ARTIN’S CONJECTURE FOR PRIMITIVE ROOTS

M. Ram Murty

§0. Introduction
In his preface to Diophantische Approximationen, Hermann Minkowski expressed the
conviction that the “deepest interrelationships in analysis are of an arithmetical nature.”
Gauss described one such remarkable interrelationship in articles 315 - 317 of his Disqui-
sitiones Arithmeticae. There, he asked why the decimal fraction of 1/7 has period length
6:
; = 0.142857 142857 142857 ...

whereas 1/11 has period length of only 2:

1
1= 0.09 09 09 ...

Why does 1/99007599, when written as a binary fraction (that is, expanded in base 2), have
a period of nearly 50 million 0’s and 1’s 7 To answer these questions, Gauss introduced

the concept of a primitive root.

To motivate our discussion, let p be a prime (# 2,5), and let

1
- = .0109...0f...

be its decimal expansion with period k. Then, it is easily seen that

ai as ag 1 1 M
= [—4+ =+ ...+ —= 1+—4+ ——+...] =
( + + ...+ ) ( + T0F + + )

1
p 10 ' 102 10% 102k 10k —1°

where M is some integer. Therefore, 10¥ — 1 = Mp. That is,
(1) 10* = 1(mod p).
The period k must satisfy the above congruence, and k is characterized as the smallest

exponent for which (1) is satisfied.

If k£ is the smallest integer satisfying (I), we say that 10 has order k (mod p). By
Fermat’s little theorem,
10771 = 1(mod p)
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and therefore
0<k<p-—1.

Since by a theorem of Lagrange, k|p — 1, the largest period of 1/p can occur if and only if
10 has order p — 1 (mod p). In such a case, 10 is called a primitive root (mod p). More

generally, if p fa, and the smallest k& such that
a® = 1(mod p)

is p— 1, then a is a primitive root (mod p). If n is the product of distinct primes p;, the
period of 1/n in base a is the least common multiple of the orders of a(mod p;), provided
a and n are relatively prime. In the case n = 99007599 = (9851)(9949), 9851 and 9949 are
both prime, 2 is a primitive root for both primes and the period of 1/99007599 in base 2 is

lem [9850, 9948] = 48,993, 900.

Therefore, 1/99007599 has a binary expansion of period 48,993,900. Such facts are used

by the computer scientists to generate pseudo- random binary sequences.

This remarkable interrelationship does not end here. Gauss raised the question of
how often 10 is a primitive root mod p, as p varies over the primes, but made no specific
conjecture. A precise conjecture was formulated by E. Artin [1, p.viii-x| in 1927 during
a conversation with H. Hasse. He hypothesised that for any given non-zero integer a
other than 1, -1 or a perfect square, there exist infinitely many primes p for which a is a
primitive root (mod p). Moreover, if N,(z) denotes the number of such primes up to z,

he conjectured an asymptotic formula of the form

N,(z) ~ Aa) —

log z

as x — 0o, where A(a) is a certain constant depending on a. This is now known as Artin’s

conjecture.

“We all believe,” Artin wrote [1, p. 534], “that mathematics is an art. The author of a book,
the lecturer in a classroom tries to convey the structural beauty of mathematics to his readers,
to his listeners. In this attempt, he must always fail. Mathematics is logical to be sure, each
conclusion is drawn from previously derived statements. Yet the whole of it, the real piece of art,

is not linear; worse than that, its perception should be instantaneous. We all have experienced
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on some rare occasions the feeling of elation in realizing that we have enabled our listeners to

see at a moment’s glance the whole architecture and all its ramifications.”

Artin had a profound effect in the shaping of the mathematics of our time. His deep
insights into class field theory, reciprocity laws, non-abelian L series and the arithmetic of
function fields have guided the development of modern number theory. Artin’s conjecture
is one celebrated instance of his mathematical intuition and creativity. It is the focal
point of diverse areas of mathematics such as group theory, algebraic and analytic number
theory, and algebraic geometry. In fact, Artin’s motivation originated in algebraic number

theory. His intuition was as follows.

