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Foreword

It is a very sad moment for me to write this "Geleitwort" to the English
translation of Jurgen Neukirch's book on Algebraic Number Theory. It would
have been so much better, if he could have done this himself.

But it is also very difficult for me to write this "Geleitwort": The book
contains Neukirch's Preface to the German edition. There he himself speaks
about his intentions, the content of the book and his personal view of the subject.
What else can be said?

It becomes clear from his Preface that Number Theory was Neukirch's
favorite subject in mathematics. He was enthusiastic about it, and he was also
able to implant this enthusiasm into the minds of his students.

He attracted them, they gathered around him in Regensburg. He told them
that the subject and its beauty justified the highest effort and so they were always
eager and motivated to discuss and to learn the newest developments in number
theory and arithmetic algebraic geometry. I remember very well the many
occasions when this equipe showed up in the meetings of the "Oberwolfach
Arbeitsgemeinschaft" and demonstrated their strength (mathematically and on
the soccer field).

During the meetings of the "Oberwolfach Arbeitsgemeinschaft" people
come together to learn a subject which is not necessarily their own speciality.
Always at the end, when the most difficult talks had to be delivered, the
Regensburg crew took over. In the meantime many members of this team teach
at German universities.

We find this charisma of Jurgen Neukirch in the book. It will be a motivating
source for young students to study Algebraic Number Theory, and I am sure
that it will attract many of them.

At Neukirch's funeral his daughter Christiane recited the poem which she
often heard from her father: Herr von Ribbeck auf Ribbeck im Havelland by
Theodor Fontane. It tells the story of a nobleman who always generously gives
away the pears from his garden to the children. When he dies he asks for a
pear to be put in his grave, so that later the children can pick the pears from the
growing tree.

This is - I believe - a good way of thinking of Neukirch's book: There are
seeds in it for a tree to grow from which the "children" can pick fruits in the
time to come.

G. Harder
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Translator's Note

When I first accepted Jurgen Neukirch's request to translate his Algebraische
Zahlentheorie, back in 1991, no-one imagined that he would not live to see the
English edition. He did see the raw version of the translation (I gave him the
last chapters in the Fall of 1996), and he still had time to go carefully through
the first four chapters of it.

The bulk of the text consists of detailed technical mathematical prose
and was thus straightforward to translate, even though the author's desire
to integrate involved arguments and displayed formulae into comprehensive
sentences could not simply be copied into English. However, Jurgen Neukirch
had peppered his book with more meditative paragraphs which make rather
serious use of the German language. When I started to work on the translation,
he warned me that in every one of these passages, he was not seeking poetic
beauty, but only the precisely adequate expression of an idea. It is for the reader
to judge whether I managed to render his ideas faithfully.

There is one neologism that I propose in this translation, with Jurgen
Neukirch's blessing: I call replete divisor, ideal, etc., what is usually called
Arakelov divisor, etc. (a terminology that Neukirch had avoided in the German
edition). Time will deliver its verdict.

I am much indebted to Frazer Jarvis for going through my entire manuscript,
thus saving the English language from various infractions. But needless to say,
I alone am responsible for all deficiencies that remain.

After Jurgen Neukirch's untimely death early in 1997, it was Ms Eva-
Maria Strobel who took it upon herself to finish as best she could what Jurgen
Neukirch had to leave undone. She had already applied her infinite care and
patience to the original German book, and she had assisted Jurgen Neukirch in
proofreading the first four chapters of the translation. Without her knowledge,
responsibility, and energy, this book would not be what it is. In particular, a
fair number of small corrections and modifications of the German original that
had been accumulated thanks to attentive readers, were taken into account for
this English edition. Kay Wingberg graciously helped to check a few of them.
We sincerely hope that the book published here would have made its author
happy.

Hearty thanks go to Raymond Seroul, Strasbourg, for applying his wonderful
expertise of TEX to the final preparation of the camera-ready manuscript.



viii Translator's Note

Thanks go to the Springer staff for seeing this project through until it was
finally completed. Among them I want to thank especially Joachim Heinze for
interfering rarely, but effectively, over the years, with the realization of this
translation.

Strasbourg, March 1999 Norbert Schappacher
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Preface to the German Edition

Number Theory, among the mathematical disciplines, occupies an idealized
position, similar to the one that mathematics holds among the sciences. Under
no obligation to serve needs that do not originate within itself, it is essentially
autonomous in setting its goals, and thus manages to protect its undisturbed
harmony. The possibility of formulating its basic problems simply, the peculiar
clarity of its statements, the arcane touch in its laws, be they discovered or
undiscovered, merely divined; last but not least, the charm of its particularly
satisfactory ways of reasoning - all these features have at all times attracted
to number theory a community of dedicated followers.

But different number theorists may dedicate themselves differently to their
science. Some will push the theoretical development only as far as is necessary
for the concrete result they desire. Others will strive for a more universal,
conceptual clarity, never tiring of searching for the deep-lying reasons behind
the apparent variety of arithmetic phenomena. Both attitudes are justified, and
they grow particularly effective through the mutual inspirational influence they
exert on one another. Several beautiful textbooks illustrate the success of the
first attitude, which is oriented towards specific problems. Among them, let
us pick out in particular Number Theory by S.I. BoREVICZ and I.R. SAFAREVJ(
[14]: a book which is extremely rich in content, yet easy to read, and which
we especially recommend to the reader.

The present book was conceived with a different objective in mind. It does
provide the student with an essentially self-contained introduction to the theory
of algebraic number fields, presupposing only basic algebra (it starts with
the equation 2 = 1 + 1). But unlike the textbooks alluded to above, it
progressively emphasizes theoretical aspects that rely on modem concepts.
Still, in doing so, a special effort is made to limit the amount of abstraction
used, in order that the reader should not lose sight of the concrete goals of
number theory proper. The desire to present number theory as much as possible
from a unified theoretical point of view seems imperative today, as a result of
the revolutionary development that number theory has undergone in the last
decades in conjunction with `arithmetic algebraic geometry'. The immense
success that this new geometric perspective has brought about - for instance,
in the context of the Well conjectures, the Mordell conjecture, of problems
related to the conjectures of Birch and Swinnerton-Dyer - is largely based on
the unconditional and universal application of the conceptual approach.
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x Preface to the German Edition

It is true that those impressive results can hardly be touched upon in this
book because they require higher dimensional theories, whereas the book
deliberately confines itself to the theory of algebraic number fields, i.e., to
the 1-dimensional case. But I thought it necessary to present the theory in a
way which takes these developments into account, taking them as the distant
focus, borrowing emphases and arguments from the higher point of view, thus
integrating the theory of algebraic number fields into the higher dimensional
theory - or at least avoiding any obstruction to such an integration. This is
why I preferred, whenever it was feasible, the functorial point of view and the
more far-reaching argument to the clever trick, and made a particular effort to
place geometric interpretation to the fore, in the spirit of the theory of algebraic
curves.

Let me forego the usual habit of describing the content of each individual
chapter in this foreword; simply turning pages will yield the same information
in a more entertaining manner. I would however like to emphasize a few basic
principles that have guided me while writing the book. The first chapter lays
down the foundations of the global theory and the second of the local theory of
algebraic number fields. These foundations are finally summed up in the first
three sections of chapter III, the aim of which is to present the perfect analogy of
the classical notions and results with the theory of algebraic curves and the idea
of the Riemann-Roch theorem. The presentation is dominated by "Arakelov's
point of view", which has acquired much importance in recent years. It is
probably the first time that this approach, with all its intricate normalizations,
has received an extensive treatment in a textbook. But I finally decided not
to employ the term "Arakelov divisor" although it is now widely used. This
would have entailed attaching the name of Arakelov to many other concepts,
introducing too heavy a terminology for this elementary material. My decision
seemed all the more justified as ARAKELOV himself introduced his divisors only
for arithmetic surfaces. The corresponding idea in the number field case goes
back to HASSE, and is clearly highlighted for instance in S. LANG's textbook [94].

It was not without hesitation that I decided to include Class Field Theory in
chapters IV-VI. Since my book [107] on this subject had been published not
long before, another treatment of this theory posed obvious questions. But in the
end, after long consideration, there was simply no other choice. A sourcebook
on algebraic number fields without the crowning conclusion of class field theory
with its important consequences for the theory of L-series would have appeared
like a torso, suffering from an unacceptable lack of completeness. This also
gave me the opportunity to modify and emend my earlier treatment, to enrich
that somewhat dry presentation with quite a few examples, to refer ahead with
some remarks, and to add beneficial exercises.

A lot of work went into the last chapter on zeta functions and L-series. These
functions have gained central importance in recent decades, but textbooks do
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Preface to the German Edition xi

not pay sufficient attention to them. I did not, however, include TATE's approach
to Hecke L-series, which is based on harmonic analysis, although it would have
suited the more conceptual orientation of the book perfectly well. In fact, the
clarity of TATE's own presentation could hardly be improved upon, and it has also
been sufficiently repeated in other places. Instead I have preferred to turn back
to HECKE's approach, which is not easy to understand in the original version,
but for all its various advantages cried out for a modern treatment. This having
been done, there was the obvious opportunity of giving a thorough presentation
of ARTIN's L-series with their functional equation - which surprisingly has not
been undertaken in any existing textbook.

It was a difficult decision to exclude Iwasawa Theory, a relatively recent
theory totally germane to algebraic number fields, the subject of this book. Since
it mirrors important geometric properties of algebraic curves, it would have
been a particularly beautiful vindication of our oft-repeated thesis that number
theory is geometry. I do believe, however, that in this case the geometric aspect
becomes truly convincing only if one uses etale cohomology - which can
neither be assumed nor reasonably developed here. Perhaps the dissatisfaction
with this exclusion will be strong enough to bring about a sequel to the present
volume, devoted to the cohomology of algebraic number fields.

From the very start the book was not just intended as a modern sourcebook
on algebraic number theory, but also as a convenient textbook for a course.
This intention was increasingly jeopardized by the unexpected growth of the
material which had to be covered in view of the intrinsic necessities of the
theory. Yet I think that the book has not lost that character. In fact, it has passed
a first test in this respect. With a bit of careful planning, the basic content of the
first three chapters can easily be presented in one academic year (if possible
including infinite Galois theory). The following term will then provide scarce,
yet sufficient room for the class field theory of chapters IV-VI.

Sections 11-14 of chapter I may mostly be dropped from an introductory
course. Although the results of section 12 on orders are irrelevant for the
sequel, I consider its insertion in the book particularly important. For one thing,
orders constitute the rings of multipliers, which play an eminent role in many
diophantine problems. But most importantly, they represent the analogues
of singular algebraic curves. As cohomology theory becomes increasingly
important for algebraic number fields, and since this is even more true of
algebraic K-theory, which cannot be constructed without singular schemes,
the time has come to give orders an adequate treatment.

In chapter II, the special treatment of henselian fields in section 6 may be
restricted to complete valued fields, and thus joined with section 4. If pressed
for time, section 10 on higher ramification may be omitted completely.
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xii Preface to the German Edition

The first three sections of chapter III should be presented in the lectures since
they highlight a new approach to classical results of algebraic number theory.
The subsequent theory concerning the theorem of Grothendieck-Riemann-
Roch is a nice subject for a student seminar rather than for an introductory
course.

Finally, in presenting class field theory, it saves considerable time if the
students are already familiar with profinite groups and infinite Galois theory.
Sections 4-7 of chapter V, on formal groups, Lubin-Tate theory and the theory
of higher ramification may be omitted. Cutting out even more, chapter V, 3, on
the Hilbert symbol, and VI, 7 and 8, still leaves a fully-fledged theory, which
is however unsatisfactory because it remains in the abstract realm, and is never
linked to classical problems.

A word on the exercises at the end of the sections. Some of them are not so
much exercises, but additional remarks which did not fit well into the main text.
The reader is encouraged to prove his versatility in looking up the literature.
I should also point out that I have not actually done all the exercises myself,
so that there might be occasional mistakes in the way they are posed. If such a
case arises, it is for the reader to find the correct formulation. May the reader's
reaction to such a possible slip of the author be mitigated by Goethe's distich:

"Irrtum verlaBt uns the, doch ziehet ein hoher Bedurfnis
Immer den strebenden Geist leise zur Wahrheit hinan."

During the writing of this book I have been helped in many ways. I thank
the Springer Verlag for considering my wishes with generosity. My students I.
KAusz, B. KOOK, P. KoLCZE, TH. MosER, M. SPIESS have critically examined larger
or smaller parts, which led to numerous improvements and made it possible to
avoid mistakes and ambiguities. To my friends W-D. GEYER, G. TAMME, and K.
WINGBERG I owe much valuable advice from which the book has profited, and
it was C. DENINGER and U. JANNSEN who suggested that I give a new treatment
of Hecke's theory of theta series and L-series. I owe a great debt of gratitude
to Mrs. EvA-MARIA STROBEL. She drew the pictures and helped me with the
proofreading and the formatting of the text, never tiring of going into the
minutest detail. Let me heartily thank all those who assisted me, and also those
who are not named here. Tremendous thanks are due to Mrs. MARTINA HERTL
who did the typesetting of the manuscript in TEX. That the book can appear is

* Error is ever with us. Yet some angelic need
Gently coaxes our striving mind upwards, towards truth.

(Translation suggested by BARRY MAZUR.)
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essentially due to her competence, to the unfailing and kind willingness with
which she worked through the long handwritten manuscript, and through the
many modifications, additions, and corrections, always prepared to give her
best.

Regensburg, February 1992 Jiirgen Neukirch
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Chapter I

Algebraic Integers

§ 1. The Gaussian Integers

The equations
2=1+1, 5=1+4, 13=4+9, 17=1+16, 29=4+25, 37=1+36
show the first prime numbers that can be represented as a sum of two squares.
Except for 2, they are all - 1 mod 4, and it is true in general that any odd
prime number of the form p = a2 -I- b2 satisfies p - 1 mod 4, because
perfect squares are = 0 or - 1 mod 4. This is obvious. What is not obvious
is the remarkable fact that the converse also holds:

(1.1) Theorem. For all prime numbers p 2, one has:
p=a2+b2 (a,bEZ) p-1mod4.

The natural explanation of this arithmetic law concerning the ring Z of
rational integers is found in the larger domain of the gaussian integers

Z[i]={a+biIa,beZ}, i= .

In this ring, the equation p = x2 + y2 turns into the product decomposition
p = (x+iy)(x -iy),

so that the problem is now when and how a prime number p E Z factors
in Z[i]. The answer to this question is based on the following result about
unique factorization in Z[i].

(1.2) Proposition. The ring 7G[i] is euclidean, therefore in particular facto-
rial.

Proof : We show that Z[i] is euclidean with respect to the function Z[i] -+
N U (0), a H Ia12. So, for a, B E 7Z[i], $ 0, one has to verify the
existence of gaussian integers y, p such that

a=yp+p and IpI2<IfI2.
It clearly suffices to find y E Z[i] such that I - y j < 1. Now, the
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2 Chapter I. Algebraic Integers

gaussian integers form a lattice in the complex plane C (the points with
integer coordinates with respect to the basis 1,i). The complex number E
lies in some mesh of the lattice and its distance from the nearest lattice point
is not greater than half the length of the diagonal of the mesh, i.e. 2.

Therefore there exists an element y E Z[i] with - y < 2 < 1. El

Based on this result about the ring 2L[i}, theorem (1.1) now follows like
this: it is sufficient to show that a prime number p - 1 mod 4 of Z does
not remain a prime element in the ring Z[i]. Indeed, if this is proved, then
there exists a decomposition

p=a-,8
into two non-units a, 8 of 2L[i]. The norm of z = x + iy is defined by

N(x+iy)=(x+iy)(x-iy)=x2+y2,
i.e., by N(z) = 1z 12. It is multiplicative, so that one has

P are not units, it follows that N(a), N(P) 1 (see exercise 1),
and therefore p = N(a) = a2 + b2, where we put a = a + bi.

Finally, in order to prove that a rational prime of the form p = 1 + 4n
cannot be a prime element in 7L [ i ] , we note that the congruence

-1- x2modp
admits a solution, namely x = (2n) !. Indeed, since -1 = (p - 1) ! mod p
by Wilson's theorem, one has

-1(p-1)!=[1.2...(2n)][(p-1)(P-2)...(p-2n)]
[(2n)!] [(-l)2n(2n)!] = [(2n) !]2 mod p.

Thus we have p I x2 + 1 = (x + i)(x - i). But since p f P f 2[i], p does
not divide any of the factors x + i, x - i, and is therefore not a prime element
in the factorial ring 7L[i].

The example of the equation p = x2+y2 shows that even quite elementary
questions about rational integers may lead to the consideration of higher
domains of integers. But it was not so much for this equation that we have
introduced the ring Z[i], but rather in order to preface the general theory
of algebraic integers with a concrete example. For the same reason we will
now look at this ring a bit more closely.
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When developing the theory of divisibility for a ring, two basic problems
are most prominent: on the one hand, to determine the units of the ring in
question, on the other, its prime elements. The answer to the first question
in the present case is particularly easy. A number a = a + bi E 7G[i] is a
unit if and only if its norm is 1:

N(a):=(a+ib)(a-ib)=a2+b21
(exercise 1), i.e., if either a2 = 1, b2 = 0, or a2 = 0, b2 = 1. We thus obtain
the

(1.3) Proposition. The group of units of the ring Z[iI consists of the fourth
roots of unity,

In order to answer the question for primes, i.e., irreducible elements of
the ring Z[i], we first recall that two elements a, $ in a ring are called
associated, symbolically a - J3, if they differ only by a unit factor, and
that every element associated to an irreducible element 7r is also irreducible.
Using theorem (l.1) we obtain the following precise list of all prime numbers
of 7L[i].

(1.4) Theorem. The prime elements n of Z[i], up to associated elements,
are given as follows.
(1) 7r = 1 +i,
(2) rr=a+bi with a2+b2=p,p=1mod4,a> Ibi >0,
(3) it=p, p=3mod4.
Here, p denotes a prime number of Z.

Proof: Numbers as in (1) or (2) are prime because a decomposition 7r = a
in Z[i] implies an equation

p = N(or) = N(a) N(p),
with some prime number p. Hence either N(a) = 1 or N($) = 1, so that
either a or 8 is a unit.

Numbers 7r = p, where p - 3 mod 4, are prime in Z [ i 1, because
a decomposition p = a ,8 into non-units a, 0 would imply that p2 =
N(a) N(P), so that p = N(a) = N(a + bi) = a2 + b2, which according
to (1.1) would yield p = 1 mod 4.
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4 Chapter I. Algebraic Integers

This being said, we have to check that an arbitrary prime element rr
of Z[i] is associated to one of those listed. First of all, the decomposition

=p, ...pr,
with rational primes pi, shows that it I p for some p = pi. This gives
N(7r) I N(p) = p2, so that either N(n) = p or N(7r) = p2. In the case
N(or) = p we get 7r = a + bi with a2 + b2 = p, so 7 is of type (2) or,
if p = 2, it is associated to 1 + i. On the other hand, if N(7r) = p2,
then 7r is associated to p since p/zr is an integer with norm one and
thus a unit. Moreover, p = 3 mod 4 has to hold in this case because
otherwise we would have p = 2 or p - 1 mod 4 and because of (1.1)
p = a2 + b2 = (a + bi) (a - bi) could not be prime. This completes the
proof.

The proposition also settles completely the question of how prime num-
bers p E Z decompose in Z [ i ]. The prime 2 = (1 + i) (1- i) is associated to
the square of the prime element 1 + i . Indeed, the identity 1 - i = -i (1 + i)
shows that 2 (1 + i)2. The prime numbers p - 1 mod 4 split into two
conjugate prime factors p = (a + bi)(a - bi),
and the prime numbers p = 3 mod 4 remain prime in Z [ i ].

The gaussian integers play the same role in the field
(i)={a+bila,bEQ}

as the rational integers do in the field Q. So they should be viewed as the
"integers" in Q (i ). This notion of integrality is relative to the coordinates of
the basis 1, i. However, we also have the following characterization of the
gaussian integers, which is independent of a choice of basis.

(1.5) Proposition. 7G [i ] consists precisely of those elements of the extension
field Q (i) of Q which satisfy a monic polynomial equation

x2+ax+b = 0
with coefficients a, b E Z.

Proof: An element a = c + id E Q(i) is a zero of the polynomial
x2 + ax + b Q [x] with a = -2c, b = c2 +d2.

If c and d are rational integers, then so are a and b. Conversely, if a and b
are integers, then so are 2c and 2d. From (2c)2 + (2d)2 = 4b - 0 mod 4 it
follows that (2c)2 = (2d)2 - 0 mod 4, since squares are always - 0 or = 1.
Hence c and d are integers.
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The last proposition leads us to the general notion of an algebraic integer
as being an element satisfying a monic polynomial equation with rational
integer coefficients. For the domain of the gaussian integers we have obtained
in this section a complete answer to the question of the units, the question
of prime elements, and to the question of unique factorization.

These questions indicate already the fundamental problems in the general
theory of algebraic integers. But the answers we found in the special
case Z[i] are not typical. Novel features will present themselves instead.

Exercise 1. a E 7Z[i] is a unit if and only if N(a) = 1.
Exercise 2. Show that, in the ring Z[i], the relation ap = sy", for a, P relatively
prime numbers and s a unit, implies a = E'4" and P = E"1J", with s', s" units.

Exercise 3. Show that the integer solutions of the equation
x2 + yz = z2

such that x, y, z > 0 and (x, y, z) = 1 ("pythagorean triples") are all given, up to
possible permutation of x and y, by the formula

x = u2 - V2 , y = 2u v , z = u2 + v2,
where u, v E Z, u > v > 0, (u, v) = 1, u, v not both odd.
Hint: Use exercise 2 to show that necessarily x + iy = sae with a unit E and with
a=u+ ivEZ[i].
Exercise 4. Show that the ring 76[i] cannot be ordered.

Exercise 5. Show that the only units of the ring 76[J] = 7L + 7L/, for any
rational integer d > 1, are ±1.

Exercise 6. Show that the ring 7L[/] = Z + 7L,/d-, for any squarefree rational
integer d > 1, has infinitely many units.

Exercise 7. Show that the ring 7L[-,f2] = Z + Z,/-2- is euclidean. Show furthermore
that its units are given by ±(l + /)", n E Z, and determine its prime elements.

§ 2. Integrality

An algebraic number field is a finite field extension K of Q. The ele-
ments of K are called algebraic numbers. An algebraic number is called
integral, or an algebraic integer, if it is a zero of a monic polynomial
f (X) E Z[x]. This notion of integrality applies not only to algebraic num-
bers, but occurs in many different contexts and therefore has to be treated
in full generality.
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In what follows, rings are always understood to be commutative rings
with 1.

(2.1) Definition. Let A C B be an extension of rings. An element b E B is
called integral over A, if it satisfies a monic equation

0, n> 1,
with coefficients ai E A. The ring B is called integral over A if all elements
b E B are integral over A.

It is desirable, but strangely enough not immediately obvious, that the
sum and the product of two elements which are integral over A are again
integral. This will be a consequence of the following abstract reinterpretation
of the notion of integrality.

(2.2) Proposition. Finitely many elements b1, ..., b, E B are all integral
over A if and only if the ring A[b1, ..., b,] viewed as an A-module is finitely
generated.

To prove this we make use of the following result of linear algebra.

(2.3) Proposition (Row-Column Expansion). Let A = (aid) be an (r x r) -
matrix with entries in an arbitrary ring, and let A* _ (a!.) be the adjoint
matrix, i.e., a _ (-1)'+.i det(Aij), where the matrix Aid is obtained from A
by deleting the i -th column and the j -th row. Then one has

AA* = A*A = det(A)E,
where E denotes the unit matrix of rank r. For any vector x = (xj, ..., xr),
this yields the implication

Ax = 0 = (det A)x = 0.

Proof of proposition (2.2): Let b E B be integral over A and f (x) E A[x]
a monic polynomial of degree n > 1 such that f (b) = 0. For an arbitrary
polynomial g(x) E A[x] we may then write

g(x) = q(x)f (x) + r(x),
with q(x), r(x) E A[x] and deg(r(x)) < n, so that one has

g(b) = r(b) = ao + alb + ... + an_lbrs-1.

Thus A[b] is generated as A-module by 1, b, . . . , b'- 1.



co
o

§ 2. Integrality 7

More generally, if b1, ..., b, E B are integral over A, then the fact that
A[b1, ..., is of finite type over A follows by induction on n. Indeed,
since b is integral over R = A[bl, ..., bri_1], what we have just shown
implies that A[bt, ... , is finitely generated over R, hence also
over A, if we assume, by induction, that R is an A-module of finite type.

Conversely, assume that the A-module A[b1, ... , b,=] is finitely generated
and that a),, ..., o is a system of generators. Then, for any element
b E A[bl, ... , b,], one finds that

r
b w; E a1jwj,

j=1
i = 1,...,r,

From (2.3) we see that det(bE - (au)) wi = 0, i = 1; .... r (here E is the
unit matrix of rank r), and since 1 can be written 1 = CIW1 + +Crar, the
identity det(bE - (a;j)) = 0 gives us a monic equation for b with coefficients
in A. This shows that b is indeed integral over A.

According to this proposition, if b1, ..., b E B are integral over A,
then so is any element b of A[b1, ... , because A[b1, ... , b,,, b] =
A[bl, ..., is a finitely generated A-module. In particular, given two
integral elements bl, b2 E B, then b1 + b2 and b1 b2 are also integral over A.
At the same time we obtain the

(2.4) Proposition. Let A C_ B C_ C be two ring extensions. If C is integral
over B and B is integral over A, then C is integral over A.

Proof : Take c E C, and let c" + b, ci-1 + + b, = 0 be an equation with
coefficients in B. Write R = A [b1 , ... , b ]. Then R [c] is a finitely generated
R-module. If B is integral over A, then R[c] is even finitely generated
over A, since R is finitely generated over A. Thus c is integral over A.

From what we have proven, the set of all elements

A= {bEBIbintegral over A)
in a ring extension A C_ B forms a ring. It is called the integral closure
of A in B. A is said to be integrally closed in B if A = A. It is immediate
from (2.4) that the integral closure A is itself integrally closed in B. If A is an
integral domain with field of fractions K, then the integral closure A of A
in K is called the normalization of A, and A is simply called integrally
closed if A = A. For instance, every factorial ring is integrally closed.
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In fact, if alb c K (a, b E A) is integral over A, i.e.,

(alb)" + at (alb)n-1 + ... + an = 0,

with ai E A, then

an + atban-t + ... + anb" = 0.

