X(K)(p∗)| · logE,p∗(yp∗) · logE,p(yp).

We therefore deduce from (5.1), (2.7) and Remark 3.4 that

lim
s→1

L∗p(s)

(s− 1)r−1
∼

[logp(ψ
∗(γ))]r−1 · p−2 · |X(K)(p∗)| · logE,p∗(yp∗) · logE,p(yp) · RK,p∗ ,

as asserted.

This completes the proof of Theorem B. �

9. Canonical elements in restricted Selmer groups

The goal of this section is to explain how the methods of [14] may be used to produce an

exact formula for lims→1 L
∗
p(s)/(s− 1) when r = 0 (see Theorem 9.5 below). The arguments

involved are quite similar to those of [14], and so, in what follows, we assume that the reader

has a copy of [14] and is willing to refer to it from time to time for some of the details we

omit.
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We begin by introducing the following notation (some of which differs from that of [14]):

Un,p := units in Kn,p congruent to 1 modulo p;

Un,p∗ := units in Kn,p∗ congruent to 1 modulo p∗;

U∞,p := lim←−Un,p, U∞,p∗ := lim←−Un,p∗ ;

U∗n,p := units in K∗n,p congruent to 1 modulo p;

U∗n,p∗ := units in K∗n,p∗ congruent to 1 modulo p∗;

U∗∞,p := lim←−U
∗
n,p, U∗∞,p∗ := lim←−Un,p∗ ,

where all inverse limits are taken with respect to norm maps. We also set

En := global units of Kn, E∗n := global units of K∗n;

En := the closure of the projection of En into Un,p;

E∗n := the closure of the projection of E∗n into U∗n,p∗ ;

E∞ := lim←−En, E∗∞ := lim←−E
∗
n.

Remark 9.1. Note that since the strong Leopoldt conjecture holds for all abelian extensions

of K (see [2]), we have that

En ' En ⊗Z Zp, E∗n ' E
∗
n ⊗Z Zp,

and so we may also view E∞ as being a submodule of U∞,p∗ and E∗∞ as being a submodule

of U∗∞,p. We shall do this without further comment several times in what follows. �

Proposition 9.2. There are natural injections

ρ : Hom(T ∗, (U∗∞,p ⊗Q)/E∗∞)Gal(K∗∞/K) ↪→ Σ̌p(K,T ),

ρ∗ : Hom(T, (U∞,p ⊗Q)/E∞)Gal(K∞/K) ↪→ Σ̌p∗(K,T
∗)

Proof. The proof of this result is essentially the same, mutatis mutandis, as that of [14,

Proposition 2.4]. The map ρ is defined as follows.

For any f ∈ Hom(T ∗, (U∗∞,p ⊗ Q)/E∗∞)Gal(K∗∞/K) and any integer n ≥ 1, we define fn ∈
Hom(Eπn , E∗n/E∗p

n

n )Gal(K∞/K) to be the image of f under the following composition of maps:

Hom(T ∗, (U∗∞,p ⊗Q)/E∗∞)Gal(K∗∞/K) → Hom(T ∗, (U∗n,p ⊗Q)/E∗n)Gal(K∗∞/K)

→ Hom(Eπn , E∗n/E∗p
n

n )Gal(K∗∞/K),

where the first arrow is the map induced by the natural projection U∗∞,p → U∗n,p, and the

second arrow is induced by raising to the pn-th power in U∗n,p.
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Recall that, for each n ≥ 1, there is an isomorphism

ρn : H1(K,Eπn)
∼−→ Hom(Eπ∗n ,K∗×n /K∗×pnn )Gal(K∗n/K)

(see e.g. [14, Lemma 2.1] or [10, Lemme 12]). We define

ρ(f) := [(p− 1)(π∗)2nρ−1
n (fn)] ∈ lim←−

n

H1(K,Eπn).

It is not hard to check from the definition that ρ is injective. It follows from Theorem 3.1,

Proposition 3.2, and Corollary 3.3 that ρ−1
n (fn) ∈ Σp(K,Eπn) if and only if the restriction

of ρ−1
n (fn) to H1(K∞, Eπn) is unramified outside p∗. It may be shown via an argument very

similar to that given in [14, Lemmas 2.1 and 2.3] that this in fact the case. �

We shall now explain how elliptic units may be used (following [14]) to construct canonical

elements

s
(1)
p ∈ Σ̌p(K,T ), s

(1)
p∗ ∈ Σ̌p∗(K,T

∗)

when r = 0. These are the analogues in the present situation of the elements x
(1)
p ∈ Šel(K,T )

and x
(1)
p∗ ∈ Šel(K,T ∗) constructed in [14] when r = 1.