If a is a primitive root (mod p), then it is necessary and sufficient that
aP~ /e £ (mod p)

for every prime divisor ¢ of p — 1. For if k is the order of @ mod p, then k|p — 1 and if
k # p—1, then k|(p—1)/q for some prime divisor g of p— 1. Heuristically, a is a primitive

root (mod p) if the “events”

(%) p = 1(mod q)
a?~Y/% = 1(mod p)

do not occur. To invert the problem, fix ¢ and find the probability that a prime p satisfies
the above conditions. By Dirichlet’s theorem, p = 1 (mod q) is true for primes p with

frequency

qg—1
One would expect that
a?~Y/4 =1 (mod p)

occurs with probability 1/g. The probability that both events occur is 1/¢(q — 1), since
these events can be assumed to be independent. To ensure that @ is a primitive root (mod

p), the above events must not occur for every g. This suggests a probability of

1
1o~ q(q — 1))

q

for such primes.



In 1967, Hooley [10] proved both Artin’s conjecture and an asymptotic formula for
N, (z) subject to the assumption of the generalised Riemann hypothesis. This hypothesis,
which is still unproved, is the natural extension of the classical Riemann hypothesis to the
Dedekind zeta function of a number field (see next section). The implication of Hooley’s
theorem is that if Artin’s conjecture is false, then the generalised Riemann hypothesis is

false.

In 1983, Rajiv Gupta and the author [6] proved without any hypothesis, that there
is a set of 13 numbers such that, for at least one of these 13 numbers, Artin’s conjecture
is true. This established, for the first time, the existence of some a for which Artin’s
conjecture is true. Moreover, this proof demonstrated that the conjecture was also true
for almost all a. Gupta, Kumar Murty and the author [8] subsequently reduced the size of
this set to 7. In 1985, Heath-Brown [9] refined this result to obtain a set of three numbers,
by an application of the “Chen - Iwaniec switching”. (Switching first occurs in Lemma
4.4 of Twaniec [13] in the study of primes of the form ¢(z,y) + A, where ¢ is a quadratic
form. It was also discovered independently by Chen in his quasi - resolution of the twin
prime problem and the Goldbach conjecture.) More precise results will be stated below.

One consequence of the Heath-Brown refinement is
Theorem 1. One of 2, 3, 5 is a primitive root (mod p) for infinitely many primes p.

In order that a be a primitive root for a prime p not dividing a, it is clearly necessary

and sufficient that for each prime g,
(1) p=1(mod ¢q) = aP~Y/7 £ 1(mod q).

Using this criterion, several nineteenth century mathematicians observed that 2 is a prim-
itive root (mod p) whenever p is of the form 4q + 1, where ¢ is prime. In such a case, p—1

has only two prime divisors, namely 2 and ¢. Since ¢ is odd,
p=4g+1 = 5(mod 8)

and
2(P=1/2 = _1(mod p)

by a special case of quadratic reciprocity. Also,
2(P=1)/a = 9% = 1(mod p)
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implies that p = 3 or 5 and neither of these primes is of the form 4qg + 1. Therefore,
(1) is satisfied and 2 is a primitive root (mod p). It is a classical unsolved problem to
determine whether there are infinitely many primes of the form (p — 1)/4. It is known by
sieve methods that (p — 1)/4 is infinitely often a product of at most two primes and both
these prime factors are greater than p?, with 6 > %. Thus, there are not many conditions
specified by (f) to ensure that a is a primitive root (mod p) for such primes. This is the

essential fact that enables us to prove Theorem 1.

§1. Intuition of Artin and Hooley’s theorem

An algebraic number « is a complex number which satisfies an equation of the form
(0) cn@”™ + Cp1d” P+ ciatcg=0

where ¢;, 0 <7 < n, are rational numbers. If n is the smallest natural number for which
an equation of the form (0) holds, « is said to be of degree n. The set of all numbers of

the form

b() + bla + ...+ bn_la”_1

with b; € Q, forms a field K, which we denote by Q(«), and we say that K has degree n.
The set of all 8 € Q(«) which satisfy a relation of the form

B+ an_18"" '+ .. +a1B+ap=0

with a; € Z forms a ring called the ring of integers of K, which we denote by Og.