Therefore each prime element 7r which divides b also divides a. Assuming
alb to be reduced, this implies alb E A.

We now turn to a more specialized situation. Let A be an integral
domain which is integrally closed, K its field of fractions, LIK a finite
field extension, and B the integral closure of A in L. According to (2.4), B
is. automatically integrally closed. Each element ,8 E L is of the form

b bEB, aEA,
a

because if

an,Bn+...+a,P+ao=0, ai EA, an00,
then b = a, 8 is integral over A, an integral equation

(an,8)n+ +al(anp)+ao=0, ai EA,

being obtained from the equation for P by multiplication by an-1. Further-
more, the fact that A is integrally closed has the effect that an element P E L
is integral over A if and only if its minimal polynomial p(x) takes its coef-
ficients in A. In fact, let t3 be a zero of the monic polynomial g(x) E A[x].
Then p(x) divides g(x) in K[x], so that all zeroes f1, ..., i3, of p(x)
are integral over A, hence the same holds for all the coefficients, in other
words p(x) E A[x].

The trace and the norm in the field extension L IK furnish important tools
for the study of the integral elements in L. We recall the

(2.5) Definition. The trace and norm of an element x E L are defined to be
the trace and determinant, respectively, of the endomorphism

Tx:L -+ L, TX(a)=xa,
of the K-vector space L :

TrLIK(x) =Tr(Tx), NLIK(x) =det(Tx).
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In the characteristic polynomial

fx(t) = det(t id -Ti) = t" - alti-1 + ... + (-l)"a, E K[t]
of T, n = [L : K], we recognize the trace and the norm as

a1=TrLIK(x) and an=NLjK(x)-
Since TX+y = Tx + Ty and TXy = Ts o Ty, we obtain homomorphisms

TrLIK:L - K and NLIK:L*-> K*.
In the case where the extension L I K is separable, the trace and norm admit
the following Galois-theoretic interpretation,

(2.6) Proposition. If L I K is a separable extension and or : L -+ K varies
over the different K-embeddings of L into an algebraic closure k of K, then
we have

(i) fx(t) = F1 (t - ax),

(ii) TrLIK (x) = F- ax,
v

(iii) NLIK(X) =F1 OrX.
Cr

Proof: The characteristic polynomial fx (t) is a power

fx(t) = PX(t)d, d = [L : K(x)]
of the minimal polynomial

p(t) =tm+C1tm-1 +...+Cm, m= [K(x) : K]
of x. In fact, 1, x, ..., xm-t is a basis of K(x) I K, and if a1, ... , ad is a
basis of L I K (x), then

a1, a1x, ... , atxm-1
; .. ; ad, adx, ... , adxm-1

is a basis of L IK. The matrix of the linear transformation TX : y H xy with
respect to this basis has obviously only blocks along the diagonal, each of
them equal to

0 1 0 0
0 0 1 0

-Cm -Cm_1 -Cm_2 ... -C1
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The corresponding characteristic polynomial is easily checked to be

tm +citm-t +...+Cm = px(t),
so that finally fx (t) = px (t)d.

The set HomK(L,K) of all K-embeddings of L is partitioned by the
equivalence relation

or - r 4 6x=rx
into m equivalence classes of d elements each. If vi, ... , crm is a system of
representatives, then we find

n:

px(t)= fl(t-o'ix),
i=1

and .f x (t) = fl 1(t - ax)d = fm 1 ! la_ai (t - ax) flat - ax). This
proves (i), and therefore also (ii) and (iii), after Vieta.

(2.7) Corollary. In a tower of finite field extensions K C L C M, one has

TrLIK OTrMIL = TrMIK , NLIK o NMIL = NMIK .

Proof : We assume that M I K is separable. The set HomK (M, K) of K -
embeddings of M is partitioned by the relation

or -r aIL=rIL
into m = [L': K] equivalence classes. If cri, ... , am is a system of represen-
tatives, then HomK (L, k) = [Qi IL I i = 1, ... , m}, and we find

m m m
TrMIK(x) = F- F- ax = ETrviMla,L(aix) _ E07TrMIL(x)

i=1 a^ ai i=1 i=1

=TrLIK(TrMIL(x)) .

Likewise for the norm.
We will not need the inseparable case for the sequel. However it follows

easily from what we have shown above, by passing to the maximal separable
subextension MS1K. Indeed, for the inseparable degree [M : K]i =
[M : MS] one has [M : K]i = [M : L]i [L : K]i and

TrMIK(x) = [M : K]iTrMs1K(x), NMIK(x) = Nm,IK(x)[M:Kli

(see [143], vol. I, chap. II, § 10).
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The discriminant of a basis a 1 , ... , a, of a separable extension L I K is
defined by

d(a1, ... , an) = det((Uiaj))2,
where ai, i = 1, ... , n, varies over the K -embeddings L K. Because of
the relation

TrLjK(aiaj) = E(akai)(akaj),
k

the matrix (TrLIK(aiaj)) is the product of the matrices (akai)' and (crkaj).
Thus one may also write

d(al, ..., an) =det(TrLIK(aiaj)).
In the special case of a basis of type 1, 0, ... , 6n-1 one gets

d(1, 0, ... , en-1) = 11 (ei - ej)2,
i<j

where 0i = o-i 0. This is seen by successively multiplying each of the first
(n - 1) columns in the Vandermonde matrix

1 01 I02 01-
02 202 02 -1

1 on on en-1
n

by 01 and subtracting it from the following.

(2.8) Proposition. If L I K is separable and a1, ... , an is a basis, then the
discriminant

d(a1, --- , an) 0 0,
and

(x, Y) =TrLI K(xy)
is a nondegenerate bilinear form on the K -vector space L.

Proof: We first show that the bilinear form (x, y) = Tr(xy) is nondegenerate.
Let 0 be a primitive element f o r L I K, i.e., L = K (0). Then 1, 0, ... , 0n-1
is a basis with respect to which the form (x, y) is given by the matrix
M = (TrLIK (ei-'Oj-1))i, j=1,..., n. It is nondegenerate because, for ei = Qi 0,
we have

det(M) = d (I, 0, ..., On-1) = r[ (0i - 0j )2 # 0.
i<j

If a i , ... , a, is an arbitrary basis of L I K, then the bilinear form (x, y) with
respect to this basis is given by the matrix M = (TrLI K(ai aj)). From the
above it follows that d(al, ..., an) = det(M) # 0.



C3
"

U
CH

t-.

12 Chapter I. Algebraic Integers

After this review from the theory of fields, we return to the integrally
closed integral domain A with field of fractions K, and to its integral
closure B in the finite separable extension L IK. If x E B is an integral
element of L, then all of its conjugates ax are also integral. Taking into
account that A is integrally closed, i.e., A = B fl K, (2.6) implies that

TrLIK(x), NLIK(X) E A.
Furthermore, for the group of units of B over A, we obtain the relation

x E B* NLIK (x) E A*.

For if aNLIK (x) = 1, a E A, then I = a fl, ax = yx for some y e B. The
discriminant is often useful because of the following

(2.9) Lemma. Let a 1, ... , cx be a basis of L (K which is contained in B, of
discriminant d = d (al, ... , Then one has

Proof : If a = al eel + - - - + anon E B, ai E K, then the aj are a solution of
the system of linear equations

TrLI K(ala) _ TrLIK(ata0aJ,
i

and, as TrL 1K (a; a) E A, they are given as the quotient of an element of A
by the determinant det(TrLIK (ajaj)) = d. Therefore daa e A, and thus

A system of elements cul, ..., w, E B such that each b E B can be
written uniquely as a linear combination

with coefficients ai E A; is called an integral basis of B over A (or:
an A-basis of B). Since such an integral basis is automatically a basis
of L I K, its length n always equals the degree [L : K] of the field extension.
The existence of an integral basis signifies that B is a free A-module
of rank n = [L : K]. In general, such an integral basis does not exist.
If, however, A is a principal ideal domain, then one has the following more
general

(2.10) Proposition. If L I K is separable and A is a principal ideal domain,
then every finitely generated B -submodule M 0 0 of L is a free A -module of
rank [L : K]. In particular, B admits an integral basis over A.
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Proof : Let M ; 0 be a finitely generated B -submodule of L and a 1, ... , a"
a basis of LIK. Multiplying by an element of A, we may arrange for the a;
to lie in B. By (2.9), we then have dB C Aal + - - + Aa,, in particular,
rank(B) < [L : K], and since a system of generators of the A-module B is
also a system of generators of the K-module L, we have rank(B) = [L : K].
Let A 1, ... , A, E M be a system of generators of the B-module M. There
exists an a E A, a 0, such that aµ; E B, i = 1, ..., r, so that aM C B.
Then

adMCdB
According to the main theorem on finitely generated modules over principal
ideal domains, since Mo is a free A-module, so is ad M, and hence also M.
Finally,

[L : K] = rank(B) < rank(M) = rank(adM) < rank(Mo) _ [L : K],

hence rank(M) = [L : K].

It is in general a difficult problem to produce integral bases. In concrete
situations it can also be an important one. This is why the following
proposition is interesting. Instead of integral bases of the integral closure B
of A in L, we will now simply speak of integral bases of the extension L I K.

(2.11) Proposition. Let L I K and L' I K be two Galois extensions of degree n,
resp. n', such that L fl L' = K. Let wl, ..., w", resp, co..... , wn,, be an
integral basis of L I K, resp. L' I K, with discriminant d, resp. d'. Suppose that
d and d' are relatively prime in the sense that xd + x'd' = 1, for suitable
x, x' E A. Then cwi co,, 'is an integral basis of LL', of discriminant d"'d'".

Proof: As L fl L' = K, we have [LL' : K] = nn', so the nn' products wiw'
do form a basis of LL' I K. Now let a be an integral element of LL', and
write aa,iw;w, atf EK.

i

We have to show that a;! E A. Put f3j = >t a;i w1 . Let G (LL' I L') _
Jul, Qj and G(LL'IL) = (al, ..., Qn,). Thus

G(LL'IK)=(akcrrI k=1,...,n, f=1,...,n}.
Putting

T = (oewi) , a = (aria, b = (fit, ,
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one finds det (T)2 = d' and
a = Tb.

Write T* for the adjoint matrix of T. Then row-column expansion (2.3) gives

det(T) b = T*a.

Since T* and a have integral entries in LL', the multiple d'b has integral
entries in L, namely d'fl = >i d'aij wi. Thus d'aij E A. Swapping the roles
of (wi) and (wl), one checks in the same manner that dai1 E A, so that

ail = xdaij + x'd'ai1 E A.

Therefore wi w; is indeed an integral basis of LL'IK. We compute the
discriminant A of this integral basis. Since G(LL'IK) = fakoE I k =
1, ... , n, Q = 1, ... , n'}, it is the square of the determinant of the
(nn' x nn')-matrix

M = (akoe wiwj) = (akwi aaw').
This matrix is itself an (n' x n') -matrix with entries (n x n) -matrices of which
the (2, j)-entry is the matrix QopwJ . where Q = (akwi). In other words,

M=
Q 0 Eo wi ... Ecr ,wi

0 Q Ed 1w'n, . . . 'Ea' n,wni

Here E denotes the (n x n)-unit matrix. By changing indices the second
matrix may be transformed to look like the first one. This yields

d = det(M)2 = det(Q)2n' det((cr w,)) 2n = d"'dn . U

Remark : It follows from the proof that the proposition is valid for arbitrary
separable extensions (not necessarily Galois), if one assumes instead of
L fl L' = K that L and L' are linearly disjoint.

The chief application of our considerations on integrality will concern the
integral closure 0K C_ K of Z C_ Q in an algebraic number field K. By
proposition (2.10), every finitely generated OK-submodule a of K admits
a 7L-basis ai, ..., a,

The discriminant
d(at, ..., an) = det((o aj))2
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is independent of the choice of a 7L-basis; if ai, ..., an is another basis,
then the base change matrix T = (ail), ai = >i aijaj, as well as its inverse,
has integral entries. It therefore has determinant f1, so that indeed

d(ai, ..., a') =det(T)2d(at, ..., a,) =d(al, ..., a,,)
We may therefore write

d(a) = d(ai, ..., a,,).
In the special case of an integral basis wt, ... , w of OK we obtain the
discriminant of the algebraic number field K,

dK = d(oK) =d(wl, ..., co.).
In general, one has the

(2.12) Proposition. If a c a' are two nonzero finitely generated oK-sub-
modules of K, then the index (a' : a) is finite and satisfies

d(a) = (a' : a)2 d(a').

All we have to show is that the index (a' : a) equals the absolute value
of the determinant of the base change matrix passing from a 7L-basis of a
to a 7L-basis of a'. This proof is part of the well-known theory of finitely
generated Z -modules.

Exercise 1. Is 3+2,16- an algebraic integer?

Exercise 2. Show that, if the integral domain A is integrally closed, then so is the
polynomial ring A[t].
Exercise 3. In the polynomial ring A = Q[X,Y], consider the principal ideal
p = (X2 - Y3). Show that p is a prime ideal, but A/p is not integrally closed.
Exercise 4. Let D be a squarefree rational integer # 0, 1 and d the discriminant of
the quadratic number field K = Q(,/D). Show that

d=D, if D=1 mod 4,
d=4D, if D-2or 3 mod4,

and that an integral basis of K is given by {1,,15} in the second case, by
{l,

i
(1 + in the first case, and by (1, (d + a )) in both cases.

Exercise S. Show that (1, ,/ 2) is an integral basis of Q( ).
Exercise 6. Show that (1, 0, 1(0+02)1 is an integral basis of Q(0) 3'0 -e-4=0.
Exercise 7. The discriminant dK of an algebraic number field K is always = 0 mod 4
or = 1 mod 4 (Stickelberger's discriminant relation).
Hint: The determinant det(a1(o!) of an integral basis u is a sum of terms, each
prefixed by a positive or a negative sign. Writing P, resp. N, for the sum of the
positive, resp. negative terms, one finds dK = (P - N)2 = (P + N)2 - 4PN.
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§ 3. Ideals

Being a generalization of the ring Z C Q, the ring OK of integers of an
algebraic number field K is at the center of all our considerations. As in Z,
every non-unit a -A 0 can be factored in OK into a product of irreducible
elements. For if a is not itself irreducible, then it can be written as a product
of two non-units a = 0y. Then by §2, one has

1 < INKIQ(e)I < INKIQ(a)I, 1 < INKIQ(Y)I < INKIQ(a)I,

and the prime decomposition of a follows by induction from those of 5
and y. However, contrary to what happens in the rings Z and Z[i], the
uniqueness of prime factorization does not hold in general.

Example : The ring of integers of the field K = Q (,,f--5) is given by §2,
exercise 4, as OK = Z + 7G3. In this ring, the rational integer 21 can be
decomposed in two ways,

All factors occurring here are irreducible in OK. For if one had, for
instance, 3 = afi, with a, B non-units, then 9 = NKIQ(a) NKIQ(P) would
imply NKIQ(a) = ±3. But the equation

NKIQ(x+y5) =x2+5y2 =±3
has no solutions in Z. In the same way it is seen that 7, 1 + 2 , and
1 - 2/ are irreducible. As the fractions

1+2 1+2/
3 7

do not belong to OK, the numbers 3 and 7 are not associated to 1 + 2/
or 1 - 2. The two prime factorizations of 21 are therefore essentially
different.

Realizing the failure of unique factorization in general has led to one of the
grand events in the history of number theory, the discovery of ideal theory by
EDUARD KuMMER. Inspired by the discovery of complex numbers, Kummer's
idea was that the integers of K would have to admit an embedding into a
bigger domain of "ideal numbers" where unique factorization into "ideal
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prime numbers" would hold. For instance, in the example of
21 =3.7= (1+2J)(1-2/),

the factors on the right would be composed of ideal prime numbers P1, p2,
p3, p4, subject to the rules

3 = P1P2, 7 = p3p4, P 2 - / - - - 5

This would resolve the above non-uniqueness into the wonderfully unique
factorization

21 = (PIP2)(P3p4) _ (P1P3)(P2P4)

Kummer's concept of "ideal numbers" was later replaced by that of ideals
of the ring OK. The reason for this is easily seen: whatever an ideal number
a should be defined to be, it ought to be linked to certain numbers a E OK
by a divisibility relation a I a satisfying the following rules, for a, b, a. E OK,

ala and alb = ala ± b; ala = al)a.
And an ideal number a should be determined by the totality of its divisors
in OK

a= {aEOKIaIa}.
But in view of the rules for divisibility, this set is an ideal of OK.

This is the reason why RICHARD DEDEKIND re-introduced Kummer's "ideal
numbers" as being the ideals of OK. Once this is done, the divisibility
relation a I a can simply be defined by the inclusion a E a, and more generally
the divisibility relation a I b between two ideals by b C a. In what follows,
we will study this notion of divisibility more closely. The basic theorem here
is the following.

(3.1) Theorem. The ring OK is noetherian, integrally closed, and every prime
ideal p ,-£ 0 is a maximal ideal.

Proof: OK is noetherian because every ideal a is a finitely generated Z-
module by (2.10), and therefore a fortiori a finitely generated OK-module.
By § 2, OK is also integrally closed, being the integral closure of Z in K.
It thus remains to show that each prime ideal p 0 0 is maximal. Now, p f Z
is a nonzero prime ideal (p) in Z: the primality is clear, and if y E p, y # 0,
and y,:+alyn-1+...+an=0
is an equation for y with a; E Z, an 0 0, then an E p fl Z. The integral
domain o = OK /p arises from x = Z/pZ by adjoining algebraic elements
and is therefore again a field (recall the fact that K[a] = rc(a), if a is
algebraic). Therefore p is a maximal ideal. 0
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The three properties of the ring OK which we have just proven lay the
foundation of the whole theory of divisibility of its ideals. This theory was
developed by Dedekind, which suggested the following

(3.2) Definition. A noetherian, integrally closed integral domain in which
every nonzero prime ideal is maximal is called a Dedekind domain.

Just as the rings of the form OK may be viewed as generalizations of the
ring 7G, the Dedekind domains may be viewed as generalized principal ideal
domains. Indeed, if A is a principal ideal domain with field of fractions K,
and L I K is a finite field extension, then the integral closure B of A in L is,
in general, not a principal ideal domain, but always a Dedekind domain, as
we shall show further on.

Instead of the ring oK we will now consider an arbitrary Dedekind
domain o, and we denote by K the field of fractions of o. Given two
ideals a and b of o (or more generally of an arbitrary ring), the divisibility
relation al b is defined by b c a, and the sum of the ideals by

a+b= {a+bIaEa,bEb}.
This is the smallest ideal containing a as well as b, in other words, it is
the greatest common divisor gcd(a, b) of a and b. By the same token the
intersection a fl b is the lcm (least common multiple) of a and b. We define
the product of a and b by

ab = { Jai bi l ai E a, bi E b } .

i

With respect to this multiplication the ideals of o will grant us what the
elements alone may refuse to provide: the unique prime factorization.

(3.3) Theorem. Every ideal a of o different from (0) and (1) admits a
factorization

a=pi...p,

into nonzero prime ideals pi of o which is unique up to the order of the factors.

This theorem is of course perfectly in line with the invention of "ideal
numbers". Still, the fact that it holds is remarkable because its proof is far
from straightforward, and unveils a deeper principle governing the arithmetic
in o. We prepare the proof proper by two lemmas.
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(3.4) Lemma. For every ideal a 0 of o there exist nonzero prime ideals
P 1 , P2, , pr such that

aDPiP2...pr.

Proof: Suppose the set 931 of those ideals which do not fulfill this condition
is nonempty. As o is noetherian, every ascending chain of ideals becomes
stationary. Therefore fiI is inductively ordered with respect to inclusion and
thus admits a maximal element a. This cannot be a prime ideal, so there exist
elements b1ib2 E o such that blb2 E a, but b1, b2 0 a. Put a1 = (b1) + a,
a2 = (b2) + a. Then a C a1, a C a2 and a1 a2 C a. By the maximality of a,
both a1 and a2 contain a product of prime ideals, and the product of these
products is contained in a, a contradiction.

(3.5) Lemma. Let p be a prime ideal of o and define

p-1= Ix EKIxpco}.
Then onehas ap-1 :_ {>t a;x, I ai E a, x; E p-1} 0 a, for everyideal a # 0.

Proof: Let a E p, a ; 0, a n d plp2 . . . Pr c (a) c p, with r as small as
possible. Then one of the p1, say pI, is contained in p, and so p1 = p because
pl is a maximal ideal. (Indeed, if none of the pi were contained in p, then
for every i there would exist a1 E p; -, p such that a1 .. ar E p. But p is
prime.) Since P2 Pr ¢ (a), there exists b E P2 Pr such that b 0 ao,
i.e., a-1b ¢ o. On the other hand we have by C (a), i.e., abp c o, and
thus a-l b E P-1. It follows that p-1 0 o.

Now let a 0 be an ideal of o and al, ..., a, a system of generators.
Let us assume that a p-1 = a. Then for every x E p-1,

xa; _ Ea,i ai , a,i r= o.
i

Writing A for the matrix (x8;1-aii) we obtain A(al, ..., an)t = 0. By (2.3),
the determinant d = det(A) satisfies dal = . . . = doe, = 0 and thus d = 0.
It follows that x is integral over o, being a zero of the monic polynomial
f (X) = det(XBti -a;1) E o[X]. Therefore X E o. This means that p-1 = 0,
a contradiction.

Proof of (3.3): I. Existence of the prime ideal factorization. Let WJI be the
set of all ideals different from (0) and (1) which do not admit a prime ideal
decomposition. If 9 is nonempty, then we argue as for (3.4) that there exists
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20 Chapter I. Algebraic Integers

a maximal element a in f9)1. It is contained in a maximal ideal p, and the
inclusion o C p-1 gives us

a c ap-1 c pp-1 c o.
By (3.5), one has a C ap-1 and p C p p-1 C a. Since p is a maximal ideal,
it follows that p p-1 = o. In view of the maximality of a in 971 and since
a p, i.e., ap-1 0 o, the ideal ap-1 admits a prime ideal decomposition
a p-1 = p1 pr, and so does a = ap-1 p = p1 . prp, a contradiction.

H. Uniqueness of the prime ideal factorization. For a prime ideal p one has:
abcp=acporbcp,i.e.,plab=>pjaorpIb.Let

a=PIP2...pr =gtg2...gs

be two prime ideal factorizations of a. Then p, divides a factor q i , say q j,
and being maximal equals Q1. We multiply by p] 1 and obtain, in view of
pt pipit=o,that

P2 Pr = g2...gs,

Continuing like this we see that r = s and, possibly after renumbering,
pi=gi,forall i=1,...,r.

Grouping together the occurrences of the same prime ideals in the prime
ideal factorization of an ideal a 0 of o, gives a product representation

a=pit ...p'r, vi>0.
In the sequel such an identity will be automatically understood to signify
that the pi are pairwise distinct. If in particular a is a principal ideal (a),
then - following the tradition which tends to attribute to the ideals the role
of "ideal numbers" - we will write with a slight abuse of notation

a = pit ... pr' .
Similarly, the notation a I a is often used instead of a I (a) and (a, b) = 1
is written for two relatively prime ideals, instead of the correct formula
(a, b) = a + b = o. For a product a = a1 ... a, of relatively prime ideals
a1, ... , a, , one has an analogue of the well-known "Chinese Remainder
Theorem" from elementary number theory. We may formulate this result for
an arbitrary ring taking into account that

n
a = nai.

i=1

Indeed, since ai I a, i = 1, ... , n, we find on the one hand that a C n =1 ai,
and for a E ni ai we find that ai I a, and therefore, the factors being relatively
prime, we get a = a1 . . an I a, i.e., a E a.
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§ 3. Ideals 21

(3.6) Chinese Remainder Theorem. Let at, ... , an be ideals in a ring o
such that ai + aj = 0 for i ; j. Then, if a= n7 1 ai, one has

n
o/a 0/at.

Proof: The canonical homomorphism
)? 11o-®o/ai, a -®amodai,

i=1 i.1
has kernel a = ni ai. It therefore suffices to show that it is surjective.
For this, let xi mod ai E o/ai, i = 1, ..., n, be given. If n = 2, we
may write 1 = a1 + a2, ai E ai, and putting x = x2a1 + x1a2 we get
x - xi mod ai, i = 1, 2.

If n > 2, we may find as before an element Yl E o such that

yi=1mod a1, yi = 0 mod n ai,
i_2

and, by the same token, elements Y2, ... , y, such that
yi - l mod ai, yi - 0 mod ai for i 0 j.

Putting x = xlyl + . + xnyn we find x - xi mod ai, i = 1, ..., n. This
proves the surjectivity.

Now let o be again a Dedekind domain. Just as for nonzero numbers, we
may obtain inverses for the nonzero ideals of o by introducing the notion
of fractional ideal in the field of fractions K.

(3.7) Definition. A fractional ideal of K is a finitely generated 0-submod-
ulea00ofK.

For instance, an element a E K' defines the fractional "principal ideal"
(a) = ao. Obviously, since o is noetherian, an o-submodule a 0 of K is
a fractional ideal if and only if there exists c E 0, c 0, such that ca C o
is an ideal of the ring o. Fractional ideals are multiplied in the same way
as ideals in o. For distinction the latter may henceforth be called integral
ideals of K.

(3.8) Proposition. The fractional ideals form an abelian group, the ideal
group JK of K. The identity element is (1) = o, and the inverse of a is

a-' = I X E K I xa C c I .
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Proof: One obviously has associativity, commutativity and a(1) = a. For
a prime ideal p, (3.5) says that p C pp-1 and therefore pp-1 = o
because p is maximal. Consequently, if a = pl pr is an integral ideal,
then b = pi 1 p,-1 is an inverse. ba = o implies that b C a-. Conversely,
if xa c o, then xab C b, so x E b because ab = o. Thus we have b = a-1.

Finally, if a is an arbitrary fractional ideal and c E o, c # 0, is such that
ca c o, then (ca)-1 = c-1a 1 is the inverse of ca, so as 1 = o.

(3.9) Corollary. Every fractional ideal a admits a unique representation as a
product

a = f j YVp
P

with v. E 7G and v, = 0 for almost all p. In other words, JK is the free abelian
group on the set of nonzero prime ideals p of o.

Proof: Every fractional ideal a is a quotient a = b/c of two integral ideals b
and c, which by (3.3) have a prime decomposition. Therefore a has a prime
decomposition of the type stated in the corollary. By (3.3), it is unique if a
is integral, and therefore clearly also in general.