Let C∞ ⊆ E∞ and C∗∞ ⊆ E∗∞ denote the norm-coherent systems of elliptic units constructed

in [14, §3], and write C∞ and C∗∞ for the closure of C∞ in E∞ and C∗∞ in E∗∞ respectively. Set

J ∗ := Ker(ψ∗ : Λ(K∗∞)→ Zp), J := Ker(ψ : Λ(K∞)→ Zp),

and let ϑ∗ be the generator of J ∗ fixed in [14, §6] (so ϑ∗ = γψ∗(γ−1) − 1, where γ is any

topological generator of Gal(K∗∞/K) satisfying logp(ψ
∗(γ)) = p). Write f ⊆ OK for the

conductor of the Grossencharacter associated to E, and let N(f) denote the norm of this

ideal. Fix B ∈ Ef/Gal(K/K), and generators w of T and w∗ of T ∗ according to the recipe

described in [14, §6]. Let

θB(N(f)−1w∗) ∈ C∗∞ ⊆ U∗∞,p ⊗Q

denote the elliptic unit constructed in [14, §3].

Suppose that t is a positive integer such that

C∗∞ ⊆ It−1E∗∞ ⊆ U∗∞,p ⊗Q and C∗∞ ⊆ It(U∗∞,p ⊗Q).

Proposition 9.3. There exists a unique homomorphism σ
(t)
p ∈ Hom(T ∗, (U∗∞,p ⊗ Q)/E∗∞)

such that

σ
(t)
p (w∗)ϑ

∗t
= θB(−N(f)−1w∗)

in E∗∞/J ∗tE
∗
∞.

Proof. Theorem 7.2(i) of [14] implies that U∗∞,p contains no ϑ∗-torsion elements. The exis-

tence of σ
(t)
p therefore follows via an argument very similar to that of [14, Theorem 4.2]. �
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We set

s
(t)
p := ρ(σ

(t)
p ), s

(t)
p∗ := ρ∗(σ

(t)
p∗ ),

where of course the definition σ
(t)
p∗ ∈ Hom(T, (U∞,p∗ ⊗Q)/E∞) the same, mutatis mutandis,

as that of σ
(t)
p .

Remark 9.4. In fact the only non-zero values of s
(t)
p and s

(t)
p∗ occur when r = 0 and t = 1:

(a) Suppose that r = 0. Then Lp(1) 6= 0, and so we have (via [14, Theorem 7.2(i)], for

example):

C∞ ⊆ E∞ ⊂ U∞,p ⊗Q and C∞ 6⊆ I(U∞,p ⊗Q).

In particular, we have that C∞ 6⊆ IE∞ ⊆ U∞,p ⊗ Q. Similar remarks imply that also

C∗∞ 6⊆ I∗E
∗
∞ ⊆ U∗∞,p∗ ⊗Q. Applying Remark 9.1, we deduce that

C∗∞ 6⊆ I∗E
∗
∞ ⊆ U∗∞,p∗ ⊗Q. (9.1)

Now suppose in addition that [ , ]K,p∗ is non-degenerate. Then Theorem A implies that

ords=1 L
∗
p(s) = 1, and so from [14, Theorem 7.2(i)], we have

C∗∞ ⊆ I∗(U∗∞,p ⊗Q). (9.2)

We now deduce from (9.1) and (9.2) and the definition of ρ that s
(1)
p 6= 0.

A similar argument shows that s
(1)
p∗ 6= 0 also.

(b) Suppose now that r ≥ 1. Assume that X(K)(p) is finite, and that the height

pairing [ , ]K,p∗ is non-degenerate. Then Theorem B (or [14, Corollary 11.3]) implies that

ords=1 L
∗
p(s) = r − 1, and so it follows from [14, Theorem 7.2(i)] that

C∗∞ ⊆ I∗r−1(U∗∞,p ⊗Q). (9.3)

On the other hand, Theorem 4.2 and Proposition 4.4 of [14] imply that

C∗∞ ⊆ I∗r−1E∗∞ ⊆ U∗∞,p∗ ⊗Q, C∗∞ 6⊆ I∗rE
∗
∞ ⊆ U∗∞,p∗ ⊗Q,

and so applying Remark 9.1, we deduce that

C∗∞ ⊆ I∗r−1E∗∞ ⊆ U∗∞,p ⊗Q, C∗∞ 6⊆ I∗rE
∗
∞ ⊆ U∗∞,p ⊗Q. (9.4)

It now follows from (9.3) and (9.4) that s
(t)
p = 0 for 1 ≤ t ≤ r − 2 and that s

(t)
p is not

defined for t ≥ r − 1.

(c) Suppose that r = 0, but that ords=1 L
∗
p(s) > 1 (so, in particular, the pairing [ , ]K,p∗ is

degenerate, which we expect never to happen). Then an argument similar to that given in

(b) above shows that s
(1)
p = 0, and that s

(t)
p is not defined for t > 1. �
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Theorem 9.5. Suppose that r = 0 and that [ , ]K,p∗ is non-degenerate, so ords=1 L
∗
p(s) = 1.

Then

lim
s→1

L∗p(s)

s− 1
= N(f)−1(p− 1)

(
1− ψ∗(p)

p

)
lim
n→∞

logp(σ
(1)
p,n(w

∗)).

Proof. This may be shown in exactly the same way as [14, Proposition 9.4(ii)]. �

Remark 9.6. The precise relationship between Theorem A and Theorem 9.5 is not clear,

and it would be interesting to obtain a better understanding of this. �
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