Ok enjoys some remarkable properties which were first discovered and systematically
used by Dedekind. For instance, every ideal of O can be factored uniquely into a product
of prime ideals. This is the number field analogue of the ancient theorem that every natural

number is a unique product of prime numbers.

If p is a prime number, the ideal generated by p in Ok, namely pOg, factorises as a

product of distinct prime ideals P;:
pOx = P ... Pge.
Dedekind proved the important relation
g
n=>Y ef;
=1
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where f;, defined by the cardinality of the quotient ring Ox /P; = p¥i, is called the degree
of the prime ideal P;. A prime p is said to split completely in K if

pOx = P1.. P,

with distinct prime ideals P; of degree one. Let 7 (z) denote the number of primes p < z
which split completely in K. If K is a normal extension of Q, then a theorem of Chebotarev

states that the density of primes p which split completely in K is 1/n. That is,

7TK(.T) _ 1

lim .
z—oo TQ () n
Artin realized that the two conditions of (x) are satisfied if and only if p splits completely
in the (normal) extension L, = Q((,, a'/?), where (, denotes a primitive g-th root of unity.
If a is squarefree, then the degree of L,/Q is ¢(¢ — 1) and by the theorem of Chebotarev,
the density of primes which split completely in L, is

1
q(g — 1)
Now, a is a primitive root (mod p) if and only if the above two conditions (x) do not hold

for all g. That is, a is a primitive root (mod p) if and only if p does not split completely

in any L,;. We would therefore expect the density of such primes to be

1
[a- alq — 1))'

q

This was the heuristic reasoning which led Artin to formulate his conjecture. Computations
by Lehmer revealed that some adjustment is needed in the above conjectured density for
a general a, in order to take into account the possible dependence in the fields L,. It is

clear that if we let (for each squarefree integer k),
Ly =] L,
alk

be the compositum of the fields L, for primes ¢ dividing & and let ny be the degree of Ly,
over Q, then the set of primes which do not split completely in any L has density

A(a):zﬂ

n
k=1 k

6



by the inclusion-exclusion principle. The Mobius function p is defined by

(k) = (=1)", if k is the product of r distinct primes
)= 0, otherwise.
It can be shown that if £ is odd, then the fields L, for g|k are completely linearly disjoint.
Therefore, for odd k,

ng = H nq,

qlk
and for even subscripts, ngx is equal to ny or 2n according to whether y/a is or is not
contained in the field of k-th roots of unity. If a = bc? with b squarefree, then the criterion
for /a to be contained in the field of k-th roots of unity (for odd squarefree k) is that bk
and b =1 (mod 4). The formula

Afa) =601 - niq)

where
1 if b # 1(mod 4),
"= V1 - w1y sty i b= 1(mod 4).

is the “obvious” modification for the formulation of the precise conjecture. Subject to the
generalised Riemann hypothesis, Hooley proved that this modified density is the correct

density of primes for which a is a primitive root.

To make this precise, we need an effective version of the Chebotarev density theorem.
In retrospect, it seems rather surprising that such a theorem was not proved until half a
century later. One reason for this might be inadequate communication between analytic

and algebraic number theorists.