The fractional principal ideals (a) = a o, a E K*, form a subgroup of the
group of ideals JK, which will be denoted PK. The quotient group

CIK = JK/PK

is called the ideal class group, or class group for short, of K. Along with
the group of units o* of o, it fits into the exact sequence

1-) o*-+K*- )
where the arrow in the middle is given by a H (a). So the class group
CIK measures the expansion that takes place when we pass from numbers
to ideals, whereas the unit group o* measures the contraction in the
same process. This immediately raises the problem of understanding these
groups o* and C1K more thoroughly. For general Dedekind domains they
may turn out to be completely arbitrary groups. For the ring OK of integers
in a number field K, however, one obtains important finiteness theorems,
which are fundamental for the further development of number theory. But
these results cannot be had for nothing. They will be obtained by viewing
the numbers geometrically as lattice points in space. For this we will now
prepare the necessary concepts, which all come from linear algebra.
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Exercise 1. Decompose 33 + 11 into irreducible integral elements of Q ( ).

Exercise 2. Show that

54 = 2 . 33 =
13+,/---47 13 - -47

2 2
are two essentially different decompositions into irreducible integral elements of
Q (-47).
Exercise 3. Let d be squarefree and p a prime number not dividing 2d. Let o be the
ring of integers of 0(v'). Show that (p) = p o is a prime ideal of o if and only if
the congruence x2 =- d mod p has no solution.
Exercise 4. A Dedekind domain with a finite number of prime ideals is a principal
ideal domain.
Hint: If a = pi' ... p,' :A 0 is an ideal, then choose elements n; E p; gyp? and apply
the Chinese remainder theorem for the cosets n; mod p;'".
Exercise 5. The quotient ring o/a of a Dedekind domain by an ideal a 0 is a
principal ideal domain.
Hint: For a = p" the only proper ideals of o/a are given by p/p" p"-1/p"
Choose rr E p p2 and show that p" = orr" + p".
Exercise 6. Every ideal of a Dedekind domain can be generated by two elements.
Hint: Use exercise 5.
Exercise 7. In a noetherian ring R in which every prime ideal is maximal, each
descending chain of ideals ai 2 a2 ) becomes stationary.
Hint: Show as in (3.4) that (0) is a product p, pr of prime ideals and that the
chain R 2 pi 2 pipe 2 ... 2 pi .. pr = (0) can be refined into a composition
series.

Exercise 8. Let m be a nonzero integral ideal of the Dedekind domain o. Show that
in every ideal class of C1K, there exists an integral ideal prime to m.
Exercise 9. Let o be an integral domain in which all nonzero ideals admit a unique
factorization into prime ideals. Show that o is a Dedekind domain.
Exercise 10. The fractional ideals a of a Dedekind domain o are projective o-
modules, i.e., given any surjective homomorphism M N of o-modules, each
homomorphism a -+ N can be lifted to a homomorphism h : a -+ M such that
foh=g.

§ 4. Lattices

In § 1, when solving the basic problems concerning the gaussian integers,
we used at a crucial place the inclusion

Z[i] C C
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and considered the integers of Q (i) as lattice points in the complex plane.
This point of view has been generalized to arbitrary number fields by
HERMANN MINKOWSKI (1864-1909) and has led to results which make up an
essential part of the foundations of algebraic number theory. In order to
develop Minkowski's theory we first have to introduce the general notion of
lattice and study some of its basic properties.

(4.1) Definition. Let V be an n -dimensional R -vector space. A lattice in V
is a subgroup of the form

f'=7Gv1+.--+Zv,,,
with linearly independent vectors vl, ... , v,,, of V. Them-tuple (v1, ..., v,,,)
is called a basis and the set

0 _ t xl VI + - - + xn, vn, I xi c R, 0 < xi < 11

a fundamental mesh of the lattice. The lattice is called complete or a Z -
structure of V, if m = n.

The completeness of the lattice is obviously tantamount to the fact that
the set of all translates (P + y, y E I", of the fundamental mesh covers the
entire space V.

The above definition makes use of a choice of linearly independent
vectors. But we will need a characterization of lattices which is independent
of such a choice. Note that, first of all, a lattice is a finitely generated
subgroup of V. But not every finitely generated subgroup is a lattice - for
instance Z + Z- C R is not. But each lattice r = Zv1 + + zvm
has the special property of being a discrete subgroup of V. This is to say
that every point y E T is an isolated point in the sense that there exists a
neighbourhood which contains no other points of P. In fact, if

Y=alvl+...+amv,,, E1-',

then, extending v 1, ... , vm to a basis v 1, .. , v of V, the set

{xlvl + - - . I xj E R, Jai - x i I < l for i = 1, ..., m}

clearly is such a neighbourhood. This property is indeed characteristic.

(4.2) Proposition. A subgroup T c V is a lattice if and only if it is discrete.
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Proof: Let T be a discrete subgroup of V. Then T is closed. For let U be an
arbitrary neighbourhood of 0. Then there exists a neighbourhood U' C_ U of 0
such that every difference of elements of U' lies in U. If there were an x 0 T
belonging to the closure of T, then we could find in the neighbourhood x+U'
of x two distinct elements yl, y2 E F, so that 0 ; yl - y2 E U' - U' C U.
Thus 0 would not be an isolated point, a contradiction.

Let VO be the linear subspace of V which is spanned by the set F, and
let nz be its dimension. Then we may choose a basis u 1, ... , um of VO which
is contained in F, and form the complete lattice

TO=ZU1+...+ZU"CT
of VO. We claim that the index (T : TO) is finite. To see this, let yi E T vary
over a system of representatives of the cosets in T/T0. Since TO is complete
in VO, the translates'P0 + Y, Y E T0, of the fundamental mesh

00= jXIUi+...+xnzumI Xi ER, 0<Xi <1}
cover the entire space VO. We may therefore write

Y i = l-ti + Y o i , /J i E 'Po , Yoi E TO c Vo

As the µi = Yi - Yoi E F lie discretely in the bounded set 00, they have to
be finite in number. In fact, the intersection of T with the closure of 00 is
compact and discrete, hence finite.

Putting now q = (T : T0), we have qT C T0, whencee

T C T0=Z (q III ) +...+Z( U").

By the main theorem on finitely generated abelian groups, T therefore
admits a Z-basis v1, ..., v1, r < in, i.e., T = Zv1 + + Zv,.. The
vectors v1, ... , yr are also R-linearly independent because they span the
m-dimensional space VO. This shows that T is a lattice.

Next we prove a criterion which will tell us when a lattice in the space V -
given, say, as a discrete subgroup T C V - is complete.

(4.3) Lemma. A lattice Tin V is complete ifand onlyif there exists a bounded
subset M C V such that the collection of all translates M + y, y E F, covers
the entire space V.
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Proof : If r = Zv1 + + Zv,, is complete, then one may take M to be the
fundamental mesh 0 (xl v 1 +- +x v l 0 < xi < 11.

Conversely, let M be a bounded subset of V whose translates M + y,
for y c F, cover V. Let Vo be the subspace spanned by P. We have to
show that V = Vo. So let v E V. Since V = UYEF(M + y) we may write,
for each v E N,

vv=av+Yv, a,EM,
Since M is bounded,

v
av converges to zero, and since Vo is closed,

v = lim ta + lim 1 yv = lim 1 Yv E Vo.
v-r 00 v v- 00 v V-+00 v

Now let V be a euclidean vector space, i.e., an R-vector space of finite
dimension n equipped with a symmetric, positive definite bilinear form

(,):V x V --*R.
Then we have on V a notion of volume - more precisely a Haar measure.
The cube spanned by an orthonormal basis el, ..., e has volume 1,
and more generally, the parallelepiped spanned by n linearly independent
vectors vl, ... , vn,

={xlvl+...+xnunIXi ER, 0<xi <1}
has volume

vol(D) _ I detAI,
where A = (aik) is the matrix of the base change from el, ..., en to
v1, ... , vn, so that vi =( Ek aikek. Since

((vi,vj)) =(Faikajt(ek,ee)) =(Eaikajk) =AA',
kJ k

we also have the invariant notation
vol(O) = I det((vi, vj))I 1/2.

Let T be the lattice spanned by v1, ... , vn. Then 0 is a fundamental
mesh of r, and we write for short

vol(t) = vol(cP).
This does not depend on the choice of a basis v 1 . . . . . vn of the lattice
because the transition matrix passing to a different basis, as well as its
inverse, has integer coefficients, and therefore has determinant ±1 so that
the set 0 is transformed into a set of the same volume.

We now come to the most important theorem about lattices. A subset X
of V is called centrally symmetric, if, given any point x E X, the point -x
also belongs to X. It is called convex if, given any two points x, y E X, the
whole line segment (ty + (1 - t)x 10 < t < 1} joining x with y is contained
in X. With these definitions we have
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(4.4) Minkowski's Lattice Point Theorem. Let r be a complete lattice in
the euclidean vector space V and X a centrally symmetric, convex subset of V.
Suppose that

vol(X) > 2° Vol(r).
Then X contains at least one nonzero lattice point y E F.

Proof: It is enough to show that there exist two distinct lattice points
yi, y2 E 17 such that

(2x+y1) n(Zx+y2) oo.
In fact, choosing a point in this intersection,

2x1 +Y1 = 2x2+y2, x1,x2 E X,

we obtain an element
1 1Y=Y1-Y2= 2x2- 2x1,

which is the center of the line segment joining x2 and -x1, and therefore
belongs to x n r.

Now, if the sets
2X

+ y, y E r, were pairwise disjoint, then the same
would be true of their intersections c n (2 X +y) with a fundamental mesh 45
of r, i.e., we would have

vo1(O) > vol(o n (Z X + y)) .
yEr

But translation of o n (2 X + y) by -y creates the set (45 - y) n 1 X of
equal volume, and the 0 - y, y E r, cover the entire space V, therefore
also the set i X. Consequently we would obtain

vol(45) > > vol((.p - y) n 2 x) = vol(2 X) = 2n vol(X),
yEr

which contradicts the hypothesis.

Exercise 1. Show that a lattice r in 1' is complete if and only if the quotient 1W'/r
is compact.

Exercise 2. Show that Minkowski's lattice point theorem cannot be improved,
by giving an example of a centrally symmetric convex set X C_ V such that
vol(X) = 2° vol(r) which does not contain any nonzero point of the lattice P.
If X is compact, however, then the statement (4.4) does remain true in the case of
equality.
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Exercise 3 (Minkowski's Theorem on Linear Forms). Let
n

L;(x1,.. i=1,.. n,
j=t

be real linear forms such that det(a;j) 0 0, and let c1, ..., c,, be positive real numbers
such that c1 . c > I det(a;j) I . Show that there exist integers m1, ... , mn c Z such
that

IL1(mi, , mn)I <ci,
Hint: Use Minkowski's lattice point theorem.

i=1,...,n.

§ 5. Minkowski Theory

The basic idea in Minkowski's treatment of an algebraic number field K IQ
of degree n is to interpret its numbers as points in n -dimensional space. This
explains why his theory has been called "Geometry of Numbers." It seems
appropriate, however, to follow the current trend and call it "Minkowski
Theory" instead, because in the meantime a geometric approach to number
theory has been developed which is quite different in nature and much
more comprehensive. We will explain this in § 13. In the present section,
we consider the canonical mapping

. j:K--)Kc:=fl C, ai ) ja=(ra),
which results from the n complex embeddings r : K -> C. The C-vector
space Kc is equipped with the hermitian scalar product

(*) (x,y) = F-xtytt
Let us recall that a hermitian scalar product is given by a form H(x, y)
which is linear in the first variable and satisfies H (x, y) = H (y, x) as well
as H (x, x) > 0 for x 0. In the sequel we always view KC as a hermitian
space, with respect to the "standard metric" (*).

The Galois group G(CIR) is generated by complex conjugation

F : z v ) Y.

The notation F will be justified only later (see chap. III, §4). F acts on the
one hand on the factors of the product 11t C, but on the other hand it also
acts on the indexing set of r's; to each embedding r : K -+ C corresponds
its complex conjugate i : K -- C. Altogether, this defines an involution

F:KC --*KC
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which, on the points z = (zt) E Kv, is given by

(Fz)t if.
The scalar product (, } is equivariant under F, that is

(Fx, Fy) = F (x, y) .

Finally, we have on the C-vector space Kc = ft C the linear map

Tr:Kc-+C,
given as the sum of the coordinates. It is also F-invariant. The composite

K-+K, C

gives the usual trace of K IQ (see (2.6), (ii)),

TrKIQ(a) = Tr(ja).

We now concentrate on the k-vector space

KR=Kc=Lll-Jt
consisting of the G(CI1R)-invariant, i.e., F-invariant, points of Kc. These
are the points (zt) such that zt = zt. An explicit description of KR will be
given anon. Since is = fad for a E K, one has F(ja) = ja. This yields a
mapping

j : K --) KR.
The restriction of the hermitian scalar product (,) from KC to KR gives a
scalar product

(,):KRxKR- R
on the k-vector space K. Indeed, for x, y E KR, one has (x, y) E JR in
view of the relations F(x, y) = (Fx, Fy) _ (x, y), (x, y) = (x, y) = (y, x),
and, in any case, (x, x) > 0 for x :0.

We call the euclidean vector space
KR=[f[cC]+

t
the Minkowski space, its scalar product ( , ) the canonical metric, and
the associated Haar measure (see §4, p. 26) the canonical measure. Since
Tr o F = F o Tr we have on KR the k -linear map

Tr:KR -) R,
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and its composite with j : K -i KR is again the usual trace of K IQ,

TrKIQ(a) =Tr(ja).

Remark: We mention in passing - it will not be used in the sequel - that
the mapping j : K - KR identifies the vector space KR with the tensor
product K ®Q R,

K ®Q R -- KR, a ® x t-r (ja)x.

Likewise, K ®Q C " Kr-. In this approach, the inclusion KR C Kc
corresponds to the canonical mapping K ®Q P --> K ®Q C which is induced
by the inclusion P --> C. F corresponds to F(a (9 z) = a ® Y.

An explicit description of the Minkowski space KR can be given in the
following manner. Some of the embeddings r : K -> CC are real in that they
land already in P. and others are complex, i.e., not real. Let

P1... Pr K >R
be the real embeddings. The complex ones come in pairs

at,Q1,...,cr ff,:K--) C
of complex conjugate embeddings. Thus n = r + 2s. We choose from each
pair some fixed complex embedding, and let p vary over the family of real
embeddings and a over the family of chosen complex embeddings. Since F
leaves the p invariant, but exchanges the a, F, we have

KR =I (Zr) E H C I Zp ER, zQ =Y,
r

This gives the

(5.1) Proposition. There is an isomorphism
f:Kp-*flR=Rr+2s

r

given by the rule (zr) i-a (xr) where

Xp = zp, xa = Re(za), xd = Im(za)
This isomorphism transforms the canonical metric (, ) into the scalar product

(x,Y) _ E arxryr,
r

where ar = 1, resp. ar = 2, if r is real, resp. complex.
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Proof: The map is clearly an isomorphism. If z = (zr) = (xT + iyt),
z' = (z'') = (x= + iy') E KR, then zpzP = xPx' , and in view of yQ = xQ
and yQ = x'Q , one gets

zoza +zFF = z,f +z z' = 2Re(z-ZQ) = 2(xx' +xQxa).
This proves the claim concerning the scalar products.

The scalar product (x, y) u,xtyt transfers the canonical measure
from KR to RT+2s. It obviously differs from the standard Lebesgue meas-
ure by

VOlcanonical(X) = 2V .f( ))
Minkowski himself worked with the Lebesgue measure on R'+2, , and
most textbooks follow suit. The corresponding measure on KR is the one
determined by the scalar product

1 _
(x, Y) = -xTYT

T aT

This scalar product may therefore be called the Minkowski metric on KP.
But we will systematically work with the canonical metric, and denote by
vol the corresponding canonical measure.

The mapping j : K -+ KR gives us the following lattices in Minkowski
space KR.

(5.2) Proposition. If a # 0 is an ideal of OK, then r = j a is a complete
lattice in KR. Its fundamental mesh has volume

vol(P) = I dK I (OK : a) .

Proof: Let al, ..., a, be a Z-basis of a, so that T = Z jal + + Zja,.
We choose a numbering of the embeddings r : K - C, tl, ..., r, and
form the matrix A = (reca; ). Then, according to (2.12), we have

d(a) = d(al, ..., a,,) = (detA)2 = (OK : a)2d(OK) = (OK : a)2dK,
and on the other hand

((jai, jak)) to ai teak) = AA'.
e=i

This indeed yields

vol(1') = Idet((jaf,jak))I112 = IdetAl = IdKI (oK : a).

Using this proposition, Minkowski's lattice point theorem now gives the
following result, which is what we chiefly intend to use in our applications
to number theory.
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(5.3) Theorem. Let a 0 0 be an integral ideal of K, and let ct > 0, for
r E Hom(K, C), be real numbers such that cr = cf and

r[c,>A(OK:a),
z

where A = (n) S IdK I. Then there exists a E a, a 0 0, such that

Ital < c7 for all t E Hom(K,Q.

Proof: The set X = { (zz) E KR I I zT I < ct } is centrally symmetric and
convex. Its volume vol(X) can be computed via the map (5.1)

f :Kn -- FIR, (z1)t---+(xr),r
given by x, = zp, xa = Re(za), xa = Im(za). It comes out to be 2' times
the Lebesgue-volume of the image

f (X) = ( xz) E FIR I Ixp I < Cp, xa + Xa < Ca } .

This gives

vol(X) = 2S VOILebesgue(f (X)) = 2S rj(2cp) fl(7rca,) = 2+'7r' Fl c= .
p a T

Now using (5.2), we obtain

vol(X) > 2T+Sn' (2 )S I dx I (o a) = 2" vol(F).
K

Thus the hypothesis of Minkowski's lattice point theorem is satisfied. So
there does indeed exist a lattice point j a E X, a 0, a E a ; in other
words IraI < cT. 0

There is also a multiplicative version of Minkowski theory. It is based
on the homomorphism

=flC*.

The multiplicative group K * admits the homomorphism

N:K* (C*

given by the product of the coordinates. The composite

K* K* -L* C*
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is the usual norm of K IQ,

NKIQ(a) = N(ja).
In order to produce a lattice from the multiplicative theory, we use the
logarithm to pass from multiplicative to additive groups

f:C*_ R, zi loglzj.
It induces a surjective homomorphism

f: KC* R,

and we obtain the commutative diagram

K* J

NKIQi

Q*

KC*

jN
+ C* -

e

e

The involution F E G((C IR) acts on all groups in this diagram, trivially
on K*, on K* as before, and on the points x = (xr) E Jr R by (Fx)r = xT.
One clearly has

Foj=j, Fot=rfoF, NoF=FoN, TroF=Tr,
i.e., the homomorphisms of the diagram are G (C I R) -homomorphisms. We
now pass everywhere to the fixed modules under G(CIR) and obtain the
diagram

K>Et [flzR]+
N jTr

-- ) R* P - R.

i

The R-vector space [ fl, R] + is explicitly given as follows. Separate as
before the embeddings r : K -> C into real ones, pl, ..., p,-, and pairs
of complex conjugate ones, 91, v t, ... , US, QS. We obtain a decomposition
which is analogous to the one we saw above for [ fr C ]+

[FIR]+ =FIR x fl[R xR]+.
r p v

The factor [ R x IR ]+ now consists of the points (x, x), and we identify it
with R by the map (x, x) H 2x. In this way we obtain an isomorphism

[flR]+ _ R'.+S

r
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which again transforms the map Tr [ ft R ] + R into the usual map

Tr : R''+s R

given by the sum of the coordinates. Identifying [ ft R ] + with I[8r+s, the
homomorphism

f:K*-+ r'+s

is given by

2(x) = (log Ixp1 I , ... , log Ixpr 1 , log Ixa,12, ... , log IxQS I2) ,

where we write x E KR C ft C* as x = (xt).

Exercise 1. Write down a constant A which depends only on K such that every
integral ideal a ; 0 of K contains an element a 0 satisfying

Iral <A(OK:a)'I' for all rEHom(K,C),n=[K:QJ.
Exercise 2. Show that the convex, centrally symmetric set

x={(zt)EKRI EIzTI<t}
has volume vol(X) = 2I7rs n" (see chap. III, (2.15)).

Exercise 3. Show that in every ideal a 0 of OK there exists an a 0 such that
INKIQ(a)I < M(OK : a),

i

where M = n° ( n) s
IdK I (the so-called Minkowski bound).

Hint: Use exercise 2 to proceed as in (5.3), and make use of the inequality between
arithmetic and geometric means,

I IzTI ? {
r

§ 6. The Class Number

As a first application of Minkowski theory, we are going to show that the
ideal class group CIK = JK/PK of an algebraic number field K is finite.
In order to count the ideals a 0 0 of the ring OK we consider their absolute
norm

'l(a) = (OK : a) .

(Throughout this book the case of the zero ideal a = 0 is often tacitly
excluded, when its consideration would visibly make no sense.) This index
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is finite by (2.12),, and the name is justified by the special case of a principal
ideal (a) of OK, where we have the identity

fl((a)) = I NKIQ(a)
Indeed, if col, ... , co is a Z-basis of OK, then a col, ... , a co, is a Z-basis of
(a) = aOK, and if A = (aid) denotes the transition matrix, a a)i = E aid cvi,
then, as was pointed out already in § 2, one has I det(A) I _ (OK : (a)) as
well as det(A) = NKIQ(a) by definition.

(6.1) Proposition. If a = pi' p'. is the prime factorization of an ideal
a 4 0, then one has

91(a) = (pl)v1 ... (pr)vr .

Proof: By the Chinese remainder theorem (3.6), one has
dK/a = OK/plt ®... ®pK/prr

We are thus reduced to considering the case where a is a prime power pV.
In the chain

p D p2 D ... D pV

one has pi # p`+l because of the unique prime factorization, and each
quotient p' /pi+' is an OK /p-vector space of dimension 1. In fact, if a e
pi N pi+1 and b = (a) + pi+l, then p' D b.:D pi+1 and consequently pi = b,
because otherwise b' = by-' would be a proper divisor of p = pi+'p-i Thus
a = a mod p'+' is a basis of the OK/p-vector space pi/pi+'. So we have
pi/pi+l OK/p and therefore

fl(pV) = (OK : pV) = (OK : p)(p : p2) ... (pv-1 : pv) _ J(p)V.

The proposition immediately implies the multiplicativity

fl(ab) ='l(a)0'i(b)
of the absolute norm. It may therefore be extended to a homomorphism

01:JK R+

defined on all fractional ideals a = r[p pVp, vp E Z. The following lemma,
a consequence of (5.3), is crucial for the finiteness of the ideal class group.

(6.2) Lemma. In every ideal a 0 of OK there exists an a E a, a 0, such
that

2NKIQ(a)I (-)sIdKgt(a)
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Proof : Given s > 0, we choose positive real numbers cr, for t E
Hom(K, C), such that ct = cT and

IIct=(2)SIdKIM(a)+s.

Then by (5.3) we find an element a E a, a 0, satisfying ltal < c1. Thus

INKIQ(a)I =HIral <
(7r2 ),,/, dl 91(a) + 6.

This being true for all s > 0 and since INK IQ (a) I is always a positive integer,
there has to exist an a E a, a 0, such that

I
r lSNKIQ(a)I

2
< `r<1 ldKIOT(a).

(6.3) Theorem. The ideal class group ClK = JK/PK is finite. Its order

hK=(JK:PK)
is called the class number of K.

Proof: If p # 0 is a prime ideal of OK and p fl Z = pZ, then oK/p is a
finite field extension of Z/pZ of degree, say, f > 1, and we have

gy(p) = Pf .
Given p, there are only finitely many prime ideals p such that p f1 Z = pZ,
because this means that p I (p). It follows that there are only finitely many
prime ideals p of bounded absolute norm. Since every integral ideal admits
a representation a = p' 1 - - plr where vi > O and

m(a) = 941)' ... 1N(pr)vr,
there are altogether only a finite number of ideals a of OK with bounded
absolute norm 'J t(a) < M.

It therefore suffices to show that each class [a] E CIK contains an integral
ideal at satisfying

2 lsO1(al) < M = (- IdKIn
For this, choose an arbitrary representative a of the class, and a y E OK,
y 54 0, such that b = y a-t c OK. By (6.2), there exists a E b, a 0, such
that .

I NKIQ(a)I ' fi(b)-1 = f1t((a)b-1) = S7t(ab-1) < M.
The ideal al = ab-1 = ay-1 a E [a] therefore has the required property.
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The theorem of the finiteness of the class number hK means that passing
from numbers to ideals has not thrust us into unlimited new territory. The
most favourable case occurs of course when hK = 1. This means that OK
is a principal ideal domain, i.e., that prime factorization of elements in the
classical sense holds. In general, however, one has hK > 1. For instance,
we know now that the only imaginary quadratic fields Q(/J), d squarefree
and < 0, which have class number 1 are those with

d = -1, - 2, - 3, - 7, - 11, - 19, - 43, - 67, - 163.
Among real quadratic fields, class number 1 is more common. In the range
2 < d < 100 for instance, it occurs for

d = 2, 3, 5, 6, 7, 11, 13, 14, 17, 19, 21, 22, 23, 29,
31, 33, 37, 38, 41, 43, 46, 47, 53, 57, 59, 61,
62,67,69,71,73,77,83,86,89,93,94,97.

It is conjectured that there are infinitely many real quadratic fields of class
number 1. But we do not even yet know whether there are infinitely many
algebraic number fields (of arbitrary degree) with class number 1. It was
found time and again in innumerable investigations that the ideal class groups
CIK behave completely unpredictably, both in their size and their structure.
An exception to this lack of rule is KENKICHI IwAsAwA's discovery that the
p-part of the class number of the field of p"-th roots of unity obeys a very
strict law when n varies (see [136], th. 13.13).