The Dedekind zeta function of a number field K is defined by
(r(s) =) N(A),
A

where N(A) denotes the cardinality of Og /A, and the sum is over all ideals A of Og.
Ck (s) converges absolutely for Re(s) > 1. Hecke first showed that (x (s) admits an analytic
continuation to the entire complex plane, except for a simple pole at s = 1, and satisfies a
functional equation analogous to that of the classical Riemann zeta function. In the same

spirit, there is the generalised Riemann hypothesis: for Re(s) > 0,
1
Ck(s) = 0= Re(s) = 3"
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Under this hypothesis, Hooley proceeded as follows. If m, denotes the set of primes p
which split completely in L, and 7 (z) denotes the number of primes p up to x contained

In Ngx7g, then by the inclusion-exclusion principle

Nu(@) = 3 u(kymi(z).
k=1
Since 7 (z) = 0 for k > x, this is a finite sum. If the analogue of the Riemann hypothesis
for the Dedekind zeta function corresponding to the field Ly is assumed, then one can

prove along classical lines, the following prime number theorem:

li
(©) ra(z) = ;—:+0( 212 log dr)
where
, Todt
li x = —
5 logt

and the constant implied by the O symbol is absolute. (Here and elsewhere, the O notation
means the following: we write that f(z) = O(g(z)) if |f(z)| < Cg(x) for some constant C'.)
It is clear that if we insert this in the above formula for N, (), then the contribution from
the error term is too large. For this reason, Hooley decomposed the sum in the following

way, for k = Hp<z p:

Na(2) < 3 p(d)mala),

dlk
because the right hand side enumerates primes that satisfy a proper subset of the conditions
specified by (). Moreover, if M (z; z,w) denotes the number of primes p < z that satisfy
(%) for some z < ¢ < w, then

x) > Z p(d)mg(x) — M(z; 2, x).

dlk

If z = ¢ logz, then from (C),

Ny(z) = A(a)li z + O( )+ O(M(x; z,x)).

log T
To treat the term M (z;z, x), write
1/2 1/2
M(z;z,2) < M(z; 2, —5— ul —) + M (z; 3:2 /2 logz) + M (z;z'/?log z, ).
log? "log®z’
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The first two terms on the right hand side are shown to be

0 (arlog ;ogac

log” x
by using (C) and estimates derived from sieve methods. The generalised Riemann hy-
pothesis is unable to estimate the third term in a satisfactory way. The treatment of
M (z;z'/?log z, x) is ingenious and simple. A variation of this method appears in our
quasi-resolution of Artin’s conjecture [6] and the details are given here. Firstly, the term

in question enumerates primes p such that
a?~Y/4 =1 (mod p)

for some prime g > z'/2log . Thus, such a prime p divides

since

q logz
But the number of prime divisors of a™ —1 is at most m log a (using the fact that a natural
number n has at most logn prime factors). Therefore, the total number of prime factors

in question cannot exceed
x

Z mloga = O(

21/2
log x

log2 z’
m<

Putting these three estimates together, we conclude that

logl
M(m;z,x):O(w .
log” x

This proves that, subject to the generalised Riemann hypothesis,

T z loglog x
L o(Floglog

N,(z) = A(a)

log x log>z

which completes the account of Hooley’s theorem.



§2. Elliptic analogues

In the fall of 1983, at the Institute for Advanced Study in Princeton, the author and
Rajiv Gupta were considering some unresolved conjectures of Lang and Trotter concerning
elliptic curves. In 1976, Lang and Trotter [14] formulated the elliptic analogue of the Artin
conjecture. More precisely, let F be an elliptic curve over Q. That is, E can be viewed as

the solutions of the equation
y?=1° 4+ gar + 93, 92,93 € Q.
If K is a field, then we define
E(K) = {(z,y) z,y € K,y* = 2° + gaz + g3}.

Poincaré turned this set into an additive abelian group by defining the addition of two

points P = (z1,y1), @ = (z2,y2) as R = (x3,y3), where for 1 # x2,

o (y2 — yl)2
T3 = —T1— 22+ (@9 — 1)’
and
— x -z
Yz = _{$3(y2 N n 2Y1 1Y2 }’
T2 —I1 T2 — I
and if £1 = x4, then
3-T% + g2.9
r3 = —2
’ ' ( 21 )
322 + g9
ys = (z1 — z3)(———) + v1.
2y,

(These formulas are valid for any field of characteristic # 2,3.) It is a classical theorem
of Mordell and Weil that E(K) thus defined is a finitely generated abelian group. The
number of independent generators is called the rank of E(K). Geometrically, the addition
of two points of the cubic is the reflection in the z-axis of the third point determined by

the secant (or tangent) joining the two given points (see Figure 1).
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The Mordell-Weil theorem says therefore that all of the points with rational co-
ordinates can be obtained by tangent-secant process from a finite number of points. The
map ¢, defined by ¢,(P) = nP, for P € E(K) defines an endomorphism of E(K), for
every integer n. Therefore, the endomorphism ring of E(K) contains a natural copy of Z.
Deuring proved the remarkable fact that if the endomorphism ring is strictly larger than
the copy of Z, then it can be naturally identified to a subring of the ring of integers in
an imaginary quadratic field. These are called elliptic curves with complex multiplication
whenever these extra endomorphisms exist. The corresponding imaginary quadratic field
is called the C'M field. If a is a rational point of infinite order, the elliptic analogue of
Artin’s conjecture is to determine the density of primes p for which E(Fp) (the rational
points on the curve E viewed over the finite field Fy) is generated by @, the reduction of
a(mod p). Such a point is called a primitive point. It was conjectured by Lang and Trotter
that the density of primes p for which a is a primitive point always exists. Attempts to
prove this conjecture by the method of Hooley, outlined in section 1, proved futile. The
error terms in the Chebotarev density theorem were too large. Nevertheless, Gupta and
the author were successful in carrying out a variation of the method of Hooley for curves
with complex multiplication and primes p which split completely in the corresponding C M
field. The problem still remains open in the non-C'M case.

Lang and Trotter formulated higher rank analogues of their conjecture. A natural
question arises: does the problem get simpler if the rank of the curve goes up 7 The elliptic
analogue of lemma 3 in the next section was the key. Thanks to lemma 3, the problem does
become simpler when the rank increases and the full strength of the Riemann hypothesis

need not be invoked. In fact, Gupta and the author proved:

Theorem 2. Let E be an elliptic curve with CM by an order in an imaginary quadratic
field. If the rank of E(Q) > 6, then there is a set S of 218 rational points such that at

least one of these points is a primitive point (mod p) for infinitely many primes p.

But then, what about the classical case 7 It seems that no one had previously for-
mulated the higher rank analogue of the classical conjecture of Artin. Going back and
formulating the higher rank analogue, the authors of [7] were led to the beginnings of the
results described in the previous section. Together with Heath-Brown’s refinement, the

theorem stated at the outset is the most that we can say on Artin’s conjecture at present.
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§3. Quasi-resolution of Artin’s conjecture

Suppose now that r integers ai,as, ..., a, are given which are multiplicatively inde-

pendent. That is, if there are integers nq,ns, ..., n, such that
ai*-rapm =1

then ny = nyg = --- =n, = 0. Let I" be the subgroup of Q* generated by aq, ..., a,. Denote
by I'p the image of I' (mod p). Thus, if r = 1, and @ = a1, then a is a primitive root
(mod p) if and only if ', is the full group of co-prime residue classes (mod p). In the

general case of arbitrary r, consider the size of I';, as p varies. The key lemma is:
Lemma 3. The number of primes p such that |Tp| < y is O(y't+).
Proof. Consider the set S = {a7* ---al : 0 < n; < y%,l <i<r}. As ay,as,...,a, are

multiplicatively independent, the number of elements of S exceeds

(=] +1)" > v.

If p is a prime such that |I',| < y, then two distinct elements of S are congruent (mod p).

Hence, p divides the numerator N of
ai™ - -artt —1
for some my, mag, ..., m, satisfying
mg| <y'/m, 1<i<r

For a fixed choice of mq, ..., m,, the number of such primes is bounded by
T
log N < y'/"> "loga; = O(y*'").
i=1

Taking into account the number of possibilities for my, ..., m,., the total number of primes

p cannot exceed
O(y*+7).

This completes the proof of the lemma.
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Remark. This is the higher dimensional version of the argument used to treat
M (z; 2% log z, )

of the previous section. In a different context, this lemma was first proved by Matthews
[15].