In the case of the field of p-th roots of unity, the question whether the
class number is divisible by p has played a very important special role
because it is intimately linked to the celebrated Fermat's Last Theorem
according to which the equation

X P + y P= Z P

for p > 3 has no solutions in integers ,- 0. In a similar way as the sums of
two squares x2 + y2 = (x -t-i y) (x - i y) lead to studying the gaussian integers,
the decomposition of xP+y" by means of a p-th root of unity 0 1 leads to
a problem in the ring of integers of The equation yP = zP - xP
there turns into the identity

Thus, assuming the existence of a solution, one obtains two multiplicative
decompositions of the same number in 7L[f]. One can show that this
contradicts the unique factorization - provided that this holds in the
ring Supposing erroneously that this was the case in general - in
other words that the class number hp of the field were always equal
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to 1 - some actually thought they had proved "Fermat's Last Theorem" in
this way. KUMMER, however, did not fall into this trap. Instead, he proved that
the arguments we have indicated can be salvaged if one only assumes p t h p
instead of hn = 1. In this case he called a prime number p regular, otherwise
irregular. He even showed that p is regular if and only if the numerators
of the Bernoulli numbers B2, B4, ..., Bp-3 are not divisible by p. Among
the first 25 prime numbers < 100 only three are irregular: 37, 59, and 67.
We still do not know today whether there are infinitely many regular prime
numbers.

The connection with Fermat's last theorem has at last become obsolete.
Following a surprising discovery by the mathematician GERHARD FREY, who
established a link with the theory of elliptic curves, it was KENNETH RIBET,
who managed to reduce Fermat's statement to another, much more important
conjecture, the Taniyama-Shimura-Weil Conjecture. This was proved in
sufficient generality in 1994 by ANDREW WILES, after many years of work,
and with a helping hand from RICHARD TAYLOR. See [144].

The regular and irregular prime numbers do however continue to be
important.

Exercise 1. How many integral ideals a are there with the given norm fl(a) = n?

Exercise 2. Show that the quadratic fields with discriminant 5, 8, 11, - 3, - 4,-7,
-8, - 11 have class number 1.

Exercise 3. Show that in every ideal class of an algebraic number field K of degree n,
there exists an integral ideal a such that

01(a)<n (4)s

IdKI

Hint: Using exercise 3, § 5, proceed as in the proof of (6.3).

Exercise 4. Show that the absolute value of the discriminant I dK I is > 1 for every
algebraic number field K Q (Minkowski's theorem on the discriminant, see
chap. III, (2.17)).

Exercise 5. Show that the absolute value of the discriminant IdK I tends to 00 with
the degree n of the field.

Exercise 6. Let a be an integral ideal of K and am = (a). Show that a becomes a
principal ideal in the field L = K('i), in the sense that aoc = (a).

Exercise 7. Show that, for every number field K, there exists a finite extension L
such that every ideal of K becomes a principal ideal.
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§ 7. Dirichlet's Unit Theorem

After considering the ideal class group C1K, we now turn to the second
main problem posed by the ring OK of integers of an algebraic number
field K, the group of units oK. It contains the finite group µ(K) of the
roots of unity that lie in K, but in general is not itself finite. Its size is in
fact determined by the number r of real embeddings p : K -* R and the
number s of pairs v, & : K -+ C of complex conjugate embeddings. In order
to describe'the group, we use the diagram which was set up in § 5:

K* --> KR -_ [IIt R] +

NKIQ I IN jTi

*--> JR* low R.

In the upper part of the diagram we consider the subgroups
oK = { a E OK NK IQ (s) = f 1 } , the group of units,

S = f y E K* N(y) = ±11, the "norm-one surface",

H = { x E[HR]+l Tr(x) = 01, the "trace-zero hyperplane".
r

We obtain the homomorphisms

and the composite A := E o j : oK -+ H. The image will be denoted by
F = X(oK) C H,

and we obtain the

(7.1) Proposition. The sequence

1 --3 (K) ) o* X) r o

is exact.

Proof: We have to show that µ(K) is the kernel of A. For E µ(K) and
r : K - C any embedding, we find log Irk I = log 1 = 0, so that certainly
µ(K) C ker(.l). Conversely, let s E oK be an element in the kernel, so
that A(s) = £ (j s) = 0. This means that I T E I = 1 for each embedding



RI
B

`^b

40 Chapter I. Algebraic Integers

r : K --> C, so that jE = (re) lies in a bounded domain of the IR-
vector space KR. On the other hand, je is a point of the lattice joK of KR
(see (5.2)). Therefore the kernel of X can contain only a finite number of
elements, and thus, being a finite group, contains only roots of unity in K*.

Given this proposition, it remains to determine the group P. For this, we
need the following

(7.2) Lemma. Up to multiplication by units there are only finitely many
elements a E OK of given norm NKJQ(a) = a.

Proof: Let a E Z, a > 1. In every one of the finitely many cosets of
oK/aoK there exists, up to multiplication by units, at most one element a
such that IN(a)I = INKIQ(a)i = a. For if ,8 =a+ay, y E OK, is another
one, then

=1fN )yE0K
because N(0)/fl E oK, and by the same token 1 ± Naa)yE oK,
i.e., fi is associated to a. Therefore, up to multiplication by units, there
are at most (OK : aoK) elements of norm ±a.

(7.3) Theorem. The group P is a complete lattice in the (r + s - 1)-
dimensional vector space H, and is therefore isomorphic to 7Lr+s-i

Proof: We first show that r = )t(0) is a lattice in H, i.e., a discrete
subgroup. The mapping X oK -+ H arises by restricting the mapping

K*--,HCfR,
t

and it suffices to show that, for any c > 0, the bounded domain {(xt) E
frR I Ixti <- c} contains only finitely many points of P = £(joK). Since
((zt)) _ (log Iztl), the preimage of this domain with respect to £ is the

bounded domain

l(zr)E[TC*I e-' < lzj<ec}.
t

It contains only finitely many elements of the set joK because this is a
subset of the lattice joK in [ Hr C] + (see (5.2)). Therefore F is a lattice.
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We now show that 1' is a complete lattice in H. This is the principal
claim of the theorem. We apply the criterion (4.3). So we have to find a
bounded set M C H such that

H = U (M+y).
yEr

We construct this set through its preimage with respect to the surjective
homomorphism

E:S -- H.
More precisely, we will construct a bounded set T in the norm-one surface S,
the multiplicative translations Tjs, E E oK, of which cover all of S:

S = U Tjs.
EEOK

For x = (xr) E T, it will follow that the absolute values Ixrl are bounded
from above and also away from zero, because Hr I xr I = 1. Thus M = Z (T)
will also be bounded. We choose real numbers cT > 0, for r E Hom(K, Q,
satisfying cT = ct and

and we consider the set

X= {(zv) EKRI IzTI <Cr}.
For an arbitrary point y = (y1) E S, it follows that

Xy = { (zv) E KR I Izr1 < c7}

where c' = crlYrl, and one has c' = c' and {l c' = Fi Cr = C because
T r r r

fr I Yr I= IN (Y) I =_ 1. Then, by (5.3), there is a point

ja=(ra) EXy, a EOK, a$0.
Now, according to lemma (7.2), we may pick a system a1i ... , aN.E OK,
ai 0, in such a way that every a E OK with 0 < I NK IQ (a) I < C is
associated to one of these numbers. The set

N
T = S n U X(jai)-1

i=1

then has the required property: since X is bounded, so is X (jai)-1 and
therefore also T, and we have

S = U Tjs.
EEOK
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In fact, if y E S, we find by the above an a E OK, a 0, such that
ja E Xy-1, so ja = xy-1 for some x r= X. Since

INKIQ(a)I =IN(xy-1)i =IN(x)I <JJcz=C,r

a is associated to some at, ai = sa, s E oK. Consequently
1 1y =xja- =xj(ai s).

Since y,jEES,onefinds xja1 ESnXja-1 CT,andthus El

From proposition (7.1) and theorem (7.3) we immediately deduce Dirich-
let's unit theorem in its classical form.

(7.4) Theorem. The group of units oK Of OK is the directproduct of the finite
cyclic group µ(K) and a free abelian group of rank r + s - 1.

In other words: there exist units El, ..., st, t = r + s - 1, called
fundamental units, such that any other unit s can be written uniquely as a
product

t t

with a root of unity and integers vi.

Proof : In the exact sequence
1 (K)->oK 0

T is a free abelian group of rank t = r + s - 1 by (7.3). Let v1, ... , vt be
a 7G-basis of I', let E1, ... , Et E oK be preimages of the vi, and let A C oK
be the subgroup generated by the si. Then A is mapped isomorphically onto
r by A, i.e., one has g(K) n A = (l} and therefore oK = (K) x A. 11

Identifying [ ft R + = I[ r, (see § 5, p. 33), H becomes a subspace of
the euclidean space R'+, and thus itself a euclidean space. We may therefore
speak of the volume of the fundamental mesh vol(,.(ok)) of the unit lattice
r = A.(oK) C H, and will now compute it. Let s1, ..., Et, t = r + s - 1,
be a system of fundamental units and 0 the fundamental mesh of the unit
lattice A(o' ), spanned by the vectors A(s1), ..., A(st) E H . The vector

1

= r s
(1, ... , 1) E ](8'+s
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is obviously orthogonal to H and has length 1. The t-dimensional volume
of 0 therefore equals the (t + 1)-dimensional volume of the parallelepiped
spanned by Ao, L(et), ... , a. (8,) in l[8r+1. But this has volume

A01 X &O ... ,lt(st)
±det :

Aot+1 )t+1(st) Ar+1(sr)

Adding all rows to a fixed one, say the i-th row, this row has only zeroes,
except for the first entry, which equals r + s. We therefore get the

(7.5) Proposition. The volume of the fundamental mesh of the unit lat-
tice A(oK) in H is

where R is the absolute value of the determinant of an arbitrary minor of rank
t = r + s - 1 of the following matrix:

1(sl) ... t(sr)

This absolute value R is called the regulator of the field K.

The importance of the regulator will only be demonstrated later (see
chap. VII, § 5).

Exercise 1. Let D > 1 be a squarefree integer and d the discriminant of the real
quadratic number field K = Q(VD) (see § 2, exercise 4). Let x1, yl be the uniquely
determined rational integer solution of the equation

x2 - dye = -4,
or - in case this equation has no rational integer solutions - of the equation

x2 - dye = 4,
for which x1, yl > 0 are as small as possible. Then

E1 =
xl+yl

2
is a fundamental unit of K. (The pair of equations x2 - dy2 = ±4 is called Pell's
equation.)

Exercise 2. Check the following table of fundamental units el for Q(-,/-D):

D 2 3 5 6 7 10

81 1+/ 2+V (1+-)/2 5+2J 8+3'7 3+,/-10
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Hint: Check one by one for y = 1, 2, 3, ..., whether one of the numbers dy2:F4 is a
square x2. By the unit theorem this is bound to happen, with the plus sign. However,
for fixed y, let preference be given to the minus sign. Then the first case, in this
order, where dyi T 4 = x', gives the fundamental unit sl = (x1 + y1,/d-)/2.

Exercise 3. The Battle of Hastings (October 14, 1066).
"The men of Harold stood well together, as their wont was, and formed thirteen
squares, with a like number of men in every square thereof, and woe to the hardy
Norman who ventured to enter their redoubts; for a single blow of a Saxon war-
hatched would break his lance and cut through his coat of mail... When Harold
threw himself into the fray the Saxons were one mighty square of men, shouting the
battle-cries, `Ut!', `Olicrosse!', `Godemite!'." [Fictitious historical text, following
essentially problem no. 129 in: H.E. Dundeney, Amusements in Mathematics, 1917
(Dover reprints 1958 and 1970).]
Question. How many troops does this suggest Harold II had at the battle of Hastings?

Exercise 4. Let be a primitive p-tb root of unity, p an odd prime number. Show
that +Show that (1 0 < k < 5, n E Z),
ifp=5.
Exercise 5. Let be a primitive m-th root of unity, m > 3. Show that the numbers

for (k, m) = I are units in the ring of integers of the field The subgroup
of the group of units they generate is called the group of cyclotomic units.

Exercise 6. Let K be a totally real number field, i.e., X = Hom(K, C) = Hom(K, R),
and let T be a proper nonempty subset of X. Then there exists a unit e satisfying
0<rs<Ifor zET,and zc> Iforr0T.
Hint: Apply Minkowski's lattice point theorem to the unit lattice in trace-zero space.

§ 8. Extensions of Dedekind Domains

Having studied the ideal class group and the group of units of the ring OK
of integers of a number field K, we now propose to make a first survey of
the set of prime ideals of OK. They are often referred to as the prime ideals
of K - an imprecise manner of speaking which is, however, not likely to
cause any misunderstanding.

Every prime ideal p 0 of oK contains a rational prime number p (see
§3, p. 17) and is therefore a divisor of the ideal p0K. Hence the question
arises as to how a prime number p factors into prime ideals of the ring OK.
We treat this problem in a more general context, starting from an arbitrary
Dedekind domain o at the base instead of Z, and taking instead of OK the
integral closure 0 of o in a finite extension of its field of fractions.
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(8.1) Proposition. Let o be a Dedekind domain with field of fractions K, let
L I K be a finite extension of K and 0 the integral closure of o in L. Then 0
is again a Dedekind domain.

Proof: Being the integral closure of o, 0 is integrally closed. The fact that
the nonzero prime ideals q3 of 0 are maximal is proved similarly as in the
case o = Z (see (3.1)): p = l3 fl o is a nonzero prime ideal of o. Thus
the integral domain O/q3 is an extension of the field o/p, and therefore has
itself to be, a field, because if it were not, then it would admit a nonzero
prime ideal whose intersection with o/p would again be a nonzero prime
ideal in o/p. It remains to show that 0 is noetherian. In the case that is of
chief interest to us, namely, if LIK is a separable extension, the proof is
very easy. Let a1, ..., a, be a basis of L I K contained in 0, of discriminant
d = d(a1, ..., Then d 0 by (2.8), and (2.9) tells us that 0 is
contained in the finitely generated o-module oat/d + + Every
ideal of 0 is also contained in this finitely generated o-module, and therefore
is itself an o-module of finite type, hence a fortiori a finitely generated O-
module. This shows that 0 is noetherian, provided L IK is separable. We
ask the reader's permission to content ourselves for the time being with
this case. We shall come back to the general case on a more convenient
occasion. In fact, we shall give the proof in a more general framework
in § 12 (see (12.8)).

For a prime ideal p of o one always has
PO O.

In fact, let 7r E P N p2 (p 0), so that fro = pa with p a, hence p+a = o.
Writing 1=b+s,with bEpand sEa,we find s0pand spcpa =7ro.
If one had pO = 0, then it would follow that sO = spO c_ rrO, so that
s = rrx for some x E 0 fl K = o, i.e., s E p, a contradiction.

A prime ideal p # 0 of the ring o decomposes in 0 in a unique way into
a product of prime ideals,

p = Tel . . . s3,.e,
.

Instead of pO we will often write simply p. The prime ideals X31 occurring in
the decomposition are precisely those prime ideals q3 of 0 which lie over p
in the sense that one has the relation

p=g3no.
This we also denote for short by 3 I p, and we call T a prime divisor of p.
The exponent e; is called the ramification index, and the degree of the field
extension

fi = [O/Ti : o/p]
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is called the inertia degree of j3; over p. If the extension L I K is separable,
the numbers e;, ff and the degree n = [L : K] are connected by the
following law.

(8.2) Proposition. Let L I K be separable. Then we have the fundamental
identity

e,f1 =n.
!=1

Proof: The proof is based on the Chinese remainder theorem
r

O/pO = ®O/q3=' .
i=1

O/pO and O/3 e` are vector spaces over the field x = o/p, and it suffices
to show that

dimK(O/p0) = n and dim1e(O/q3i`) = eifi

In order to prove the first identity, let w1, ... , w,,, E 0 be representatives
of a basis w 1, ... , w,,, of O/pO over K (we have seen in the proof of (8.1)
that 0 is a finitely generated o-module, so certainly dimK (O/pO) < oo).
It is sufficient to show that col, ..., co,,, is a basis of L I K. Assume the
col, ..., co,,, are linearly dependent over K, and hence also over o. Then
there are elements a1, ... , a,,, E o not all zero such that

a1cv1 + . + amCJm = O.

Consider the ideal a = (al, ..., am) of o and find a E a-' such that
a 0 a-1p, hence as ¢ p. Then the elements aal, ..., aa,,, lie in o, but not
all belong to p. The congruence

aa1w1 + ... + aa,,,com = 0 mod p

thus gives us a linear dependence among the (D1, ... , wm over x, a contra-
diction. The l)1, ..., w,,, are therefore linearly independent over K.

In order to show that the cut are a basis of LIK, we consider the o-
modules M = co), + . + ocom and N = 0/M. Since 0 = M + p0,
we have pN = N. As L I K is separable, O, and hence also N, are finitely
generated o-modules (see p. 45). If c , ... , aS is a system of generators
of N, then

a; a;jaj for aij Ep.

Let A be the matrix (a;j) - I, where I is the unit matrix of rank s, and let
B be the adjoint matrix of A, whose entries are the minors of rank (s - 1)
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of A. Then one has A(al, ..., ar)` = 0 and BA = dl, with d = det(A),
(see (2.3)). Hence

0 = BA(al, ..., a,)' = (dal, ..., das)t ,

and therefore dN = 0, i.e., dO C M = owl + + OWm. We have
d ; 0, because expanding the determinant d = det((a11) - I) we find d
(-1)s mod p because ail E p. It follows that L = dL = Kcol + +Kmm.
col, ... , w,,, is therefore indeed a basis of L I K.

In order to prove the second identity, let us consider the descending chain

/` ` ,/ I` D ... - j,-1/3j, D (0)

of K -vector spaces. The successive quotients q3'/T'+' in this chain are
isomorphic to O/li , for if a E T° -, T'+', then the homomorphism

O i / °+1 a r-- au,

has kernel 4i and is surjective because 3° is the gcd of 13°+1 and
(a) = aO so that T° = aO + 93°+1. Since fi = [O/q3i : x], we obtain
dim,, (T ° /T" +1) = fi and therefore

e;-1
dim, ((9/ 3;`) = E dim , (q3; /q3°+1) = ei fi .

v=o

Suppose now that the separable extension L I K is given by a primitive
element 0 E 0 with minimal polynomial

p(X) E O[X],

so that L = K(B). We may then deduce a result about the nature of the
decomposition of p in 0 which, albeit not complete, does show characteristic
phenomena and a striking simplicity. It is incomplete in that a finite number
of prime ideals are excluded; only those relatively prime to the conductor of
the ring o[8] can be considered. This conductor is defined to be the biggest
ideals of O which is contained in o[B]. In other words

a finitely generated o-module (see proof of (8.1)), one has s 0.

(8.3) Proposition. Let p be a prime ideal of o which is relatively prime to the
conductors of o[O], and let

j5(X) = p1(X)e1 ...P'.(X)'
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be the factorization of the polynomial p (X) = p (X) mod p into irreducibles
pi (X) = pi(X)modpover theresidue class field o/p, with all pi (X) E o[X]
monic. Then 3i=p0+pi(0)0, i=1,...,r,
are the different prime ideals of 0 above p. The inertia degree fi of '43i is the
degree of pi (X), and one has

Tej... }e-
l r

Proof: Writing 0' = o[9] and o = o/p, we have a canonical isomorphism
0/pO = 0'/p0' = 51X]l(P(X)) .

The first isomorphism follows from the relative primality p0 + = 0. As
C 0', it follows that 0 = p0+0', i.e., the homomorphism 0' -- 0/pO

is surjective. It has kernel p0 n 0', which equals p0'. Since (p, an o) = 1,
it follows that p0 fl 0' = (p + a) (p0 n 0') c p0'.

The second isomorphism is deduced from the surjective homomorphism
o[x] --) o[X] /(p(X)) .

Its kernel is the ideal generated by p and p(X), and in view of 0' = o[9] _
o[X]/(P(X)), we have O'/pO' o[X)/(p(X)).

Since p (X) (X )el , the Chinese remainder theorem finally gives
the isomorphism

o[x]l(n(x)) = ®5[X]1(Pi(X))e'
i_t

This shows that the prime ideals of the ring R = o[X] /(p(X)) are the
principal ideals (pi) generated by the p,(X) mod p(X), for i = 1, ..., r,
that the degree [R/(pi) : n] equals the degree of the polynomial pi (X), and
that r

(0) _ (P) = f(Pi)e'-
i=t

In view of the isomorphism o`[X] /(p(X)) = O/p0, f (X) r* f (B), the
same situation holds in the ring 0 = O/pO. Thus the prime ideals Ti of
0 correspond to the prime ideals ()5i), and they are the principal ideals
generated by the pi (0) mod p0. The degree [ O/Ti : a] is the degree of the
polynomial Ti (X), and we have (0)= ni=1 13e' . Now let Ji = p0+pi (0) 0
be the preimage of '3i with respect to the canonical homomorphism

0 --> O/pO.
Then 5 3i, for i = 1, ..., r, varies over the prime ideals of 0 above p.
fi = [ O/9,31 : o/p] is the degree of the polynomial pi (X). Furthermore T"
is the preimage of 13e' (because ei = #(3" I v c N}), and PO : fi-1 i"
so that p 01 l

1
ale' and therefore p0 = fi-1 X38' because ) ei fi = n.

0
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The prime ideal p is said to split completely (or to be totally split) in L,
if in the decomposition

p = Tel ... mer
I tr+

one-has r=n=[L:K],sothat ei = fi=Ifor all i=1,...,r.pis
called nonsplit, or indecomposed, if r = 1, i.e., if there is only a single
prime ideal of L over p. From the fundamental identity

r
eifi = n

i=1

we now understand the name of inertia degree: the smaller this degree is,
the more the ideal p will be tend to factor into different prime ideals.

The prime ideal Ji in the decomposition p = r[i_1 ale' is called
unramified over o (or over K) if ei = 1 and if the residue class field
extension O/Ti I o/p is separable. If not, it is called ramified, and totally
ramified if furthermore fi = 1. The prime ideal p is called unramified if
all ,3k are unramified, otherwise it is called ramified. The extension L I K
itself is called unramified if all prime ideals p of K are unramified in L.

The case where a prime ideal p of K is ramified in L is an exceptional
phenomenon. In fact, we have the

(8.4) Proposition. IfL I K is separable, then there are only finitely manyprime
ideals of K which are ramified in L.

Proof: Let 6 E 0 be a primitive element for L, i.e., L = K(6), and let
p (X) E o[X] be its minimal polynomial. Let

d=d(1,0,...,On-I)=F1 (6i-Bj)2E0
i<j

be the discriminant of p(X) (see §2, p. 11). Then every prime ideal p of K
which is relatively prime to d and to the conductor ' of o[6] is unramified.
In fact, by (8.3), the ramification indices ei equal 1 as soon as they are equal
to 1 in the factorization of p(X) = p(X) mod p in o/p, so certainly if p(X)
has no multiple roots. But this is the case since the discriminant d = d mod p
of T (X) is nonzero. The residue class field extensions o/pi l o/p are
generated by B = 6 mod Ti and therefore separable. Hence p is unramified.

0

The precise description of the ramified prime ideals is given, by the
discriminant of Cl o. It is defined to be the ideal 1 of o which is generated by
the discriminants d (cot , ..., o.) of all bases col, ... , mn of L I K contained
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in 0. We will show in chapter III, § 2 that the prime divisors of ct are exactly
the prime ideals which ramify in L.

Example : The law of decomposition of prime numbers p in a quadratic
number field Q(J ) is intimately related to Gauss's famous quadratic
reciprocity law. The latter concerns the problem of integer solutions of the
equation

x2+by=a, (a,bEZ),
the simplest among the nontrivial diophantine equations. The theory of this
equation reduces immediately to the case where b is an odd prime number
p and (a, p) = 1 (exercise 6). Let us assume this for the sequel. We are
then facing the question as to whether a is a quadratic residue mod p,
i.e., whether the congruence

x2 = a mod p
does or does not have a solution. In other words, we want to know if
the equation x 2 = d, for a given element a = a mod p E 1F , , admits
a solution in the field 1Fp or not. For this one introduces the Legendre
symbol (a), which, for every rational number a relatively prime to p, is

defined (p) = 1 or -1, according as x2 = a mod p has or does not
have a solution. This symbol is multiplicative,

(p)-(p)(p)'
This is because the group 1Fp is cyclic of order p-1 and the subgroup F*2 of
squares has index 2, i.e., 1F ,/1Fp - Z/2Z. Since (p) = 1 a E ]FP
one also has (Pa )--_a mod p.

In the case of squarefree a, the Legendre symbol (P) bears the following

relation with prime factorization. (P) = 1 signifies that

x2-am(x-a)(x+a)mod p
for some a e Z. The conductor of Z [ / ] in the ring of integers of Q (,/) is
a divisor of 2 (see § 2, exercise 4). We may therefore apply proposition (8.3)
and obtain the

(8.5) Proposition. Forsquarefreea and (p, 2a) = 1, we have the equivalence
a(p = 1 p is totally split in Q (,) .
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For the Legendre symbol, one has the following remarkable law, which
like none other has left its mark on the development of algebraic number
theory.

(8.6) Theorem (Gauss's Reciprocity Law). For two distinct odd prime
numbers £ and p, the following identity holds:

\P,)(D =(-1)Yz.
One also has the two "supplementary theorems"

p z

( l)=(-1) (p)=(-1)

Proof : (pl) (-1) eTL mod p implies (pl) _ (-1) R since p 0 2.

In order to determine (p) , we work in the ring Z[i] of gaussian integers.
Since (1 + i)2 = 2i, we find

2 = (1 + :)ice 2 4 ,(1 + i)P = (1 E i)((1 + i)2)

and since (1 + i) n =- 1 + i n mod p and (p) 2'Y mod p, it follows that

(2)(1+i)i21 -1mod p.
P

From this, an easy computation yields

2 p-1 2 Ptl(P) - (-1) 4 mod p, resp. (-) IF mod p,

if
P-1

is even, resp. odd. Since P'-' = p - 1 p + i = P+' P-1, we
2 8 4 2 4 2

pz-1
deduce (F) _ (-1) r .

In order to prove the first formula, we work in the ring where is
a primitive 2-th root of unity. We consider the Gauss sum

a a

aE(Z/IZ)* P

and show that
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For this, let a and b vary over the group (Z/ Z)*, put c = ab-1 and deduce
from the identity (e) _ (s) that

(-')-r2 (
r(a t r( bc-b- e

a, b

(C)b361

Now Ec (e) = 0, as one sees by multiplying the sum with a symbol (E) _
-1, and putting _ `-t gives >b i;b(c-il = + 2 + ... + e-t
from which we indeed find that

(-1 )r2 = (-1)(-1) +

This, together with the congruence (p) _ £ mod p and the identity

1 (-1) , implies

TP=t(i2) =r(-1)l2 mod p.
P

On the other hand one has

rp - (a ),aP (Q) ( ).aP (1? ) T P,

so that

mod

t(Q) =t(-1)P2(-t ) mod p.
P

Multiplying by r and dividing by ±2 yields the claim.