A higher rank analogue of Artin’s conjecture can be formulated. Let I" be the subgroup

of Q* generated by r multiplicatively independent natural numbers as, ..., a,.

Question. When is I',, the set of coprime residue classes (mod p) for infinitely many primes

p?

This question is considered for » > 3 in a leisurely fashion, ignoring technicalities.
Suppose that (p —1)/2 is a product of two primes each greater than p?, with § > 1/4. Let
B be the set of such primes and denote by B(z) the number of such primes up to z. By

sieve methods, it can be shown that

CT

Ble) 2 log2 x

for some positive constant c. The interested reader should consult the excellent exposition
of Bombieri [2, pp. 65-75] for the technical details. Then, since I, is a subgroup of the
coprime residue classes (mod p), the size of I, does not have many possibilities. This is
because |I'p| divides p — 1. Consequently, if either of the two prime factors divides the
index of I'y, in F%, then

P

b

for p < z. Since r > 3, we find by the lemma that the number of such primes does not

exceed
O(ﬂ74(1_9)/3)

and since # > 1/4, this bound is certainly

T

0 .
(log2 T

0

Therefore, if the primes for which [T',| < p'~% are thrown away, then for almost all primes

contained in B,

|Fp| > pl_g-
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For p € B, the only divisors of p — 1 which satisfy the above inequality are (p — 1)/2 and
p — 1. Therefore
p—1

\I‘p|:T or p—1

If the first possibility can be eliminated, then I', is the group of coprime residue classes
(mod p). If I',| = %, then I', = (FZ)%. Impose the restriction that at least one of
ai,...,a, is not a perfect square. The sieve methods alluded to earlier produce a set of
primes B’ such that |I'p| # ’%1 and p%l is either prime or a product of two primes, each

greater than pY, > 1/4. The method indicated above forces I, =Fg.

Thus, if » > 3, and if at least one of ay,as, ..., a, is not a perfect square, then there

are infinitely many primes p such that I', is the set of coprime residue classes (mod p).

To take a specific case, we deduce that 2, 3, and 5 together generate the coprime

residue classes (mod p) for at least
cx

log?
primes p < z. To produce an a which generates Fj, consider a variation of Hooley’s
argument in section 2. Suppose that none of 2, 3, 5 is a primitive root (mod p) for p € B'.
If p%l is a prime, then one of 2, 3, 5 is a primitive root (mod p) for otherwise, 2, 3, 5
would generate a subgroup strictly smaller than Fj, which is a contradiction. Therefore

p—1

5~ is not prime. In this case,

p—1

Ty T a2 @ < q2,
with g1 > p%, @ > 1/4, the order (mod p) of each of 2, 3, 5 must be one of ¢, ¢z, 241,
or 2¢s. Clearly ¢; < p/? for otherwise, p%l > p, a contradiction. Now let n > 0, be a

parameter to be chosen. For a fixed g1, the number of solutions of

p—1

9 = 4192
where p and ¢ are primes, can be shown by elementary sieve methods to satisfy the bound

Cx
q1(log 7-)?

for some positive constant C' and for ¢; < z. From this, it can be deduced that the number
of p € B’ such that ¢; > p%_” cannot exceed

Z $§0n

2 1 2
L L 4q1log” log” x
22 T<q1<z?
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for some absolute constant Cy. If n is chosen sufficiently small, then it may be assumed

without loss that for a certain positive constant c;, at least

C1T

log2 T
primes p € B', p < z are such that p%l is either prime or

p—1 1_
?:(h@; p9<Q1 <p?T"M < qo

with 6 > %. This facilitates matters considerably because if a is any natural number such
that the order of a(mod p) is < p2~" then applying the lemma with r = 1, and I" = (a),
the subgroup of Q* generated by a, shows that the number of such primes cannot exceed
O(x'=27). Thus the number of primes p such that 2, 3, or 5 has order (mod p) equal to
q1 or 2¢; is at most O(x!1727). Therefore, if these primes are eliminated from the set B/,
then for z sufficiently large, there remain at least ¢/ log” z primes such that the order
(mod p) of 2, 3, and 5 is ¢ or 2go. But then, 2, 3, 5 together generate a subgroup strictly
smaller than FJ,
3, 5 is a primitive root mod p for infinitely many primes p.

which contradicts the fact that they generate Fj. Therefore, one of 2,

By a variation of the method observed earlier, if p;Zl is prime, then Artin’s conjecture
can be proved for some specific a. Sieve methods are unable to separate those primes p
such that ’%1 has exactly two prime factors and this constitutes the famous parity problem

of sieve theory.
§4. Refinements and concluding remarks

In 1977, Iwaniec [11, 12] discovered an improved form of the remainder term in the
linear sieve which leads to the result that there are at least cz/ log2 z primes p < x such
that ¢ > 0 and ’”2;1 has all prime factors > p? with 6 = i —e. In 1982, Fouvry and Iwaniec

[4] proved a theorem of the form

iz | T )
¢(m)” loghx

(8) Y. Am)(x(z,m,1) ~

m<zi7 €

where A(m) is a certain convolution of arithmetical functions, 7 (z, m, 1) denotes the num-

ber of primes p < z, p =1 (mod m), and ¢ denotes Euler’s function. With the improved
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form of the error term in the linear sieve referred to above, this result produces the desired

proportion of primes with 6 = 3—%1 —€> i. Such a result gives an affirmative answer to the
question of the previous section for the rank r > 3. Indeed, utilising (§), Rajiv Gupta and

the author [5] proved:
Theorem 4. For any distinct primes g, r, s, at least one element in the set

3.2

2 3,2 2 2 2.3 3 3,..2
{qs g T QT TS, T8,4°5,9T , 4TS

is a primitive root (mod p) for infinitely many primes p.

In his doctoral thesis, Fouvry [5] discussed various results and techniques to extend
the range in (§). In particular, he proved that the exponent 9/17 can be improved to
17/32. Finally, in 1983, Bombieri, Friedlander and Iwaniec [3] proved that the exponent
can be improved to 4/7. This result enables us to obtain cz/ log? z primes p < z and ¢ > 0,
such that p%l is a product of three prime factors, each greater than p%_e. Heath-Brown
observed that those primes p such that p%l is a product of precisely three prime factors
can be removed from this set, so that many primes p for which p%l is a product of two
large prime factors are obtained. (As was mentioned earlier, such an idea was previously
used before by Iwaniec and Chen, in different contexts.) This yields at least cz/log®

primes p < z such that p—gl is either prime or

p—l 1_ 1
T:(Z1Q2’ pe<111<p2 < qa, 9>Z-

By the method described in section 3, it follows that one of 2,3,5 is a primitive root mod p

for infinitely many primes p.

It is conjectured by Halberstam and Elliott that

li x x

(xx) m;é |7 (x,m,1) — m| = O(logT:c .

In fact, if we had (§) with an exponent of % + €, instead of 9/17 — ¢, then this would give
the result that one of 2 or 3 is a primitive root (mod p) for infinitely many primes p. Any
further improvement in (§) does not seem to give any better result. It may be that within
a decade (§) will be proved with the exponent 2 + . (Recently, it was announced [3] that
(%) is true with 2'~¢ replaced by z'/?(log z)'%87 and A < 3. This is certainly a significant
development.) But this still would not resolve Artin’s conjecture. Perhaps, some new

simple idea is still lurking in the background that would settle the whole conjecture.
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The methods under discussion actually give better results than stated. A special case
version of the results was adopted for the sake of clarity. It is clear that one can prove
along the same lines that if there are three distinct prime numbers g, r, s, then at least one
of them is a primitive root (mod p) for infinitely many primes p. It follows that there can
be at most two exceptional primes for which Artin’s conjecture is false.