We have proved Gauss's reciprocity law by a rather contrived calculation.
In § 10, however, we will recognize the true reason why it holds in the law
of decomposition of primes in the field of £-th roots of unity. The
Gauss sums do have a higher theoretical significance, though, as will become
apparent later (see VII, § 2 and § 6).

Exercise 1. If a and b are ideals of O, then one has a = a o fl 0 and
al b4=,aOl bO.
Exercise 2. For every integral ideal 2t of 0, there exists a 8 E 0 such that the
conductor ' = (a E 0 1 ao C o[8]) is prime to 2t and such that L = K(8).
Exercise 3. If a prime ideal p of K is totally split in two separable extensions L I K
and L' I K , then it is also totally split in the composite extension.
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Exercise 4. A prime ideal p of K is totally split in the separable extension L I K if
and only if it is totally split in the Galois closure N I K of L I K.

Exercise 5. For a number field K the statement of proposition (8.3) concerning the
prime decomposition in the extension K(B) holds for all prime ideals p t (0 : 0[0]).

Exercise 6. Given a positive integer b > 1, an integer a relatively prime to b is a
quadratic residue mod b if and only if it is a quadratic residue modulo each prime
divisor p of b, and if a - 1 mod 4 when 4Ib, 8 b, resp. a - I mod 8 when 81b.
Exercise 7. Let (a, p) = 1 and av = r mod p, v = 1, ..., p-1,0 <r, < p. Then
the r, give 'a permutation it of the numbers 1, ... , p - 1. Show that sgn n = ( a).P

n ,n
Exercise 8. Let a,, = a , where a = 1+,/5

2, s' = 1 2 (an is the n-th
Fibonacci number). If p is a prime number 2, 5, then one has

aP
S)

mod p.

Exercise 9. Study the Legendre symbol ( p) as a function of p > 3. Show that the
property of 3 being a quadratic residue or nonresidue mod p depends only on the
class of p mod 12.

Exercise 10. Show that the number of solutions of x2 - a mod p equals 1 + (a) .P

Exercise U. Show that the number of solutions of the congruence ax 2 + bx + c =
0 mod p, where (a, p) = 1, equals 1 + (b2 -

P
4ac )

§ 9. Hilbert's Ramification Theory

The question of prime decomposition in a finite extension LIK takes
a particularly interesting and important turn once we assume L K to be a
Galois extension. The prime ideals are then subject to the action of the Galois
group

G = G(LIK).
The "ramification theory" that arises from this assumption has been intro-
duced into number theory by DAVID HILBERT (1862-1943). Given a in the
ring 0 of integral elements of L, the conjugate cra, for every or E G, also
belongs to 0, i.e., G acts on 0. If T is a prime ideal of 0 above p, then
so is vq3, for each o- E G, because

orTno=a(g3no)=vp=p.
The ideals 6q3, for or E G, are called the prime ideals conjugate to 43.
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(9.1) Proposition. The Galois group G acts transitively on the set of all prime
ideals q3 of 0 lying above p, i.e., these prime ideals are all conjugates of each
other.

Proof: Let 3 and T' be two prime ideals above p. Assume 3' a3 for
any a E G. By the Chinese remainder theorem there exists x E 0 such that

x-0mod 3' and x-1mod ag3 for all aCG.
Then the norm NLI K(x) = T1111 EG ax belongs to 43' fl o = p. On the other
hand, x 0 o-'3 for any a E G, hence ax 0 q3 for any or E G. Consequently
H1EG ax o 3 fl o = p, a contradiction.

(9.2) Definition. IfT is a prime ideal of 0, then the subgroup
Gcp (a C G! a3 =q3}

is called the decomposition group of q3 over K. The fixed field

Zc3=IxELIax=x for all aEGG}
is called the decomposition field of 93 over K.

The decomposition group encodes in group-theoretic language the number
of different prime ideals into which a prime ideal p of o decomposes in 0.
For if q3 is one of them and a varies over a system of representatives
of the cosets in G/Gq3, then a 3 varies over the different prime ideals
above p, each one occurring precisely once, i.e., their number equals the
index (G : Gp). In particular, one has

G p= 1 Zq3 = L p is totally split,

Gq3 = G 4 Zcp = K p is nonsplit.
The decomposition group of a prime ideal a 3 conjugate to q3 is the
conjugate subgroup

1G,p=aG93or-
In fact, for r c= G, one has the equivalences

r EGQ 3 za 3= a'3 a-irag3= 3
a-lra E Gp3 r E aGg3a-I.

Remark: The decomposition group regulates the prime decomposition also
in the case of a non-Galois extension. For subgroups U and V of a group G,
consider the equivalence relation in G defined by

or a' = a' = uav for u E U, V E V .
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The corresponding equivalence classes
UaV={uovIuEU, VEV}

are called the double cosets of G modd U, V. The set of these double cosets,
which form a partition of G, is denoted U\G/V.

Now let L I K be an arbitrary separable extension, and embed it into a
Galois extension N I K with Galois group G. In G, consider the subgroup
H = G(NIL). Let p be a prime ideal of K and Pp the set of prime ideals
of L above p. If T is a prime ideal of N above p, then the rule

H\G/GT -3 Pp, HuGT H a 93 n L,
gives a well-defined bijection. The proof is left to the reader.

In the Galois case, the inertia degrees fl, ... , fr and the ramification
indices el, ..., er in the prime decomposition

p = Tel ... g3er
1 r

of a prime ideal p of K are both independent of i,
fi=...=fr=f, el=...=er=e.

In fact, writing 3 = TI, we find ',3t = o; 3 for suitable oi E G, and the
isomorphism a; : 0 - 0 induces an isomorphism

O/ T -+ 0/a; T, a mod T H al a mod ai 13,

so that
ft = [ 0/04: o/p] = [ O/.p : 0/p],

Furthermore, since o; (p0) = p0, we deduce from
3v I pO ai (3v) j ai (pQ) G = (aaT)" I p 0

the equality of the e; , i = 1, ..., r. Thus the prime decomposition of p in 0
takes on the following simple form in the Galois case:

P =
(IIaq3)e,

a
where or varies over a system of representatives of G/GT. The decomposi-
tion field Zp of 93 over K has the following significance for the decompo-
sition of p and the invariants e and f.

(9.3) Proposition. Let' 3Z = T n Zp be the prime ideal of Zp below q3.
Then we have:
(i) PZ is nonsplitin L, i.e.,' .3 is the only prime ideal of L above 543z.
(ii) 13 over Zq has ramification index e and inertia degree f.
(iii) The ramification index and the inertia degree of 93Z over K both equal 1.
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Proof: (i) Since G (L I ZT) = GT, the prime ideals above J3z are the or T,
for or E G (L I Zp), and they are all equal to T.
(ii) Since in the Galois case, ramification indices and inertia degrees are
independent of the prime divisor, the fundamental identity in this case reads

n = efr,
where n :_ #G,)- = (G : Gds). We see therefore that #Gp = [L : Zq] = ef.
Let e', resp. e", be the ramification index of 93 over Zp, resp. of 13Z over K.
Then p = 3Z ... in Zq3 and 93z = sae' in L, so that p = 3e"e'..., i.e.,
e = e'e". One also obviously gets the analogous identity for the inertia
degrees f = ff". The fundamental identity for the decomposition of Tz
in L then reads [L ZT] = e' f', i.e., we have e' f' = ef, and therefore
e' = e, f'=f,e"=f"=1.

The ramification index e and the inertia degree f admit a further
interesting group-theoretic interpretation. Since a O = O and a3 = q3,
every or E Gtp induces an automorphism

v : O/93 -) O/T, a mod q3 r-r as mod q3,

of the residue class field O/ 3. Putting K(q3) = O/T and K(p) = o/p, we
obtain the

(9.4) Proposition. The extension K (q3) IK (p) is normal and admits a surjective
homomorphism

GT -) G(K(P)IK(p)).

Proof: The inertia degree of q3z over K equals 1, i.e., ZT has the same
residue class field K(p) as K with respect to p. Therefore we may, and
do, assume that Z T = K, i.e., GT = G. Let 9 E O be a representative
of an element 9 E K (q3) and f (X), resp. g (X), the minimal polynomial
of 9 over K, resp. of 9 over K(p). Then 9 = 9 mod q3 is a zero of the
polynomial j (X) = f (X) mod p, i.e., g (X) divides f (X). Since L I K is
normal, f (X) splits over O into linear factors. Hence f (X) splits into linear
factors over x (q3), and the same is true of g (X). In other words, K K (p)
is a normal extension.

Now let 9 be a primitive element for the maximal separable subextension
of K(g3)IK(p) and

5 E G(K(`)IK(p)) = G(K(p)(6)IK(p)) .
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Then rr B is a root of k(X), and hence of I (X), i.e., there exists a zero 9'
of f (X) such that 9' - Q B mod q3. 9' is a conjugate of 9, i.e., 6' = a 9
for some a E G(L I K). Since a 9 - 5' 8 mod T, the automorphism a is
mapped by the homomorphism in question to F. This proves the surjectivity.

0

(9.5) Definition. The kernel IT c GT of the homomorphism

GT -* G(K(q3)IK(p))

is called the inertia group of 43 over K. The fixed field

TT=Ix ELI ax=x forallaElt}
is called the inertia field of 43 over K.

This inertia field Tp appears in the tower of fields

KCZTcTTCL,
and we have the exact sequence

1 -+ IT -* GT -p G(K(T)IK(p)) -f 1.
Its properties are expressed in the

(9.6) Proposition. The extension Tip I Z r is normal, and one has

G(TgIZT) .= G(K(P)IK(p)) , G(LITq) = IT.
If the residue field extension K (T) IK (p) is separable, then one has

#1T=[L:TT]=e, (GT:IT)=[Ti:ZT]=f.
In this case one finds for the prime ideal T T of Tip below l:

(i) The ramification index of 13 over PT is e and the inertia degree is 1.
(ii) The ramification index off 3T over 43Z is 1, and the inertia degree is f .

Proof: The first two claims follow from the identity #GT = ef. So we only
have to show statements (i) and (ii). Using the fundamental identity, they all
follow from K(P3T) = K(v3). As the inertia group IT of 3 over K is also the
inertia group of 93 over TT, it follows from an application of proposition (9.4)
to the extension L I Tip that G (K (T) I K (TT)) = 1, hence K (TT) = K (T).
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In the diagram
K-3ZT-- TT -- Lf

we have indicated the ramification indices of the individual field extensions
on top, and the inertia degrees on the bottom. In the special case where the
residue field extension K (q3) I x (p) is separable we find

I p= 1 TT = L p is unramified in L.

In this case the Galois group G(K(3)IK(p)) - Gp of the residue class field
extension may be viewed as a subgroup of G = G(L I K).

Hilbert's ramification theory, with its various refinements and generaliza-
tions, belongs naturally to the theory of valuations, which we will develop
in the next chapter (see chap. II, § 9).

Exercise 1. If L I K is a Galois extension of algebraic number fields with noncyclic
Galois group, then there are at most finitely many nonsplit prime ideals of K.
Exercise 2. If L I K is a Galois extension of algebraic number fields, and T a prime
ideal which is unramified over K (i.e., p = 93f1 K is unramified in L), then there is
one and only one automorphism APT E G(LIK) such that

cpTa=_aQmod g3 forallaEO,
where q = [K(q3) : K(p)). It is called the Frobenius automorphism. The decompo-
sition group Gp is cyclic and cp is a generator of Gp.
Exercise 3. Let L I K be a solvable extension of prime degree p (not necessarily
Galois). If the unramified prime ideal p in L has two prime factors q3 and q'3' of
degree 1, then it is already totally split (theorem of F.K. SCHMIDT).

Hint: Use the following result of GALOIS (see [75], chap. II, § 3): if G is a transitive
solvable permutation group of prime degree p, then there is no nontrivial permutation
a E G which fixes two distinct letters.
Exercise 4. Let L I K be a finite (not necessarily Galois) extension of algebraic number
fields and N I K the normal closure of L I K. Show that a prime ideal p of K is totally
split in L if and only if it is totally split in N.
Hint: Use the double coset decomposition H\G/GT, where G = G(NIK), H =
G(NIL) and G , is the decomposition group of a prime ideal 43 over p.

§ 10. Cyclotomic Fields

The concepts and results of the theory as far as it has now been
developed have reached a degree of abstraction which we will now balance
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by something more concrete. We will put the insights of the general theory
to the task and make them more explicit in the example of the n-th
cyclotomic field Q(c), where is a primitive n-th root of unity. Among
all number fields, this field occupies a special, central place. So studying it
does not only furnish a worthwhile example but in fact an essential building
block for the further theory.

It will be our first goal to determine explicitly the ring of integers of the
field For this we need the

(10.1) Lemma. Let n be a prime power Z' and put A = 1 - . Then the
principal ideal (A) in the ringo of integers of is a prime ideal of degree 1,
and we have

j o = ('X)d , where d = q?(f') _ Q].
Furthermore, the basis 1, c, ... , d-1 has the discriminant

d(1, ±Ls, S = Q°-1(v1 - v - 1).

Proof: The minimal polynomial of over Q is the n-th cyclotomic poly-
nomial

¢,(X) = (XeV - 1) = XPv-1(P-1) +... + Xe- + 1.

Putting X = 1, we obtain the identity

f= IZ (1-i;g)
gE(Z/nZ)*

1-VBut 1 - g = Eg(l - ), for the algebraic integer eg = 1- _
1 + + - . + g-' . If g' is an integer such that gg' = 1 mod 2", then

1 - 1 - 1 + g + ... { (Mg/1-fig 1-fig
is integral as well, i.e., eg is a unit. Consequently £ = e(1 - with
the unit e = Hg eg, hence to = Since Q} = o(t"), the
fundamental identity (8.2) shows that (A) is a prime ideal of degree 1.

Let = 1i ..., d be the conjugates of . Then the cyclotomic
polynomial is 4n (X) = rjd I (X - iii) and (see § 2, p. 11)

7 d'7
i
i-1
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Differentiating the equation

(Xe°-` - 1)0n(X) = XE" - 1

and substituting for X yields

( - 1)01() =
with the primitive E-th root of unity But 1) = +E,
so that

-1)Ev' =fEE
Observing that has norm ±1 we obtain

d(1, , ... , d-`) = fEveV
`(e-t)_P _ +ES

with s=f'-1(vt-v-1). 11

The ring of integers of Q(c) is now determined, for arbitrary n, as follows.

(10.2) Proposition. A 7Z-basis of the ring o of integers of is given by
1, , ... , d-1, with d = (p (n), in other words,

Proof: We first prove the proposition in the case where n is a prime
power E". Since d(1, , ... , .d-1) = ±Es, (2.9) gives us

Eso c C o.

Putting A = 1 - , lemma (10.1) tells us that o/,lo = 7L/EZ, so that
o = Z +),o, and a fortiori

Ao + Z[f] = o.

Multiplying this by A and substituting the result a,o = X20 + we
obtain

A20 + o.
Iterating this procedure, we find

for all t>1.
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For t = s (p(2°) this implies, in view of £ o = JMt )o (see (10.1)), that

o = tso+Z[x] =
In the general case, let n = Ci' £v'. Then

'Iti,
is a primitive £°' -th

root of unity, and one has

Q(O
and ( ) (_ 1) fl Q Q. By what we have just seen, for each

r, the elements 1, fit, ... , d`-1, where d; = rp(Q°'), form an
integral basis of Since the discriminants d(1, ;, ... , d'-1) = ±Qi'
are pairwise relatively prime, we conclude successively from (2.11) that the
elements 1' .r' , with ji = 0, ... , d1 - 1, form an integral basis of
Q (c) IQ. But each one of these elements is a power of . Therefore every
a n o may be written as a polynomial a = f with coefficients in Z.
Since c has degree cp(n) over Q, the degree of the polynomial f may be
reduced to rp(n) - 1. In this way one obtains a representation

a = ao + alb + ... +

Thus 1, , ... , gyp(") 1 is indeed an integral basis.

Knowing that is the ring of integers of the field we are now in
a position to state explicitly the law of decomposition of prime numbers p
into prime ideals of It is of the most beautiful simplicity.

(10.3) Proposition. Let n = fp pvp be the prime factorization of n and, for
every prime number p, let fp be the smallest positive integer such that

pfp - 1 mod n/p"p.

Then one has in Q the factorization

P = (Pi ... pr)pVp),

where p 1, ... , pr are distinct prime ideals, all of degree f.

Proof: Since o = Z[], the conductor of Z[] equals 1, and we may
apply proposition (8.3) to any prime number p. As a consequence, every p
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decomposes into prime ideals in exactly the same way as the minimal
polynomial 0,(X) of factors into irreducible polynomials mod p. All we
have to show is therefore that

0n(X) = (p1(X)... p,-(X))'P(P"P) mod p,
where pl(X), ..., pr(X) are distinct irreducible polynomials over Z/p7L of
degree fp. In order to see this, put n = p"Pm. As i, resp. nj, varies over
primitive roots of unity of order m, resp. p"P, the products i q j vary precisely
over the primitive n-th roots of unity, i.e., one has the decomposition over o:

0. (X) = l (X - i 77j)
i,j

Since XP
"P - 1 = (X - 1)P "P mod p, one has r7j = 1 mod p, for any prime

ideal p I p. In other words,

0n(X) = fj(X - 4.)'(P"') _,pm(X)°(P"P) mod p.
i

This implies the congruence

On (X) = m (X) 10 'Pvp) mod p.
Observing that fp is the smallest positive integer such that pfP mod m,
it is obvious that this congruence reduces us to the case where p { n, and
hence cp(p"P) = Cp(l) = 1.

As the characteristic p of o/p does not divide n, the polynomials X' - 1
and nXn-' have no common root in o/p. So Xn - 1 mod p has no
multiple roots. We therefore see that passing to the quotient o -- o/p
maps the group µn of n-th roots of unity bijectively onto the group
of n-th roots of unity of n/p. In particular, the primitive n-th root of
unity modulo p remains a primitive n-th root of unity. The smallest
extension field of lF p = Z / pZ containing it is the field lF p fP , because its
multiplicative group FP1 is cyclic of order pfP-1. ]Fp fP is therefore the
field of decomposition of the reduced cyclotomic polynomial

0,(X) = .On (X) mod p.
Being a divisor of Xn - 1 mod p, this polynomial has no multiple roots,
and if

&(X)=P1(X)...pr(X)

is its factorization into irreducibles over Fp, then every pi (X) is the minimal
polynomial of a primitive n-th root of unity E 1F1,. Its degree is
therefore fp. This proves the proposition.

Let us emphasize two special cases of the above law of decomposition:
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(10.4) Corollary. A prime number p is ramified in if and only if
n0modp,

except in the case where p = 2 = (4, n). A prime number p 0 2 is totally
split in if and only if p1modn.

The completeness of these results concerning the integral basis and the
decomposition of primes in the field will not be matched by our study
of the group of units and the ideal class group. The problems arising in this
context are in fact among the most difficult problems posed by algebraic
number theory. At the same time one encounters here plenty of astonishing
laws which are the subject of a theory which has been developed only
recently, Iwasawa theory.

The law of decomposition (10.3) in the cyclotomic field provides the
proper explanation of Gauss's reciprocity law (8.6). This is based on the
following

(10.5) Proposition. Let 2 and p be odd prime numbers, f* _ (-1) Y f, and
a primitive C -th root of unity. Then one has:

p is totally split in 2*) p splits in Q into an even
number of prime ideals.

Proof: The little computation in §8, p.51 has shown us that Q* = r2 with
r = G.aE(Z/tZ)* so that Q( Q*) c If p is totally split in

say p = P1P2, then some automorphism a of such that
UPI = P2 transforms the set of all prime ideals lying above pl bijectively
into the set of prime ideals above P2. Therefore the number of prime ideals
of above p is even. Now assume conversely that this is the case. Then
the index of the decomposition group Gp, or in other words, the degree
[Zp : Q] of the decomposition field of a prime ideal p of over p,
is even. Since is cyclic, it follows that Q( e*) c_ Z. The
inertia degree of p fl Zp over Q is 1 by (9.3), hence also the inertia degree
of p fl Q( 2* ). This implies that p is totally split in Q( (,1F* ). El

From this proposition we obtain the reciprocity law for two odd prime
numbers t and p,

t-1 P-Ip -2
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as follows. It suffices to show that

In fact, the completely elementary result (p1) _ (-1)
pz

i (see § 8, p. 51)
then gives

2 f-.(p)=(p)(-1) `.(p)=(p)=(p)L
By (8.5) and (10.5), we know that (P) = 1 if and only if p decomposes
in the field of £-th roots of unity into an even number of prime ideals.
By (10.3), this number is r = E

f 1 , where f is the smallest positive integer
such that pf - 1 mod f, i.e., r is even if and only if f is a divisor
of 2 But this is tantamount to the condition p(1-1)/2 1 mod f. Since
an element in the cyclic group ]FE has an order dividing 2 if and only if
it belongs to FQ2, the last congruence is equivalent to ( ) = 1. So we do
have (p) (i) as claimed.

Historically, Gauss's reciprocity law marked the beginning of algebraic
number theory. It was discovered by EULER, but first proven by Gauss. The
quest for similar laws concerning higher power residues, i.e., the congruences
x" - a mod p, with n > 2, dominated number theory for a long time.
Since this problem required working with the n-th cyclotomic field, KuM,MER's
attempts to solve it led to his seminal discovery of ideal theory. We have
developed the basics of this theory in the preceding sections and tested it
successfully in the example of cyclotomic fields. The further development
of this theory has led to a totally comprehensive generalization of Gauss's
reciprocity law, Artin's reciprocity law, one of the high points in the history
of number theory, and of compelling charm. This law is the main theorem
of class field theory, which we will develop in chapters IV-VI.

Exercise 1. (Dirichlet's Prime Number Theorem). For every natural number n there
are infinitely many prime numbers p - 1 mod n.

Hint: Assume there are only finitely many. Let P be their product and consider the
n -th cyclotomic polynomial 0,,. Not all numbers for x E 7L, can equal 1.
Let p 10,, (xnP) for suitable x. Deduce a contradiction from this. (Dirichlet's prime
number theorem is valid more generally for prime numbers p = a mod n, provided
(a, n) = 1 (see VII, (5.14) and VII, § 13)).
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Exercise 2. For every finite abelian group A there exists a Galois extension L IQ
with Galois group G(LIQ) - A.
Hint: Use exercise 1.

Exercise 3. Every quadratic number field Q(J) is contained in some cyclotomic
field a primitive n-th root of unity.

Exercise 4. Describe the quadratic subfields of Q IQ, in the case where n is odd.

Exercise 5. Show that Q( ), Q(/), Q(/) are the quadratic subfields of
for, n = 2Q, q ? 3.

§ 11. Localization

To "localize" means to form quotients, the most familiar case being the
passage from an integral domain A to its field of fractions

K={b IaEA, bEA\(0}}.
More generally, choosing instead of A N {0} any nonempty S C_ A N (0)
which is closed under multiplication, one again obtains a ring structure on
the set

AS-t={s a EKIaEA, sES}.
The most important special case of such a multiplicative subset is the
complement S = A N p of a prime ideal p of A. In this case one writes AP
instead of AS-1, and one calls the ring AP the localization of A at p. When
dealing with problems that involve a single prime ideal p of A at a time it is
often expedient to replace A by the localization A.. This procedure forgets
everything that has nothing to do with p, and brings out more clearly all the
properties concerning p. For instance, the mapping

qt ) gAP

gives a 1-1-correspondence between the prime ideals q c p of A and the
prime ideals of Ap. More generally for any multiplicative set S, one has the

(11.1) Proposition. The mappings

q H qS-1 and 1_'2. 1 n A
are mutually inverse 1-1-correspondences between the prime ideals q C A-, S
of A and the prime ideals £2 of AS-1.
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Proof: If q C A . S is a prime ideal of A, then
12=qs-1={q

I qEq, SES}

is a prime ideal of AS-1. Indeed, in obvious notation, the relation a Es
i.e., ss, = 9, , implies that s"aa' = qss' E q. Therefore aa' E q, because
s" q, and hence a or a' belong to q, which shows that a or belong
to 0. Furthermore one has q=onA,
since a = a E 12 fl A implies q = as E q, whence a r= q because s q.

Conversely, let 12 be an arbitrary prime ideal of AS-1. Then q = 12 fl A
is obviously a prime ideal of A, and one has q C A . S. In fact, if q were
to contain an s E S, then we would have 1 = s s E £ because s E AS-1.
Furthermore one has

£. = qS-1.
Forifa E£,then EqS-1. The
mappings q i-+ qS-1 and H £ fl A are therefore inverses of each other,
which proves the proposition.

Usually S will be the complement of a union U,Ex p over a set X of
prime ideals of A. In this case one writes

A(X)={f
g

I f,gEA, g# Omod pfor pEX}
instead of AS-1. The prime ideals of A(X) correspond by (11.1) 1-1 to
the prime ideals of A which are contained in Up.=X p, all the others are
being eliminated when passing from A to A(X). For instance, if X is finite
or omits only finitely many prime ideals of A, then only the prime ideals
from X survive in A(X).

In the case that X consists of only one prime ideal p, the ring A(X) is
the localization

Ap=t 8 I f,gEA, g0- 0modp}
of A at p. Here we have the

(11.2) Corollary. If p is aprime ideal of A, then Ap is alocal ring, i.e., Ap has
a unique maximal ideal, namely mp = pAp. There is a canonical embedding

A/p Ap/mp,
identifying Ap/mp with the field of fractions of A/p. In particular, if p is a
maximal ideal of A, then one has

A/p" = Ap/mp forn > 1.
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Proof: Since the ideals of AV correspond 1-1 to the ideals of A contained
in p, the ideal mp = pAp is the unique maximal ideal. Let us consider the
homomorphism

amod p"Hamod mp.

For n = 1, f is injective because p = mp fl A. Hence Ap/mpAp becomes the
field of fractions of A/p. Let p be maximal and n > 1. For every s E A -, p
one has p" + sA = A, i.e., s = s mod p" is a unit in A/p'. For n = 1 this
is clear from the maximality of p, and for n > 1 it follows by induction:
A=p°-t+sA=p=pA=p(pn-l+sA)Cp"+sA=p"+sA=A.

Injectivity of f : let a E A be such that a E mp, i.e., a = b/s with b E p",
s 0 p. Then as = b E p", so that d 0 in A/p", and hence a= 0 in A/p".

Surjectivity of f : let a/s E AV, a E A, s 0 p. Then by the above, there
exists an a' E A such that a - a's mod p'. Therefore a/s - a' mod p" AV,
i.e., a/s mod mp lies in the image of f.

In a local ring with maximal ideal m, every element a 0 m is a unit.
Indeed, since the principal ideal (a) is not contained in any other maximal
ideal, it has to be the whole ring. So we have

A*=A.m.
The simplest local rings, except for fields, are discrete valuation rings.

(11.3) Definition. A discrete valuation ring is a principal ideal domain o with
a unique maximal ideal p # 0.

The maximal ideal is of the form p = (,r) = iro, for some prime
element n. Since every element not contained in p is a unit, it follows
that, up to associated elements, rr is the only prime element of o. Every
nonzero element of o may therefore be written as s 7r', for some E E 0*,
and n > 0. More generally, every element a 0 0 of the field of fractions K
may be uniquely written as

a=sir", EEO*, nEZ.
The exponent n is called the valuation of a. It is denoted v(a), and it is
obviously characterized by the equation

(a) = pt(a)

The valuation is a function

v:K*-±7L.
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Extending it to K by the convention v(0) = oo, a simple calculation shows
that it satisfies the conditions

v(ab) = v(a)+v(b), v(a + b) > mint v(a),v(b)}.
This innocuous looking function gives rise to a theory which will occupy all
of the next chapter.

The discrete valuation rings arise as localizations of Dedekind domains.
This is a consequence of the

(11.4) Proposition. M o is a Dedekind domain, and S c o '. (0) is a multi-
plicative subset, then o S-t is also a Dedekind domain.

Proof: Let QI be an ideal of oS-t and a = %n o. Then 2( = a S-1, because
ifa a EQ and s ES, then one has a s E2tflo = a, so that
a = a s e aS-1. As a is finitely generated, so is 91, i.e., oS_1 is noetherian.
It follows from (11.1) that every prime ideal of oS-' is maximal, because
this holds in o. Finally, oS-1 is integrally closed, for if x E K satisfies the
equation

xn+at xn-1+...+.at .0
S1 sn

with coefficients a E oS-1, then multiplying it with the n-th power
of s = sl ... s shows that sx is integral over o, whence sx E o and
therefore x E oS-1. This shows that oS-1 is a Dedekind domain.

(11.5) Proposition. Let o be a noetherian integral domain. o is a Dedekind
domain if and only if, for all prime ideals p 0, the localizations or are
discrete valuation rings.

Proof: If o is a Dedekind domain, then so are the localizations op. The
maximal ideal m = pop is the only nonzero prime ideal of op. Therefore,
choosing any it E m N m2, one necessarily finds (rr) = m, and furthermore
m" = (Tr"). Thus op is a principal ideal domain, and hence a discrete
valuation ring.

Letting p vary over all prime ideals 0.of o, we find in any case that
o=no,.

p

For if 6 E np op, with a, b E 0, then

a{xE 01xaEbo}
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is an ideal which cannot be contained in any prime ideal of o. In fact, for
any p, we may write

b

=
s

with c E o, s p, so that sa = bc, hence
S E a -\ p. As a is not contained in any maximal ideal, it follows that a = o,
hencea=1-aEbo,i.e., 6 Eo.

Suppose now that the op are discrete valuation rings. Being principal ideal
domains, they are integrally closed (see § 2), so o= np op is also integrally
closed. Finally, from (11.1) it follows that every prime ideal p 0 0 of o is
maximal because this is so in op. Therefore o is a Dedekind domain.

For a Dedekind domain o, we have for each prime ideal p ; 0 the discrete
valuation ring op and the corresponding valuation

vp:K*) Z
of the field of fractions. The significance of these valuations lies in their
relation to the prime ideal factorization. If X E K* and

(x) = rl pVP

p

is the prime factorization of the principal ideal (x), then, for each p, one has

VP = up (X).

In fact, for a fixed prime ideal q ; 0 of o, the first equation above implies
(because p oq = oq for p 0 q) that

XOq = (1 1 P"') Oq = gVgoq = mq9
p

Hence indeed vq(x) = vq. In view of this relation, the valuations vp are also
called exponential valuations.

The reader should check that the localization of the ring Z at the prime
ideal (p) = pZ is given by

Z(p)=}b Ia,bEZ, pIb}
The maximal ideal pZ(p) consists of all fractions alb satisfying p I a, p t b,
and the group of units consists of all fractions alb satisfying p t ab. The
valuation associated to 7G(p),

VP:Q -p- U(oo},
is called the p-adic valuation of Q. The valuation vp(x) of an element
x E Q* is given by

Vp(x) = if,

where x = p"alb with integers a, b relatively prime to p.
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To end this section, we now want to compare a Dedekind domain o to
the ring

o(X)={g I f,gEO, g#0modp for pEX},
where X is a set of prime ideals 0 0 of o which contains almost all
prime ideals of O. By (11.1), the prime ideals 0 of o(X) are given as
pX = po(X), for p c X, and it is easily checked that o and o(X) have the
same localizations

Op = O(X)pX.

We denote by Cl(o), resp. CI(o(X)), the ideal class groups of 0, resp.
O(X). They, as well as the groups of units o* and o(X)*, are related by the
following

(11.6) Proposition. There is a canonical exact sequence

ED K*10* C40) MOM) 1,
pox

and one has K*/o* = Z.

Proof: The first arrow is inclusion and the second one is induced by the
inclusion o(X)* -+ K*, followed by the projections K* K*/o*. If
a r= o(X)* belongs to the kernel, then a E op for p X, and also for p E X
because op = o(X)px, hence a E lp 0* = 0* (see the argument in the
proof of (11.5)). This shows the exactness at o(X)*. The arrow

® K*/Op -a Cl(o)
poX

is induced by mapping

® ap mod op H 11 pVp(c )

poX p¢X

where vp : K* -> Z is the exponential valuation of K associated to op. Let
®pOX up mod op be an element in the kernel, i.e.,

fl pVP( P) = (a) _ pvP(cf)
pox p

for some a E K*. Because of unique prime factorization, this means that
vp (a) = 0 for p e X, and vp (ap) = vp (a) for p V X. It follows
that a e lp, o* = o(X)* and a = up mod o*. This shows exactness
in the middle. The arrow

Cl(o) -* CI(O(X))
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comes from mapping a i-3 ao(X). The classes of prime ideals p E X
are mapped onto the classes of prime ideals of o(X). Since C1(o(X)) is
generated by these classes, the arrow is surjective. For p 0 X we have
po(X) = (1), and this means that the kernel consists of the classes of the
ideals Ilex pp". This, however, is visibly the image of the preceding arrow.
Therefore the whole sequence is exact. Finally, the valuation vp : K* , Z
produces the isomorphism K*/op Z.

For the ring of integers OK of an algebraic number field K, the proposition
yields the following results. Let S denote a finite set of prime ideals of OK
(not any more a multiplicative subset), and let X be the set of all prime
ideals that do not belong to S. We put

OK = OK (X)
The units of this ring are called the S-units, and the group C1K = C1(4)
the S-class group of K.

(11.7) Corollary. For the group KS = (c4)* of S-units of K there is an
isomorphism KS - a(K) x71,#S+r+s-1

where r ands are defined as in § 5, p. 30.

Proof: The torsion subgroup of KS is the group µ(K) of roots of unity
in K. Since Cl(o) is finite, we obtain the following identities from the exact
sequence (11.6) and from (7.4):

rank(KS) = rank(o*) + rank( ®Z) = #S -1- r + s - 1.
PES

This proves the corollary.

(11.8) Corollary. The S-class group C1K = Cl(oK) is finite.

Exercise 1. Let A be an arbitrary ring, not necessarily an integral domain, let M be
an A-module and S a multiplicatively closed subset of A such that 0 0 S. In M x S
consider the equivalence relation

(m, s) (m', s') 4== 3 s" E S such that s" (s'm - sm') = 0.
Show that the set Ms of equivalence classes (m, s) forms an A -module, and that
M Ms, a i (a, 1), is a homomorphism. In particular, As is a ring. It is called
the localization of A with respect to S.
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Exercise 2. Show that, in the above situation, the prime ideals of As correspond 1-1
to the prime ideals of A which are disjoint from S. If p C A and ps g As correspond
in this way, then As/ps is the localization of A/p. with respect to the image of S.

Exercise 3. Let f : M -> N be a homomorphism of A-modules. Then the following
conditions are equivalent:
(i) f is injective (surjective).
(ii) fp : Mp -4 Np is injective (surjective) for every prime ideal p.
(iii) fm : Mm --> N. is injective (surjective) for every maximal ideal m.

Exercise 4. Let S and T be two multiplicative subsets of A, and T* the image of T
in As. Then one has AST = (A5)T..

Exercise 5. Let f : A -+ B be a homomorphism of rings and S a multiplicatively
closed subset such that f (S) c B*. Then f induces a homomorphism AS -> B.

Exercise 6. Let A be an integral domain. If the localization As is integral over A,
then As=A.

Exercise 7 (Nakayama's Lemma). Let A be a local ring with maximal ideal m, let M
be an A-module and N C M a submodule such that M/N is finitely generated. Then
one has the implication:

M=N+mM = M=N.

§ 12. Orders

The ring OK of integers of an algebraic number field K is our chief
interest because of its excellent property of being a Dedekind domain. Due
to important theoretical as well as practical circumstances, however, one is
pushed to devise a theory of greater generality which comprises also the
theory of rings of algebraic integers which, like the ring

0 =Z+7G1'5- cQ(fs),
are not necessarily integrally closed. These rings are the so-called orders.

(12.1) Definition. Let KIQ bean algebraic number held of degree n. An order
of K is a subring o of OK which contains an integral basis of length n. The
ring oK is called the maximal order of K.
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In concrete terms, orders are obtained as rings of the form

0 =7L1al,...,Cr,l
where al, ..., a, are integers such that K = Q(al, ..., a,). Being a
submodule of the free 7L-module oK, o does of course admit a 7L-basis
which, as Qo = K, has to be at the same time a basis of K IQ, and therefore
has length n. Orders arise often as rings of multipliers, and as such have their
practical applications. For instance, if al, ... , a, is any basis of K IQ and
M = 7Lal + - - - + 7La,, then

om

is an order. The theoretical significance of orders, however, lies in the fact
that they admit "singularities", which are excluded as long as only Dedekind
domains with their "regular" localizations op are considered. We will explain
what this means in the next section.

In the preceding section we studied the localizations of a Dedekind
domain OK. They are extension rings of OK which are integrally closed,
yet no longer integral over Z. Now we study orders. They are subrings
of OK which are integral over Z, yet no longer integrally closed. As a
common generalization of both types of rings let us consider for now all
one-dimensional noetherian integral domains. These are the noetherian
integral domains in which every prime ideal p 0 is a maximal ideal.
The term "one-dimensional" refers to the general definition of the Krull
dimension of a ring as being the maximal length d of a chain of prime
ideals poCpiC-..CPd.

(12.2) Proposition. An order o of K is a one-dimensional noetherian integral
domain.

Proof: Since o is a finitely generated Z-module of rank n = [K : Q],
every ideal a is also a finitely generated 7L-module, and a fortiori a finitely
generated o-module. This shows that o is noetherian. If p 0 is a prime
ideal and a E p f1 Z, a 0, then as c p C o, i.e., p and o have the same
rank n. Therefore o/p is a finite integral domain, hence a field, and thus p
is a maximal ideal. 0

In what follows, we always let o be a one-dimensional noetherian integral
domain and K its field of fractions. We set out by proving the following
stronger version of the Chinese remainder theorem.
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(12.3) Proposition. If a 0 0 is an ideal of o, then

o/a = ® op/aop = ® op/aop.
p p2a

Proof: Let ap = o tl aop. For almost all p one has p A a and therefore
aop = op, hence a, = o. Furthermore, one has a = np ap = npa ap.
Indeed, for any a E np a,, the ideal b = (x E o I xa c a) does not belong
to any of the maximal ideals p (in fact, one has spa E a for any sp p),
consequently, b = o, i.e., a = 1 a E a, as claimed. (11.1) implies that,
if p D a, then p is the only prime ideal containing ap. Therefore, given two
distinct prime ideals p and q of o, the ideal ap+aq cannot be contained in any
maximal ideal, whence ap + aq = o. The Chinese remainder theorem (3.6)
now gives the isomorphism

o/a = ®o/ap,
pJa

and we have o/ap = op/aop, because p mod dp is the only maximal
ideal of o/ap. 0

For the ring o, the fractional ideals of o, in other words, the finitely
generated nonzero o-submodules of the field of fractions K, no longer form
a group - unless o happens to be Dedekind. The way out is to restrict
attention to the invertible ideals, i.e., to those fractional ideals a of o for
which there exists a fractional ideal b such that

ab=o.
These form an abelian group, for trivial reasons. The inverse of a is still the
fractional ideal

s'= IX EKIxaco},
because it is the biggest ideal such that as 1 c_ o. The invertible ideals of o
may be characterized as those fractional ideals which are "locally" principal:

(12.4) Proposition. A fractional ideal a of o is invertible if and only if, for
every prime ideal p 0,

ap = aop

is a fractional principal ideal of op.
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Proof: Let a be an invertible ideal and a b = o. Then 1 = Ei=1 ai b1
with ai E a, bi E b, and not all aib1 E op can lie in the maximal ideal
pop. Suppose albs is a unit in op. Then ap = aloe because, for x E ap,
xb1 E apb = op, hence x = xb1(biaj)-1a1 E aloe.

Conversely, assume ap =aop is a principal ideal apop, ap E K*, for
every p. Then we may and do assume that ap E a. We claim that the
fractional ideal a-' = (x E K I xa C o} is an inverse for a. If this were not
the case, then we would have a maximal ideal p such that as 1 C P C o.
Let a1...... a be generators of a. As ai E ap op, we may write ai = ap s,

with bi E o, Si E o . p. Then siai E apo. Putting s = Si s,,, we have
sai E apo for i = 1, ..., n, hence sap 1 a C o and therefore sap1 E a-1.

Consequently, s = sap1ap E a la C p, a contradiction.

We denote the group of invertible ideals of o by J(o). It contains the
group P(o) of fractional principal ideals ao, a E K*.

(12.5) Definition. The quotient group

Pic(o) = J(o)/P(o)
is called the Picard group of the ring o.

In the case where o is a Dedekind domain, the Picard group is of course
nothing but the ideal class group C1K. In general, we have the following
description for J(o) and Pic(o).

(12.6) Proposition. The correspondence a H (ap) _ (aop) yields an
isomorphism

J(o) = ®P(op).
p

Identifying the subgroup P (o) with its image in the direct sum one gets

Pic(o) = ( ®P (op)) /P (o) .
p

Proof: For every a E J(o), ap = aop is a principal ideal by (12.4), and we
have ap = op for almost all p because a lies in only finitely many maximal
ideals p. We therefore obtain a homomorphism

J(o) -) ® P(ap), a (ap) .
p
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It is injective, for if ap = op for all p, then a C np op = o (see the proof
of (11.5)), and one has to have a = o because otherwise there would exist
a maximal ideal p such that a C p C O, i.e., ap c pop op. In order to
prove surjectivity, let (apop) E (Dr P (op) be given. Then the o-submodule

a = n apop
p

of K is a fractional ideal. Indeed, since apop = op for almost all p, there is
some c E 0 such that cap E op for all p, i.e., ca c- n, op = o. We have to
show that one has

aop = apop
for every p. The inclusion C is trivial. In order to show that apop C aop, let
us choose c E o, c 0 0, such that cap'aq E o for the finitely many q which
satisfy ap tag oq. By the Chinese remainder theorem (12.3), we may find
a E o such that

a-cmodp and aEcaplagoq for q¢p.
Then s = ac-1 is a unit in op and apr E ng agoq = a, hence

apop = (apE)Op C aOp.

Passing from the ring a to its normalization 5, i.e., to the integral closure
of o in K, one obtains a Dedekind domain. This is not all that easy to prove,
however, because 6 is in general not a finitely generated o-module. But at
any rate we have the

(12.7) Lemma. Let o be a one-dimensional noetherian integral domain and o
its normalization. Then, for each ideal a 0 0 ofo, the quotient o/ a& is a finitely
generated o-module.

Proof: Let a c a, a 0. Then 6/a6 is a quotient of 6/a6. It thus suffices
to show that 61a6 is a finitely generated o-module. With this end, consider
in o the descending chain of ideals containing ao

an, = (a'(5 rlo,ao).
This chain becomes stationary. In fact, the prime ideals of the ring o/ao
are not only maximal but also minimal in the sense that o/ao is a zero-
dimensional noetherian ring. In such a ring every descending chain of ideals
becomes stationary (see § 3, exercise 7). If the chain a,,, = a,,, mod ao is
stationary at n, then so is the chain a,,,. We show that, for this n, we have

6Ca-no+a6.
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Let ,B = 6 E o, b, c E o. Apply the descending chain condition to the
ring onto and the chain of ideals (a"t), where a = a mod cc. Then
(ah) _ (ah+1) i.e., we find some x E o such that ah = xah+1 mod cc,
hence (1 - xa)ah E cc, and therefore

h
= b(1 - xa)+Pxa =

ah

(1 xa)a
E a_ho+ao.

Let h be the smallest positive integer such that ,8 E a-ho + ao. It then
suffices to show that h < it. Assume h > n. Writing

Ll
(*) =alt + au with u e o, u E 6,

we have u = ah(p - au) E aho fl o c alt = ah+1 because h > n, hence
u = alt+l u' + au', u' E 0, it' E &. Substituting this into (*) gives

u'= ah_1 +a(il +W) E a1-hn+a0.

This contradicts the minimality of h. So we do have n c a-'o +ao.
n/ao thus becomes a submodule of the o-module (a-"o + a6)/a6

generated by a-" mod ao. It is therefore itself a finitely generated o-module,
q.e.d.

(12.8) Proposition (KnuLL-AKizutu). Let o be a one-dimensional noetherian
integral domain with field of fractions K. Let L I K be a finite extension and 0
the integral closure of o in L. Then 0 is a Dedekind domain.

Proof: The facts that 0 is integrally closed and that every nonzero, prime
ideal is maximal, are deduced as in (3.1). It remains to show that 0 is
noetherian. Let w1, ... , m be a basis of L I K which is contained in 0.
Then the ring Oo = o[w1, , cw,t] is a finitely generated o-module and in
particular is noetherian since c is noetherian. We argue as before that 0o is
one-dimensional and are thus reduced to the case L = K. So let 2t be an
ideal of 0 and a e 2t fl o, a ; 0; then by the above lemma 0/aO is a
finitely generated o-module. Since c is noetherian, so is the o-submodule
2t/a0, and also the 0-module 2t.

Remark : The above proof is taken from KAPz.ANsKY's book [82] (see also
[101]). It shows at the same time that proposition (8.1), which we had proved
only in the case of a separable extension L IK, is valid for general finite
extensions of the field of fractions of a Dedekind domain.
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Next we want to compare the one-dimensional noetherian integral do-
main o with its normalization n. The fact that 6 is a Dedekind domain is
evident and does not require the lengthy proof of (12.8) provided we make
the following hypothesis :

(*) o is an integral domain whose normalization o is a finitely generated
o-module.

This condition will be assumed for all that follows. It avoids pathological
situations and is satisfied in all interesting cases, in particular for the orders
in an algebraic number field.

The groups of units and the Picard groups of o and o are compared with
each other by the following

(12.9) Proposition. One has the canonical exact sequence

6*- 1.
p

In the sum, p varies over the prime ideals # 0 of o and op denotes the integral
closure of op in K.

Proof: If p varies over the prime ideals of a, we know from (12.6) that

J(n) - ®P(bp).
P

If p is a prime ideal of o, then po splits in the Dedekind domain o into a
product

i.e., there are only finitely many prime ideals of o above p. The same holds
for the integral closure o, of op. Since every nonzero prime ideal of Cep
has to lie above pop, the localization op has only a finite number of prime
ideals and is therefore a principal ideal domain (see § 3, exercise 4). In view
of (12.6), it follows that

P(op) = J(np) = ® POP)
-p p

and therefore
J(o) = ® P(op) = ®P(op).

p pap p
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Observing that P(R) - K*/R* for any integral domain R with field of
fractions K, we obtain the commutative exact diagram

1 K*/o* -- ® K*/o*p -- Pic(o) --* 1
p

P t
1 -> K*/o* ®K*/o* - Pic(o) - 1.

p

For such a diagram one has in complete generality the well-known snake
lemma: the diagram gives in a canonical way an exact sequence

1 -a ker(a) -- ker(fl) -a ker(y)
s}

coker(a) -) coker(p) -- coker(y) --* 1

relating the kernels and cokernels of a, , y (see [23], chap. III, §3,
lemma 3.3). In our particular case, a, fi, and therefore also y, are surjective,
whereas

ker(a) = n*/o* and ker(p) _ ®n*/o*
p

This then yields the exact sequence

1 o* - 6* -k ®O*p/o*p Pic(o) -f Pic((5) -+ 1.
p

A prime ideal p 0 of o is called regular if op is integrally closed, and
thus a discrete valuation ring. For the regular prime ideals, the summands
6p/op in (12.9) are trivial. There are only finitely many non-regular prime
ideals of o, namely the divisors of the conductor of o. This is by definition
the biggest ideal of o which is contained in o, in other words,

f= {aEOlaoco}.
Since 5 is a finitely generated o-module, we have f 0.

(12.10) Proposition. For any prime ideal p 0 0 of o one has

p f p is regular.

If this is the case, then pn is a prime ideal of 6 and op = Cep.
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Proof: Assume p f f, i.e., p f, and let t E f p. Then to c o, hence
o C io C op. If m = pop is the maximal ideal of op then, putting

m fl a, p is a prime ideal of o such that p c p fl o, hence p n o
because p is maximal. Trivially, op C op, and if converselya a EtQ p, for
aEo,sEoNp,then toEoand isEoNp,hence = - Eo.

S is p

Therefore op = Op. Thus, by (11.5), op is a valuation ring, i.e., p is regular.
One has furthermore that p = pa. In fact, p is the only prime ideal of o

above p. For if q is another one, then op = op C pq, and therefore

p=5npopC5ngoq=q,
hence p = q. Consequently, po = pe, with e > 1, and furthermore
m = pop = (po)op = peep = me, i.e., e = 1 and thus p = pn.

Conversely, assume op is a discrete valuation ring. Being a principal
ideal domain, it is integrally closed, and since o is integral over o, hence a
fortiori over op, we have o c op. Let x1, ... , x, be a system of generators
of the o-module n. We may write xi = al , with a; E 0, Si E o N p. Setting

s E f N p. It follows that p f.

We now obtain the following simple description for the sum ®p np/o*
in (12.9).

(12.11) Proposition. )p oy/o = (n/f)"/(o/f)*.

Proof : We apply the Chinese remainder theorem (12.3) repeatedly. We, have

(1) o/f = ® op/fop
p

The integral closure np of op possesses only the finitely many prime ideals
that lie above pop. They give the localizations op, where p varies over the
prime ideals above p of the ring o. At the same time, op is the localization
of o with respect to the multiplicative subset o p. Since f is an ideal of o,
it follows that f ap = fop. The Chinese remainder theorem yields

np/fop = ® o00
p?p

and

(2) ®® op/fbp = ®np/fnp-
p p2P p
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Passing to unit groups, we get from (1) and (2) that

(3) (n/f)*/(o/f)* _ ®(op/fop)*/(op/fop)*.
p

For f c p we now consider the homomorphism

P : o (op/fap)*/(op/fop)*
It is surjective. In fact, if s mod fop is a unit in op/fop, then s is a unit in op.
This is so because the units in any ring are precisely those elements that are
not contained in any maximal ideal, and the preimages of the maximal ideals
of op/fop give precisely all the maximal ideals of op, since fop c pop.
The kernel of V is a subgroup of op which is contained in op, and which
contains o*. It is therefore equal to o*. We now conclude that

opl op = (oplfnp)*I(op/fop)*
This remains true also for p f because then both sides are equal to 1
according to (12.10). The claim of the proposition now follows from (3).

Our study of one-dimensional noetherian integral domains was motivated
by the consideration of orders. For them, (12.9) and (12.11) imply the
following generalization of Dirichlet's unit theorem and of the theorem on
the finiteness of the class group.

(12.12) Theorem. Let o be an order in an algebraic number field K, oK the
maximal order, and f the conductor of o.

Then the groups oK/o* andPic(o) are finite and one has

hK #(oKlf)*#Pic(o)
(oK : O*) #(o/f)*

where hK is the class number of K. In particular, one has that

rank(o*) = rank(o*) = r + s - 1.

Proof: By (12.9) and (12.11), and since PiC(OK) = C1K, we have the exact
sequence

1 - oKlo* --j (oK/f)*/(o/f)* - Pic(o) -- C1K --± 1.
This gives the claim.
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The definition of the Picard group of a one-dimensional noetherian integral
domain o avoids the problem of the uniqueness of prime ideal decomposition
by restricting attention to the invertible ideals, and thus leaving aside
the information carried by noninvertibles. But there is another important
generalization of the ideal class group which does take into account all prime
ideals of o. It is based on an artificial re-introduction of the uniqueness of
prime decomposition. This group is called the divisor class group, or Chow
group of o. Its definition starts from the free abelian group

Div(o) Zp
p

on the set of all maximal ideals p of o (i.e., the set of all prime ideals ; 0).
This group is called the divisor group of o. Its elements are formal sums

D = E npp
p

with no E Z and no = 0 for almost all p, called divisors (or 0-cycles).
Corollary (3.9) simply says that, in the case of a Dedekind domain, the
divisor group Div(o) and the group of ideals are canonically isomorphic.
The additive notation and the name of the group stem from function theory
where divisors for analytic functions play the same role as ideals do for
algebraic numbers (see chap. III, §3).