Let E be the set of integers, which are not perfect squares, for which Artin’s conjecture
is false. Let E(z) denote the number of elements of E which are < z. Srinivasan and the
author [16] proved that

E(z) = O(log® z)

utilising (§). Heath-Brown [9] independently obtained the slightly finer result
E(z) = O(log® z)

by incorporating the results of [3]. In a similar vein, he proved that there are at most three
squarefree integers for which Artin’s conjecture is false.

The result (§) with an exponent of 2 + ¢ would prove E(z) = O(logz) and one
exceptional a for which Artin’s conjecture is false. Of course, if there is an exceptional a,

then the generalised Riemann hypothesis would be false in view of Hooley’s result.

In the winter of 1984, the author had the privelege of visiting the Tata Institute of
Fundamental Research in Bombay. At that time, Srinivasan and the author formulated
certain plausible conjectures which will lead to the resolution of Artin’s conjecture. These

conjectures are interesting in their own right. One such conjecture is

Conjecture. Let f,(p) denote the order of amod p. Is it true that

=

1
Zfa—(m:O(a: ) ?

p<z
(Here the summation is over prime numbers.)

To see that this conjecture implies Artin’s conjecture, let us first note that if pla™ —1,
then f,(p)|m. Hence, for a fixed p, the number of m < w such that p|a™ — 1 cannot exceed

w/ fo(p) so that the total number of primes p < z which divide the product

H (@™ —1)
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on the basis of the above conjecture. In the notation of the previous section, there is a set

B’ of primes p < z such that

1_ 1
p—1=2qq2, P’ <q1<p? "< gy, 9>Z

and the cardinality of B’ is at least cz/ log® z, for some constant ¢ > 0. If f,(p) = q1,¢2, 2q1

H (@™ —1)

m<w

or 2gs then p divides

with w = 2'~%. The conjecture implies that the number of such primes is O(:cg_e) which
is o(z/log® x) since 6§ > 1/4. It follows that for almost all p € B, a is a primitive root
(mod p).

Perhaps it is also true that

1 €
Zm:O(x)a

p<z

but it is not even known how to prove the simpler statement that

D

p<z

1 L
falp) O=*™).

The bound of O(z?) is easily deduced from standard sieve arguments.

The lower bound sieve techniques do not give a positive proportion of primes for
which a given a is a primitive root (mod p). The full strength of the generalised Riemann
hypothesis is not necessary to derive a positive proportion of such primes. Hooley [17]
makes this comment at the end of chapter 3 of his beautiful monograph. He states that it

suffices to assume that the Dedekind zeta function has no zeroes in the half-plane

1
1-——.
Re(s) > o

In October of 1982, while Hooley was visiting McGill University in Montréal, the author
asked him about this remark. Hooley explained that if one assumes for a moment that
the Artin constant A(a) is 1 (which it isn’t), then by choosing z sufficiently small, one

can ensure that p does not split completely in any L, for ¢ < z by using unconditional
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versions of the Chebotarev density theorem. To treat M (z; z, z1/2/ log? z), the Bombieri

- Vinogradov result that

.
Y r@m 1) - | < —

-
m<z1/3) logA z $(m) log” z
is used to show that
M(z;2°%, 2%/ log? ) < (1 —¢) loza:

provided 6 > 1/2e. The term M(z;z,2%) is then treated assuming the quasi - Riemann
hypothesis stated above. But of course, the Artin constant is not 1. When a is squarefree,
it is approximately .375. To take this into account, we must make use of the fact that we
need only sieve out those primes which split completely in some L;, ¢ > z, but not in any
previous field, in particular Lo, and Ls. Then, incorporating a “twisted” version of the
Bombieri - Vinogradov Theorem leads to the result stated above.

Problems in mathematics and number theory in particular, largely serve as motivating
forces for the discovery and understanding of new concepts. They provide the background
for the play of ideas. It may be that we shall not see a resolution of Artin’s conjecture
in the near future. Nevertheless, it has provided us with a rich interplay of algebraic and
analytic number theory and demonstrated a profound relationship between analysis and

arithmetic.
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