In order to define the divisor class group we have to associate to every
f e K* a "principal divisor" div(f). We use the case of a Dedekind domain
to guide us. There the principal ideal (f) was given by

(.f) = lIp"pct)
p

where vp : K* -+ Z is the p-adic exponential valuation associated to the
valuation ring op. In general, op is not anymore a discrete valuation ring.
Nevertheless, op defines a homomorphism

ordp:K*-,Z
which generalizes the valuation function. If f = alb E K*, with a, b E o,
then we put

ordp(f) =£op(op/aop)
where £,,(M) denotes the length of an op-module M, i.e., the maximal
length of a strictly decreasing chain

M=MO M1#... MP=0
of op-submodules. In the special case where o, is a discrete valuation ring
with maximal ideal in, the value v = vp(a) of a E op, for a 0, is given
by the equation

aop = tn".
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It is equal to the length of the op-module op/m°, because the longest chain
of submodules is

op/m° J m/m° J ... D m°/m° = (0).
Thus the function ordp agrees with the exponential valuation vp in this case.

The property of the function ordp to be a homomorphism follows from
the fact (which is easily proved) that the length function Q,,, is multiplicative
on short exact sequences of op-modules.

Using the functions ordp : K* - Z, we can now associate to every
element f E K* the divisor

div(f) = Fordp(f)p,
p

and thus obtain a canonical homomorphism

div : K* ) Div(o).
The elements div(f) are called principal divisors. They form a subgroup
'P(o) of Div(o). Two divisors D and D' which differ only by a principal
divisor are called rationally equivalent.

(12.13) Definition. The quotient group

CH' (o) = Div(o)/P(o)
is called the divisor class group or Chow group of o.

The Chow group is related to the Picard group by a canonical homomor-
phism

div : Pic(a) - CH' (o)
which is defined as follows. If a is an invertible ideal, then, by (12.4), aop,
for any prime ideal p ; 0, is a principal ideal apop, ap E K*, and we put

div(a) = E - ordp(ap)p.
p

This gives us a homomorphism

div : J(o) -- Div(o)
of the ideal group J (o) which takes principal ideals into principal divisors,
and therefore induces a homomorphism

div : Pic(o) - CH' (o).
In the special case of a Dedekind domain we obtain:
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(12.14) Proposition. If o is a Dedekind domain, then
div : Pic(o) --) CH t (o)

is an isomorphism.

Exercise 1. Show that
C[X,Y]/(XY - X), C[X,Y]/(XY - 1),
C[X, Y]/(X2 - Y3) , C[X, Y]/(Y2 - X2 - X3)

are one-dimensional noetherian rings. Which ones are integral domains? Determine
their normalizations.

Hint: For instance in the last example, put t = X/Y and show that the homomor-
phism C[X,Y] - C[t], X i-* t2 - 1, y --+ t(t2 - 1), has kernel (Y2 - XZ - X3).
Exercise 2. Let a and b be positive integers that are not perfect squares. Show that the
fundamental unit of the order Z + Z/ of the field Q(,) is also the fundamental
unit of the order Z + Z.1a + Z + Z/a / in the field Q(,/, ).

Exercise 3. Let K be a number field of degree n = [K : Q]. A complete module
in K is a subgroup of the form

where a,, ._a, a are linearly independent elements of K. Show that the ring of
multipliers

o={uEKI aMcM}
is an order in K, but in general not the maximal order.
Exercise 4. Determine the ring of multipliers o of the complete module M =
Z + 7GF2 in Q (/ ). Show that s = 1 + is a fundamental unit of 0. Determine
all integer solutions of "Pell's equation"

x2-2y2=7.
Hint: N(x+y') =x2 -2y2, N(3+12-) = N(5+3V) =7.
Exercise 5. In a one-dimensional noetherian integral domain the regular prime
ideals 0 0 are precisely the invertible prime ideals.

§ 13. One-dimensional Schemes

The first approach to the theory of algebraic number fields is dominated
by the methods of arithmetic and algebra. But the theory may also be treated
fundamentally from a geometric point of view, which will bring out novel
aspects in a variety of ways. This geometric interpretation hinges on the
possibility of viewing numbers as functions on a topological space.
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In order to explain this, let us start from polynomials

with complex coefficients a1 E C, which may be immediately interpreted
as functions on the complex plane. This property may be formulated in a
purely algebraic way as follows. Let a E C be a point in the complex plane.
The set of all functions f (x) in the polynomial ring C[x] which vanish at
the point a forms the maximal ideal p = (x - a) of C[x]. In this way the
points of the complex plane correspond 1-1 to the maximal ideals of C[x].
We denote the set of all these maximal ideals by

M = Max(C[x]) .
We may view M as a new kind of space and may interpret the elements f (x)
of the ring C[x] as functions on M as follows. For every point p = (x - a)
of M we have the canonical isomorphism

C[x]/p-4C,
which sends the residue class f (x) mod p to f (a). We may thus view this
residue class

.f (p) .f (x) mod p E K(p)
in the residue class field K(p) = C[x]/p as the "value" of f at the point
p E M. The topology on C cannot be transferred to M by algebraic means.
All that can be salvaged algebraically are the point sets defined by equations
of the form

f(x)=0
(i.e., only the finite sets and M itself). These sets are defined to be the closed
subsets. In the new formulation they are the sets

V(f)={pEMI f(p)=0} ={pEMI p2(f(x))}.

The algebraic interpretation of functions given above leads to the fol-
lowing geometric perception of completely general rings. For an arbitrary
ring o, one introduces the spectrum

X = Spec(o)

as being the set of all prime ideals p of o. The Zariski topology on X is
defined by stipulating that the sets

V(a)=IpIpDa}
be the closed sets, where a varies over the ideals of o. This does make X into
a topological space (observe that V (a) U V (b) = V (ab)) which, however, is
usually not Hausdorff. The closed points correspond to the maximal ideals
of o.
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The elements f E o now play the role of functions on the topological
space X : the "value" of f at the point p is defined to be

f (p) := f mod p
and is an element of the residue class field K(p), i.e., in the field of fractions
of o/p. So the values of f do not in general lie in a single field.

Admitting also the non-maximal prime ideals as non-closed points, turns
out to be extremely useful - and has an intuitive reason as well. For instance
in the case of the ring o = C[x], the point p = (0) has residue class
field ic(p) = C(x). The "value" of a polynomial f E C[x] at this point
is f (x) itself, viewed as an element of C(x). This element should be thought
of as the value of f at the unknown place x - which one may imagine to
be everywhere or nowhere at all. This intuition complies with the fact that
the closure of the point p = (0) in the Zariski topology of X is the total
space X. This is why p is also called the generic point of X.

Example: The space X = Spec(Z) may be represented by a line.

11

2 3 5 7 11 generic point

For every prime number one has a closed point, and there is also the generic
point (0), the closure of which is the total space X. The nonempty open sets
in X are obtained by throwing out finitely many prime numbers p1, ... , p,t.
The integers a E Z are viewed as functions on X by defining the value of a
at the point (p) to be the residue class

a(p) = a mod p E Z/pZ.
The fields of values are then

Z/2Z, Z/3Z, Z/5Z, Z/7Z, Z/11Z, ... , Q.

Thus every prime field occurs exactly once.

An important refinement of the geometric interpretation of elements of
the ring o as functions on the space X = Spec(o) is obtained by forming
the structure sheaf ox. This means the following. Let U # 0 be an open
subset of X. If o is a one-dimensional integral domain, then the ring of
"regular functions" on U is given by

,o(U)={f Ig(p)¢0 for all pEU
9

}
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in other words, it is the localization of o with respect to the multiplicative
set S = o N UpEU p (see § 11). In the general case, o(U) is defined to
consist of all elements

s = (sp) E fl op
PEU

which locally are quotients of two elements of o. More precisely, this means
that for every p c= U, there exists a neighbourhood V C U of p, and elements
f , g E o such that, for each q E V, one has g(q) 0 0 and sq = f/g
in oq. These quotients have to be understood in the more general sense
of commutative algebra (see § 11, exercise 1). We leave it to the reader to
check that one gets back the above definition in the case of a one-dimensional
integral domain o.

If V C U are two open sets of X, then thethe projection
711 op - fI op

pEU pEV

induces a homomorphism
PUv : o(U) --) OW),

called the restriction from U to V. The system of rings o(U) and mappings
PU v is a sheaf on X. This notion means the following.

(13.1) Definition. Let X be a topological space. A presheaf .F of abelian
groups (rings, etc.) consists of the following data.
(1) For every open set U, an abelian group (a ring, etc.) .F(U) is given.
(2) For every inclusion U C V, a homomorphism PUV :.F(U) --> .F(V) is
given, which is called restriction.

These data are subject to the following conditions:

(a) .F(0) = 0,
(b) pUU is the identity id :.F(U) -> F(U),
(c) PUw = Pvw o puv, for open sets W C V C U.

The elements s E .F(U) are called the sections of the presheaf .F over U.
If V C U, then one usually writes puv(s) = s I V. The definition of a
presheaf can be reformulated most concisely in the language of categories.
The open sets of the topological space X form a category Xtop in which only
inclusions are admitted as morphisms. A presheaf of abelian groups (rings)
is then simply a contravariant functor

.F : Xtop -+ (ab), (rings)
into the category of abelian groups (resp. rings) such that .F(0) = 0.
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(13.2) Definition. A presheaf F on the topological space X is called a sheaf
if, for all open coverings (Ut) of the open sets U, one has:
(i) Ifs, s' E F(U) are two sections such that s I u, = s' I u, for all i, then
s= s'.
(ii) If Si E .F(Ui) is a family of sections such that

si Iu,nuj =SiIU,nUj

for all i, j, then there exists a sections E F(U) such that s I U, = si for all i.

The stalk of the sheaf F at the point x E X is defined to be the direct
limit (see chap. IV, §2)

Fx = (U) >

Uax

where U varies over all open neighbourhoods of x. In other words, two
sections su c F(U) and sv E F(V) are called equivalent in the disjoint
union Uu3T.F(U) if there exists a neighbourhood W c u fl v of x such
that su I w = sv I w. The equivalence classes are called germs of sections
at x. They are the elements of J .

We now return to the spectrum X = Spec((9) of a ring o and obtain the

(13.3) Proposition. The rings o(U), together with the restriction mappings
pu V, form a sheaf on X. It is denoted by ox and called the structure sheaf
on X. The stalk of ox at the point p C X is the localization op, i.e.,
OX, P = Op.

The proof of this proposition follows immediately from the definitions.
The couple (X, ox) is called an affine scheme. Usually, however, the
structure sheaf ox is dropped from the notation. Now let

(p : 0 ) 0'
be a homomorphism of rings and X = Spec(o), X' = Spec(o'). Then cp
induces a continuous map

f : X' X, .f (p')

and, for every open subset U of X, a homomorphism

fU : o(U) --* o(U'), s s o f I u' ,

where U' = f (U). The maps ff have the following two properties.
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a) If V C U are open sets, then the diagram

o(U) f > a(U')

PUV
JJJ---

I I PUNTr
o(V) > o(V')

is commutative.
b) For U' C X' and a E o(U) one has

a(f (p')) = 0 = fu(a) (p') = 0.
A continuous map f : X' -* X together with a family of homomorphisms

fu* : o(U) - o(U') which satisfy conditions a) and b) is called a morphism
from the scheme X' to the scheme X. When referring to such a morphism,
the maps ff are usually not written explicitly. One can show that every
morphism between two affine schemes X' = Spec(o') and X = Spec(o) is
induced in the way described above by a ring homomorphism (p : o -* o'.

The proofs of the above claims are easy, although some of them are a bit
lengthy. The notion of scheme is the basis of a very extensive theory which
occupies a central place in mathematics. As introductions into this important
discipline let us recommend the books [51] and [104].

We will now confine ourselves to considering noetherian integral do-
mains o of dimension < 1, and propose to illustrate geometrically, via the
scheme-theoretic interpretation, some of the facts treated in previous sec-
tions.

1. Fields. If K is a field, then the scheme Spec(K) consists of a single point
(0) on top of which the field itself sits as the structure sheaf. One must
not think that these one-point schemes are all the same because they differ
essentially in their structure sheaves.

2. Valuation rings. If o is a discrete valuation ring with maximal ideal p,
then the scheme X = Spec(o) consists of two points, the closed point x = p
with residue class field K(p) = o/p, and the generic point Y7 = (0) with
residue class field K(77) = K, the field of fractions of o. One should think
of X as a point x with an infinitesimal neighbourhood described by the
generic point 77:

X: nl

x Ti

This intuition is justified by the following observation.



90 Chapter I. Algebraic Integers

The discrete valuation rings arise as localizations

lop = { g I f, g E 0, g(p) 01

of Dedekind domains o. There is no neighbourhood of p in X = Spec(o)
on which all functions

g

E op are defined because, if o is not a local
ring, we find by the Chinese remainder theorem for every point q # p,
q 0, an element g E o satisfying g= 0 mod q and g° 1 mod p.
Then I E o, as a function is not defined at q. But every element

g
E op

is defined on a sufficiently small neighbourhood; hence one may say that
all elements

s
of the discrete valuation ring o, are like functions defined

on a "germ" of neighbourhoods of p. Thus Spec(op) may be thought of as
such a "germ of neighbourhoods" of p.

We want to point out a small discrepancy of intuitions. Considering the
spectrum of the one-dimensional ring C[x], the points of which constitute the
complex plane, we will not want to visualize the infinitesimal neighbourhood
Xp = Spec(C[x]p) of a point p = (x -a) as a small line segment, but rather
as a little disc:

This two-dimensional nature is actually inherent in all discrete valuation
rings with algebraically closed residue field. But the algebraic justification of
this intuition is provided only by the introduction of a new topology, the etale
topology, which is much finer than the Zariski topology (see [103], [132]).

3. Dedekind rings. The spectrum X = Spec(o) of a Dedekind domain o
is visualized as a smooth curve. At each point p one may consider the
localization op. The inclusion o op induces a morphism

f : Xp = Spec(op) _+ X,
which extracts the scheme Xp from X as an "infinitesimal neighbourhood"
of p:

Xp

X = Spec(o)
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4. Singularities. We now consider a one-dimensional noetherian integral
domain o which is not a Dedekind domain, e.g., an order in an algebraic
number field which is different from the maximal order. Again we view the
scheme X = Spec(o) as a curve. But now the curve will not be everywhere
smooth, but will have singularities at certain points.

- Xp = Spec(op)

1

X = Spec(o)

These are precisely the nongeneric points p for which the localization op is
no longer a discrete valuation ring, that is to say, the maximal ideal pop is
not generated by a single element. For example, in the one-dimensional ring
o = C[x, y]/(y2 - x3), the closed points of the scheme X are given by the
prime ideals

p = (x -a,y -b) mod (y2 -x3)
where (a, b) varies over the points of C2 which satisfy the equation

b2-a3=0.

Y

x

The only singular point is the origin. It corresponds to the maximal -ideal
po = (x, y), where x = x mod (y2 - x3), y = y mod (y2 - x3) E o. The
maximal ideal po opo of the local ring is generated by the elements 5F, 57, and
cannot be generated by a single element.

5. Normalization. Passing to the normalization 5 of a one-dimensional
noetherian integral domain o means, in geometric terms, taking the resolution
of the singularities that were just discussed. Indeed, if X = Spec(o) and
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X = Spec(o), then the inclusion o - o induces a morphism f : X -* X.

X

Since o is a Dedekind domain, the scheme X is to be considered as smooth.
If po = pi' pej is the prime factorization of p in o, then pt, ... , pr are
the different points of k that are mapped to p by f. One can show that p
is a regular point of X - in the sense that o, is a discrete valuation ring -
if and only if r = 1, e1 = 1 and f1=(o/pl:o/p)=1.

6. Extensions. Let o be a Dedekind domain with field of fractions K.
Let L I K be a finite separable extension, and O the integral closure of o
in L. Let Y = Spec(o), X = Spec(O), and

f:X-+Y
the morphism induced by the inclusion o y O. If p is a maximal ideal of o
and

p0 = 1 r
the prime decomposition of p in 0, then 43 1 , ... , 3, are the different points
of X which are mapped to p by f, The morphism f is a "ramified covering."
It is graphically represented by the following picture:

T ramified points t
Y

This picture, however, is a fair rendering of the algebraic situation only
in the case where the residue class fields of o are algebraically closed (like
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for the ring C[x]). Then, from the fundamental identity >t ei ff = n, there
are exactly n = [L : K] points q31, ..., j3, of X lying above each point p
of Y, except when p is ramified in o. At a point p of ramification, several
of the points X31, ..., l,t coalesce. This also explains the terminology of
ideals that "ramify."

If L I K is Galois with Galois group G = G (L I K ), then every auto-
morphism or E G induces via or : 0 -> 0 an automorphism of schemes
or : X -* X. Since the ring o is fixed, the diagram

X ate, X
f---A Yf

is commutative. Such an automorphism is called a covering transformation
of the ramified covering X/Y. The group of covering transformations is
denoted by Auty (X). We thus have a canonical isomorphism

G(LIK) = Auty(X).
In chap. II, §7, we will see that the composite of two unramified extensions
of K is again unramifled. The composite K, taken inside some algebraic
closure K of K, of all unramified extensions L I K is called the maximal
unramified extension of K. The integral closure n of o in K is still a one-
dimensional integral domain, but in general no longer noetherian, and, as a
rule, there will be infinitely many prime ideals lying above a given prime
ideal p 54- 0 of o. The scheme Y = Spec(o) with the morphism

f :YY
is called the universal covering of Y. It plays the same role for schemes
that the universal covering space X --> X of a topological space plays in
topology. There the group of covering transformations AutX (X) is canoni-
cally isomorphic to the fundamental group rrt(X). Therefore we define in
our present context the fundamental group of the scheme Y by

rr1(Y) = Auty(Y) = G(KIK).
This establishes a first link of Galois theory with classical topology. This
link is pursued much further in etale topology.

The geometric point of view of algebraic number fields explained in this
section is corroborated very convincingly by the theory of function fields of
algebraic curves over a finite field F,,. In fact, a very close analogy exists
between both theories.
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§ 14. Function Fields

We conclude this chapter with a brief sketch of the theory of function
fields. They represent a striking analogy with algebraic number fields, and
since they are immediately related to geometry, they actually serve as an
important model for the theory of algebraic number fields.

The ring Z of integers with its field of fractions Q exhibits obvious
analogies with the polynomial ring lF p [t] over the field lFp with p elements
and its field of fractions 1Fp(t). Like Z,1Fp[tI is also a principal ideal domain.
The prime numbers correspond to the monic irreducible polynomials p(t) E
]Fp[t]. Like the prime numbers they have finite fields 1Fpd, d = deg(p(t)),
as their residue class rings. The difference is, however, that now all these
fields have the same characteristic. The geometric character of the ring IFp[t]
becomes much more apparent in that, for an element f = f (t) E 1Fp[t], the
value of f at a point p = (p(t)) of the affine scheme X = Spec(Fp[t]) is
actually given by the value f (a) E Fp, if p(t) = t - a, or more generally
by f (a) E ]F pd, if a E 1Fpd is a zero of p(t). This is due to the isomorphism

1Fp[t]/p + ]F pd

which takes the residue class f (p) = f mod p to f (a). In the analogy be-
tween, on the one hand, the progression of the prime numbers 2, 3, 5, 7, ... ,
and the growing of the cardinalities p, p2, p3, p4, ... of the residue fields
]Fpd on the other, resides one of the most profound mysteries of arithmetic.

One obtains the same arithmetic theory for the finite extensions K of FP (t)
as for algebraic number fields. This is clear from what we have developed
for arbitrary one-dimensional noetherian integral domains. But the crucial
difference with the number field case is seen in that the function field K
hides away a finite number of further prime ideals, besides the prime ideals
of o, which must be taken into account in a fully-fledged development of
the theory.

This phenomenon appears already for the rational function field ]Fp(t),
where it is due to the fact that the choice of the unknown t which determines
the ring of integrality F p [t] is totally arbitrary. A different choice, say
t' = 1/t, determines a completely different ring 1Fp[1/t], and thus completely
different prime ideals. It is therefore crucial to build a theory which is
independent of such choices. This may be done either via the theory of
valuations, or scheme theoretically, i.e., in a geometric way.

Let us first sketch the more naive method, via the theory of valuations.
Let K be a finite extension of F(t) and o the integral closure of 1F[t] in K.
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By § 11, for every prime ideal p 0 of o there is an associated normalized
discrete valuation, i.e., a surjective function

vp:K -- ZUfool
satisfying the properties

(i) VP (0) = 00,

(ii) vp(ab) = vp(a) + vp(b),
(iii) vp(a + b) > min [v, (a), vp (b) 1.

The relation between the valuations and the prime decomposition in the
Dedekind domain o is given by

(a) = flpuP(a)(a)
P

Y

The definition of a discrete valuation of K does not require the subring o to
be given in advance, and in fact, aside from those arising from o, there are
finitely many other discrete valuations of K. In the case of the field FP(t)
there is one more valuation, besides the ones associated to the prime ideals
p = (p(t)) of Fp[t], namely, the degree valuation vim. For

g
E lFp(t),

f , g E 1Fp[t], it is defined by

v00 (L) = deg(g) - deg(f).

It is associated to the prime ideal p = yIFp[y] of the ring lFp[y], where
y = 1/t. One can show that this exhausts all normalized valuations of the
field FP(t).

For an arbitrary finite extension K of Fp(t), instead of restricting attention
to prime ideals, one now considers all normalized discrete valuations vp of K
in the above sense, where the index p has kept only a symbolic value. As
an analogue of the ideal group we form the "divisor group", i.e., the free
abelian group generated by these symbols,

Div(K) npp I np E 96, np = 0 for almost all p} .
p

We consider the mapping

div : K* Div(K), div(f) _ Evp(f)p,
p

the image of which is written P(K), and we define the divisor class group
of K by

CI (K) = Div(K)/P(K).
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Unlike the ideal class group of an algebraic number field, this group is not
finite. Rather, one has the canonical homomorphism

deg:Cl(K)- >
which associates to the class of p the degree deg(p) = [x(p) : 1Fp] of the
residue class field of the valuation ring of p, and which associates to the
class of an arbitrary divisor a = EP npp the sum

deg(a) _ E np deg(p).
p

For a principal divisor div(f), f c K*, we find by an easy calculation that
deg(div(f)) = 0, so that the mapping deg is indeed well-defined. As an
analogue of the finiteness of the class number of an algebraic number field,
one obtains here the fact that, if not CI(K) itself, the kernel CI°(K) of
deg is finite. The infinitude of the class group of function fields must not
be considered as strange. On the contrary, it is rather the finiteness in the
number field case that should be regarded as a deficiency which calls for
correction. The adequate appreciation of this situation and its amendment
will be explained in chap. III, § 1.

The ideal, completely satisfactory framework for the theory of function
fields is provided by the notion of scheme. In the last section we introduced
affine schemes as pairs (X, ox) consisting of a topological space X =
Spec(o) and a sheaf of rings ax on X. More generally, a scheme is a
topological space X with a sheaf of rings ox such that, for every point of X,
there exists a neighbourhood U which, together with the restriction ou of
the sheaf cX to U, is isomorphic to an affine scheme in the sense of § 13.
This generalization of affine schemes is the correct notion for a function
field K. It shows all prime ideals at once, and misses none.

In the case K = ]Fj,(t) for instance, the corresponding scheme (X, ox)
is obtained by gluing the two rings A = F, [u] and B = IFp [v], or
more precisely the two affine schemes U = Spec(A) and V = Spec(B).
Removing from U the point po = (u), and the point p,,, _ (v) from V,
one has U-(po} = Spec(Fp[u, u-1]), V-{p.) = Spec(1Fp[v, v-1]), and the
isomorphism f : Fp[u, u-1] -- Fp[v, v-1], u H v-1, yields a bijection

0 :V-(p.) ) U-{po}, p'f-1(p)
We now identify in the union U U V the points of V - {per} with those
of U-{po} by means of gyp, and obtain a topological space X. It is immediately
obvious how to obtain a sheaf of rings ox on X from the two sheaves ou
and ov. Removing from X the point per, resp. po, one gets canonical
isomorphisms

(V, Ov)(X-{per}, °X_(poo)) (U, OU), (X _(po}, OX-(p0}) 2-
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The pair (X, ax) is the scheme corresponding to the field lFp(t). It is called
the projective line over IF,, and denoted P.

Po

More generally, one may similarly associate a scheme (X, ox) to an
arbitrary extension K TIFF (t). For the precise description of this procedure
we refer the reader to [51].
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Chapter II

The Theory of Valuations

§ 1. The p-adic Numbers

The p-adic numbers were invented at the beginning of the twentieth
century by the mathematician KURT HENSEL (1861-1941) with a view to
introduce into number theory the powerful method of power series expansion
which plays such a predominant role in function theory. The idea originated
from the observation made in the last chapter that the numbers f E 7L may
be viewed in analogy with the polynomials f (z) E Q z] as functions on the
space X of prime numbers in Z, associating to them their "value" at the
point p E X, i.e., the element

f(p):= f mod p
in the residue class field K(p) = 7L/pZ.

This point of view suggests the further question: whether not only the
"value" of the integer f E 7L at p, but also the higher derivatives of f can be
reasonably defined. In the case of the polynomials f (z) E C[z], the higher
derivatives at the point z = a are given by the coefficients of the expansion

f(z) =ao+a,(z-a)+...+a,.(z -a)',

and more generally, for rational functions f (z) = h(z) E C(z), with
g, h E C[z], they are defined by the Taylor expansion

00
f(z) = E av(z -a)',

v=0

provided there is no pole at z = a, i.e., as long as (z -a) t h(z). The fact that
such an expansion can also be written down, relative to a prime number p
in Z, for any rational number f E Q as long as it lies in the local ring

7L(p)={hI g,hEz, pth},
leads us to the notion of p-adic number. First, every positive integer f E N
admits a p-adic expansion

f
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100 Chapter II. The Theory of Valuations

with coefficients ai in (0, 1, ... , p - 1}, i.e., in a fixed system of represent-
atives of the "field of values" K(p) = Fp. This representation is clearly
unique. It is computed explicitly by successively dividing by p, forming the
following system of equations:

f =ao+Pfl,
fi=a1+Pf2,

fn_I =an_1+Pfn,
f, =an

Here ai E (0, 1, ... , p - 1} denotes the representative of fi mod p E Z/pZ.
In concrete cases, one sometimes writes the number f simply as the sequence
of digits ao, aIa2 ... an, for instance

216=0,0011011 (2-adic),
216 = 0, 0022 (3-adic),
216 = 1, 331 (5-adic).

As soon as one tries to write down such p-adic expansions also for negative
integers, let alone for fractions, one is forced to allow infinite series

00
E avPv = ao +alp+a2p2+....

v=o

This notation should at first be understood in a purely formal sense, i.e.,
v°o avpv simply stands for the sequence of partial sums

n-1sna,pv, n=1,2,...
v=o

(1.1) Definition. Fix a prime number p. A p-adic integer is a formal infinite
series

ao+alp+a2p2+...
where 0 < ai < p, for all i = 0, 1, 2, ... The set of all p-adic integers is
denoted by Z,,.

The p-adic expansion of an arbitrary number f E Z(p) results from the
following proposition about the residue classes in Z/pnZ.

(1.2) Proposition. The residue classes a mod pn E Z/p'Z can be uniquely
represented in the form

a =ao+alp+a2p2+...
+an_]pn-1 mod pn

where 0<ai < p for i = 0, ..., n - 1.
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Proof (induction on n): This is clear for n = 1. Assume the statement is
proved for n - 1. Then we have a unique representation

a = ao + alp + a2p2 +... + an_2p"-2 + gpr-1

for some integer g. If g = an_, mod p such that 0 < an-1 < p, then an-1
is uniquely determined by a, and the congruence of the proposition holds.

Every integer f and, more generally, every rational number f E Z(p) the
denominator of which is not divisible by p, defines a sequence of residue
classes

sn= f modpnEZ/p'Z, n=1,2,...,
for which we find, by the preceding proposition,

S1 = ao mod p,
S2 = ao + aip mod p2,
S3 = ao + al p + a2 p2 mod p3, etc.,

with uniquely determined coefficients ao, al, a2, ... E 10, 1, ... , P-1) which
keep their meaning from one line to the next. The sequence of numbers

sn = ao + alp + a2p2 + ... + an-l pn-1 n = 1, 2, ... ,

defines a p-adic integer
00
E avPv E Z.p.
v=0

We call it the p-adic expansion of f .

In analogy with the Laurent series f (z) = Fv° _n= av(z - a)v, we now
extend the domain of p-adic integers into that of the formal series

W
E avPv = a-n3P-m + ... +. a-1P-1 + ao + alp + .. .

v=-m

where m E Z and 0 < av < p. Such series we call simply p-adic numbers
and we write Qp for the set of all these p-adic numbers. If f E Q is any
rational number, then we write

f = h p-m where g, h E Z, (gh, p) = 1,

and if
ao+alp+a2p2+...
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102 Chapter II. The Theory of Valuations

is the p-adic expansion of h , then we attach to f the p-adic number

-M -m+1aop +a1p +...+a,7 +an,+1p+...EQP

as its p-adic expansion.
In this way we obtain a canonical mapping

Q --) QP,
which takes Z into 7LP and is injective. For if a, b E Z have the same p-adic
expansion, then a - b is divisible by pn for every n, and hence a = b. We
now identify Q with its image in Qp, so that we may write Q C Qp and
7L C 7LP. Thus, for every rational number f E Q, we obtain an identity

00

f =

This establishes the arithmetic analogue of the function-theoretic power series
expansion for which we were looking.

Examples: a) -1 = (p - 1) + (p - 1)p + (p - 1)p2 + .

In fact, we have

-1 = (p - 1) +(p - I)p +.--+ (p - 1)pn-l -P n
hence -1 (p - 1)+(p- 1)p+ +(p - 1)pn-1 mod pn.

b)11p=1+p+p2+...
In fact,

hence
1

1=(1+p+...+pn 1)(1-p)+pn,
=-I+ D+---+ D'I-I Mod Dn.1-p

One can define addition and multiplication of p-adic numbers which
turn 7LP into a ring, and Qp into its field of fractions. However, the direct
approach, defining sum and product via the usual carry-over rules for digits,
as one does it when dealing with real numbers as decimal fractions, leads
into complications. They disappear once we use another representation of the
p-adic numbers f = F° viewing them not as sequences of sums of
integers

n-1

sn=7,
v=O
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§ 1. The p-adic Numbers 103

but rather as sequences of residue classes

s,: = sn mod pn E Z/p'Z.

The terms of such a sequence lie in different rings 7L/pn7L, but these are
related by the canonical projections

7L/p7L E-I Z/p2Z EX2 7L/p37L 4X3

and we find
n(Sn+I) = Sn

In the direct product
00

f J Z/Pn7 { (xn)nEN I xn E 7L/pn7Gl
n=I

we now consider all elements (xn)nEN with the property that

Xn(xn+l) = xn for all n = 1,2,...

This set is called the projective limit of the rings 7L/p'Z and is denoted
by 7L/pn7L. In other words, we have

00
7L/P'Z = l (xn)nEN E fl Z/P'Z I ) (xn+1) = xn, n

n n=1

The modified representation of the p-adic numbers alluded to above now
follows from the

(1.3) Proposition. Associating to every p -adic integer
00

f = E avpV
v=0

the sequence (YO,=0 of residue classes

n-1
sn = F_ mod pn E 7L/pn7L,

v=0

yields a bijection
7L p =) 71, / pn7L .

n
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104 Chapter II. The Theory of Valuations

The proof is an immediate consequence of proposition (1.2). The projective
limit Im 7L/p"Z offers the advantage of being clearly a ring. In fact, it is a
subring of the direct product Flo" 1 7G/ p"7L where addition and multiplication
are defined componentwise. We identify ZP with jm Z/p'Z and obtain the
ring of p-adic integers 7Lp.

Since every element f E Q p admits a representation

f = p-mg

with g c 7LP, addition and multiplication extend from ZP to Q and Q p
becomes the field of fractions of Z.

In 7LP, we found the rational integers a E Z which were determined by
the congruences

a =ao+alp+...+an-1P"-1 mod p",
0 < a; < p. Making the identification

7Lp = 7G/ p"7L
n

the subset Z is taken to the set of tuples
00

(a mod p, a mod p2, a mod p3, ...) E fl Z/pnZ
n=1

and thereby is realized as a subring of Z. We obtain Q as a subfield of the
field Qp of p-adic numbers in the same way.

Despite their origin in function-theoretic ideas, the p-adic numbers live
up to their destiny entirely within arithmetic, more precisely at its classical
heart, the Diophantine equations. Such an equation

F(xt,...,xn)=0
is given by a polynomial F E 7L[x1, ..., xn], and the question is whether
it admits solutions in integers. This difficult problem can be weakened by
considering, instead of the equation, all the congruences

F(x1, ..., xn) = 0 mod m.

By the Chinese remainder theorem, this amounts to considering the
congruences

F(xt,...,xn)-0mod p"
modulo all prime powers. The hope is to obtain in this way information about
the original equation. This plethora of congruences is now synthesized again
into a single equation by means of the p-adic numbers. In fact, one has the
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§ 1. The p-adic Numbers 105

(1.4) Proposition. Let F(xl, ..., x,) be a polynomial with integer coeffi-
cients, and fix a prime number p. The congruence

p"

is solvable for arbitrary v > 1 if and only if the equation

F(xl,...,xn)=0
is solvable in p-adic integers.

Proof: As established above, we view the ring Z as the projective limit

7IP = Z/p"7L C fJ Z/pt'Z.
V v=1

Viewed over the ring on the right, the equation F = 0 splits up into
components over the individual rings Z/p"7G, namely, the congruences

F(xl, ..., xn) - 0 mod p".
If now

X x(")E 7Gn(XI, - n) = ( 1 n )vEN P

with e 7Lp = Z/p"7G, is a p-adic solution of the equation

F (xl, ... , xn) = 0, then the congruences are solved by

F . . . . . x ).. , xnl 0 mod p" , v = t,2, .. .

Conversely, let a solution (x,("), ... , x,,,")) of the congruence

F(xi,...,xn)=0mod-p"
be given for every v > 1. If the elements (X !"))10, E 11-, Z/PvZ are
already in Z/p"7G, for all i = 1, ..., n, then we have a p-adic solution
of the equation F = 0. But this is not automatically the case. We will
therefore extract a subsequence from the sequence (x("), ... , xn")) which
fits our needs. For simplicity of notation we only carry this out in the case
n = 1, writing x" = x,("). The general case follows exactly the same pattern.

In what follows, we view (x") as a sequence in Z. Since Z/pZ is finite,
there are infinitely many terms x" which mod p are congruent to the same
element yl E Z/pZ. Hence we may choose a subsequence {x,1,11) of {x"}
such that

x5 = yl mod p and F(x,1,1)) = 0 mod p.
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106 Chapter 11. The Theory of Valuations

Likewise, we may extract from (xvt)) a subsequence (xv2l) such that

x(,2) my2modp2 and F(xl,21) =0modp2,
where y2 E Z/p2Z evidently satisfies y2 = y1 mod p. Continuing in this
way, we obtain for each k > 1 a subsequence (x(,k)} of (x(vk-t)} the terms of
which satisfy the congruences

xvk) = Yk mod pk and F(xvk)) 0 mod pk

for some Yk E Z/pkZ such that

Yk = Yk-1 mod
pk-1.

The yk define a p-adic integer y = (yk)kEN E Z/pk7L = Z, satisfying
k

F(Yk) m 0 mod pk

for all k > 1. In other words, F (y) = 0.

Exercise 1. A p-adic number a = EO_-m a p" E Qp is a rational number if and
only if the sequence of digits is periodic (possibly with a finite string before the first
period).

e

Hint: Write p" a =b+c 11 7P 0<b <pe, 0<c<p".

Exercise 2. A p-adic integer a = ao + a, p + a2p2 + ... is a unit in the ring 7Lp if
and only if as 0 0.
Exercise 3. Show that the equation x2 = 2 has a solution in 7L7.

Exercise 4. Write the numbers 3 and - 3 as 5 -adic numbers.

Exercise 5. The field Qp of p-adic numbers has no automorphisms except the
identity.

Exercise 6. How is the addition, subtraction, multiplication and division of rational
numbers reflected in the representation by p-adic digits?

§ 2. The p-adic Absolute Value

The representation of a p-adic integer

(1) ao + alp + a2P2 + ..., 0<ai <p,
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resembles very much the decimal fraction representation

ao+a1(10)+a2(10)2+... 0<a<<10,
of a real number between 0 and 10. But it does not converge as the
decimal fraction does. Nonetheless, the field Qp of p-adic numbers can
be constructed from the field Q in the same fashion as the field of real
numbers JR. The key to this is to replace the ordinary absolute value by
a new "p-adic" absolute value I (p with respect to which the series (1)
converge sd that the p-adic numbers appear in the usual manner as limits
of Cauchy sequences of rational numbers. This approach was proposed by
the Hungarian mathematician J. KURSCHAK. The p-adic absolute value I Ip is
defined as follows.

Let a = b , b, c E Z be a nonzero rational number. We extract from b and
from c as high a power of the prime number p as possible,

(2) a = Pm b ' (b'c', p) = 1,

and we put

lalp=
1

.
PM

Thus the p-adic value no longer measures the size of a number a E N.
Instead it becomes small if the number is divisible by a high power of p.
This elaborates on the idea suggested in (1.4) that an integer has to be 0 if it
is infinitely divisible by p. In particular, the summands of a p-adic series
ao + a1 p + a2 p2 + form a sequence converging to 0 with respect to I Ip.

The exponent m in the representation (2) of the number a is denoted
by u p (a), and one puts formally up (0) = oo. This gives the function

vp:Q--±ZU(cc),
which is easily checked to satisfy the properties
1) vp(a) = oo a = 0,
2) vp(ab) = up (a) + up (b),
3) vp(a + b) mintvp (a), up (b) 1,

where x + oo = co, co + oc = oo and oo > x, for all x E Z. The function
vp is called the p-adic exponential valuation of Q. The p-adic absolute
value is given by

I Ip:Q R, aH lalp=p-°Pl°l.
In view of 1), 2), 3), it satisfies the conditions of a norm on Q:
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108 Chapter H. The Theory of Valuations

1) lalp=04==* a=0,

2) IabIP = Ialplblp,
3) la + blp < max(lalp,lblp} < lalp + Iblp.

One can show that the absolute values I lp and I I essentially exhaust
all norms on Q: any further norm is a power I Ip or I

IS, for some real
number s > 0 (see (3.7)). The usual absolute value I I is denoted in this
context by I I. The good reason for this will be explained in due course. In
conjunction with the absolute values I Ip, it satisfies the following important
product formula:

(2.1) Proposition. For every rational number a ; 0, one has
fl IaIP=1,
P

where p varies over all prime numbers as well as the symbol oo.

Proof: In the prime factorization
a=± fl pUP

Plc
of a, the exponent vp of p is precisely the exponential valuation vp(a) and
the sign equals

T. h-- .
The equation therefore readsa

_ a j 1a
IaI.

PO
Ialp

so that one has indeed fp I a l p = 1. 0

The notation I I,,, for the ordinary absolute value is motivated by the
analogy of the field of rational numbers Q with the rational function field
k(t) over a finite field k, with which we started our considerations. Instead
of 7L, we have inside k(t) the polynomial ring k[t], the prime ideals p 0 of
which are given by the monic irreducible polynomials p(t) E k[t]. For every
such p, one defines an absolute value

I lp : k(t) -- lib
as follows. Let f (t) = g(t) g(t), h(t) E k[t] be a nonzero rational function.h(t)'
We extract from g(t) and h(t) the highest possible power of the irreducible
polynomial p(t),

f (t) = P(t)m g(t)
, (g h, P) = 1,h (t)
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§ 2. The p-adic Absolute Value 109

and put
vp(f)=m, IfIp=q,v.(.f)

where qp = qdp, dp being the degree of the residue class field of p over k
and q a fixed real number > 1. Furthermore we put vp (0) = oo and 101 p = 0,
and obtain for vp and I Ip the same conditions 1), 2), 3) as for up and I Ip
above. In the case p = (t - a) for a E k, the valuation vp (f) is clearly the
order of the zero, resp. pole, of the function f = f (t) at t = a.

But for the function field k(t), there is one more exponential valuation

v,,, :k(t)-- ZU{oo),
namely

v. (f) = deg(h) - deg(g),
where f = h 0, g, h E k[t]. It describes the order of zero, resp. pole,
of f (t) at the point at infinity oo, i.e., the order of zero, resp. pole, of
the function f (1/t) at the point t = 0. It is associated to the prime ideal
p = (1/t) of the ring k[l/t] c k(t) in the same way as the exponential
valuations vp are associated to the prime ideals p of k[t]. Putting

I f 1. = q`-W,
the unique factorization in k(t) yields, as in (2.1) above, the formula

Ilif lp=l,
p

where p varies over the prime ideals of k[t] as well as the symbol oo, which
now denotes the point at infinity (see chap. I, § 14, p. 95).

In view of the product formula (2.1), the above consideration shows that
the ordinary absolute value I I of Q should be thought of as being associated
to a virtual point at infinity. This point of view justifies the notation I I",
obeys our constant leitmotiv to study numbers as functions from a geometric
perspective, and it will fulfill the expectations thus raised in an ever growing
and amazing manner. The decisive difference between the absolute value
I I,, of Q and the absolute value I I,,, of k(t) is, however, that the former
is not derived from any exponential valuation vp attached to a prime ideal.

Having introduced the p-adic absolute value I Ip on the field Q, let us
now give a new definition of the field Q of p-adic numbers, imitating the
construction of the field of real numbers. We will verify afterwards that this
new, analytic construction does agree with Hensel's definition, which was
motivated by function theory.
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A Cauchy sequence with respect to I Ip is by definition a sequence
[x, } of rational numbers such that for every s > 0, there exists a positive
integer no satisfying

Ixn - Xmlp <s for all n,m>n0.

Example: Every formal series
00
>avpv, 0<av <P,
v=0

provides a Cauchy sequence via its partial sums
n-I

Xn= a,,Pv

,
V=0

because for n > m one has
1n-I

IXn`XmIp= mv=m
n=

P

A sequence f xn } in Q is called a nullsequence with respect to
x, Ip is a sequence converging to 0 in the usual sense.

Example: 1, p, p2, p3, .. .

The Cauchy sequences form a ring R, the nullsequences form a maximal
ideal m, and we define afresh the field of p-adic numbers to be the residue
class field

Qp := R/m.
We embed Q in Qp by associating to every element a E Q the residue
class of the constant sequence (a, a, a, ... ). The p-adic absolute value I Ip
on Q is extended to Q p by giving the element x = (xn } mod m E R /m the
absolute value

:= Urn
n coIXnIp ER.

This limit exists because (Ixnlp} is a Cauchy sequence in R, and it is
independent of the choice of the sequence (xn} within its class mod m
because any p-adic nullsequence (yn) E m satisfies of course lim Iyn Ip = 0.n- 00

The p-adic exponential valuation vp on Q extends to an exponential
valuation

vp:Q -- ZU(oo).
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In fact, if x r= Q p is the class of the Cauchy sequence {x } where x
then

0,

vp(xn) = - logy Ix. IP

either diverges to oo or is a Cauchy sequence in Z which eventually must
become constant for large n because 7L is discrete. We put

vp(x) = n n vp(xn) = vp(xn) for n >

Again we find for all x E Qp that

IxIp=P-vP(X).

As for the field of real numbers one proves the

no.

(2.2) Proposition. The field Qp of p -adic numbers is complete with respect
to the absolute value I 1 p, i.e., every Cauchy sequence in Q. converges with
respect to I 1p.

As well as the field R, we thus obtain for each prime number p a new
field Qp with equal rights and standing, so that Q has given rise to the
infinite family of fields

Q2, Q3, Q5, Q7, Q11, ..., Q = R.

An important special property of the p-adic absolute values I Ip lies in
the fact that they do not only satisfy the usual triangle inequality, but also
the stronger version

Ix +YI p max{ IxIp, IYI p}

This yields the following remarkable proposition, which gives us a new
definition of the p-adic integers.

(2.3) Proposition. The set

ZP:={xEQpIIxIp<1}
is a subring of Q p. It is the closure with respect to I I p of the ring 7L in the
field Qp.
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Proof: That 7Lp is closed under addition and multiplication follows from

Ix +ylp <max( Ixlp,lylp) and Ixylp = IXIplylp.

If (xn } is a Cauchy sequence in Z and x = lim x, , then I Ip < 1 implies
n->co

also x [ , < 1, hence x E Z. Conversely, let x = lim Xn E 7L p , for an-ioo
Cauchy sequence in Q. We saw above that one has Ix l p = Ixn Ip
for n > no, i.e., xn = an , with an, b e Z, (bn, p) = 1. Choosing for eachbn > no a solution y,, E Z of the congruence b y - an mod pn yields
I xn - y, l p < p and hence x = lim yn , so that x belongs to the closure

n-roo
of Z. 0

The group of units of Zp is obviously

7LP=Ix EZpIlxlp=l}
Every element x E Qp admits a unique representation

x=p'u withmEZanduEZp.
For if vp(x) = m E Z, then vp(xp-m) = 0, hence Ixp-n' I p = 1, i.e.,
u = xp'n' E Z. Furthermore we have the

(2.4) Proposition. The nonzero ideals of the ring Zp are the principal ideals

Pn7Lp={xEQ vp(x)>n{
with n > 0, and one has

zpl Pnz'p = 7L/p' Z.

Proof: Let a ; (0) be an ideal of 7Lp and x = pn'u, u E Zr,, an element
of a with smallest possible m (since I x I p < 1, one has m > 0). Then
a = pniZp because y = pnu' E a, u' E 7Lp, implies n > m, hence
y = (pn-mu/)pn' E p'ZPI The homomorphism

Z--+7Lp/pnZp, ai ) amodpnZp,
has kernel pn7L and is surjective. Indeed, for every x E Zp, there exists
by (2.3) an a E Z such that

1Ix-alp <-t ,
P
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i.e., v p (x - a) > n, therefore x - a E p' Z p and hence x - a mod p' Z p. So
we obtain an isomorphism

7p/Pn7p = Z/p'Z.

We now want to establish the link with Hensel's definition of the ring Z P
and the field Qp which was given in § 1. There we defined the p -adic integers
as formal Series

00
VavP

v=0

which we identified with sequences

0<av<P,

sn = s, mod pn E Z/p'Z,

where sn was the partial sum
n-I

sn=r- avp v.
v=0

n=1,2,...,

These sequences constituted the projective limit
00

iIT1 7
E--- Z/P0Z (xn)fEF1 E X11 Z/P'Z I xn-l-l
n n=1

H xn}.

We viewed the p-adic integers as elements of this ring. Since

71.p/pnzp = Z/pnz, .

we obtain, for every n > 1, a surjective homomorphism

Zp --k Z/p'Z.
It is clear that the family of these homomorphisms yields a homomorphism

7Gp) j Z/p'Z.
n

It is now possible to identify both definitions given for Z p (and therefore
also for Qp) via the

(2.5) Proposition. The homomorphism

Zp --+ m_ Z/pnZ
n

is an isomorphism.
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Proof: If x E Zp is mapped to zero, this means that x E pn76 p for all n > 1,
i.e., Jxjp < In for all n > 1, so that Jxlp = 0 and thus x = 0. This showsp
injectivity.

An element of liEin Z/ pn7G is given by a sequence of partial sums
n n-1

sn = >, avpv , 0 < av < p.
v=o

We saw above that this sequence is a Cauchy sequence in ZP' and thus
converges to an element

00x
EavP" EZp.
-o

Since
00

x - sn = E avpv E pn7Gp,
v=n

one has x - sn mod pn for all n, i.e., x is mapped to the element of
lm Z/p'Z which is defined by the given sequence (sn)fEN. This shows

n
surjectivity.

We emphasize that the elements on the right hand side of the isomorphism

Z - l4m Z/p'Z
n

are given formally by sequences of partial sums
n-1

sn= n=1,2,...
V=0

On the left, however, these sequences converge with respect to the absolute
value and yield the elements of Z p in the familiar way, as convergent infinite
series

00
x = E avPv

Yet another, very elegant method to introduce the p-adic numbers comes
about as follows. Let Z[[X]] denote the ring of all formal power series

°o a1 X` with integer coefficients. Then one has the

(2.6) Proposition. There is a canonical isomorphism

7Lp = 7L[[X]]/(X - p).
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Proof : Consider the visibly surjective homomorphism 7L [[X ]] -* ZP which
to every formal power series E'o associates the convergent series
E CO aV p°. The principal ideal (X - p) clearly belongs to the kernel
of this mapping. In order to show that it is the whole kernel, let
f (X) = E' o a power series such that f (p) o a p° = 0.
Since 7Lp/p"Zp = Z/p'Z, this means that

ao + at p + ... + an-1 pr-1 ° 0 mod pf
for all n. We put, for n > 1,

bn_1 = - n (ao+aip+- +an_ipn_1).

p
Then we obtain successively

ao = - pbo,
at=bo - pbt,
a2 = bl - pb2, etc.

But this amounts to the equality

(X - P)(bo+biX
i.e., f (X) belongs to the principal ideal (X - p).

Exercise 1. lx - ylp? I Ixlp- IYlpl -

Exercise 2. Let n be a natural number, n = ao +a, p + +a,-, p' -' its p-adic
expansion, with 0 < a1 < p, and s = ao+a,+ - --+a,-,. Show that vp(n !) = IT -Sp-1'
Exercise 3. The sequence 1, 10' 102' 103' .. does not converge in Q. for any p.

Exercise 4. Lets E 1 + p7L p , and let a = ao + a 1 p + a2 p2 + - - be a p-adic integer,
and write s = ao + al p + + an_ipi-1. Show that the sequence ss^ converges
to a number s' in 1 + p7L p. Show furthermore that 1 + p7L p is thus turned into a
multiplicative Z p -module.

Exercise 5. For every a E Z, (a, p) = 1, the sequence fap°]nEN converges in Qp.
Exercise 6. The fields Qp and Q. are not isomorphic, unless p = q.
Exercise 7. The algebraic closure of Qp has infinite degree.

Exercise 8. In the ring 7Lp[[X]] of formal power series >v__oa,X" over 7Lp,
one has the following division with remainder. Let f , g E 7L p [[X ]] and let
f (X) = ao + at X + - - such that plan for v = 0, ..., it - 1, but p t a,,. Then one
may write in a unique way

g=qf+r,
where q E Zp[[X]], and r E 7Lp[X] is a polynomial of degree < n - 1.
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Hint: Let r be the operator x(0 E' b,X ". Show that U(X) _
aunit in Z[[X]]andwrite f(X) = pP(X)+X"U(X)

with a polynomial P (X) of degree < n - 1. Show that

q(X)=-
U(X)

E(-1)'p'(r o
P ), o r(g)

is a well-defined power series in Z [[X]] such that r(qf) = r(g).
Exercise 9 (p-adic Weierstrass Preparation Theorem). Every nonzero power series

00

.f (X) _

a unique representation
f(X) = p'P(X)U(X),

where U (X) is a unit in 76, [[X ]] and P (X) E 7L [X ] is a monic polynomial
satisfying P (X) = X" mod p.

§ 3. Valuations

The procedure we performed in the previous section with the field Q in
order to obtain the p-adic numbers can be generalized to arbitrary fields
using the concept of (multiplicative) valuation.

(3.1) Definition. A valuation of a field K is a function

I
I:K -+ IR

enjoying the properties

(i) Ix1>0,andlxI=0 x = 0,
(ii) IxYl = IxIIYI,
(iii) Ix + y I < Ix l + I Y I "angle inequality".

We tacitly exclude in the sequel the case where I I is the trivial valuation
of K which satisfies lxI = 1 for all x 0 0. Defining the distance between
two points x, y E K by

d(x,Y) = Ix -Yl
makes K into a metric space, and hence in particular a topological space.

(3.2) Definition. Two valuations of K are called equivalent if they define
the same topology on K.
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(3.3) Proposition. Two valuations I I, and 1 12 on K are equivalent if and
only if there exists a real numbers > 0 such that one has

IX ll = Ixlz
for all x E K.

Proof: If 1
I
i = 112, with s > 0, then I I 1 and 1 12 are obviously equivalent.

For an arbitrary valuation I I on K, the inequality Ix1 < 1 is tantamount to
the condition that (xn)nEN converges to zero in the topology defined by 1 1.

Therefore if 111 and 1 12 are equivalent, one has the implication

(*) Ixll < 1 Ix12 < 1.

Now let y E K be a fixed element satisfying IYII > 1. Let X E K, x 0 0.
Then Ix I i = I y I i for some a E IR. Let m; /ni be a sequence of rational
numbers (with n; > 0) which converges to a from above. Then we have
ixil = 1y11 < IYI; `/"', hence

xni zi
nzi

I1 < 1 - I
yne, I2 <l'

Y

so that Ix12 Iyi2:;/n;, and thus Ix12 < IYIz"". Using a sequence m;/n;
which converges to a from below (*) tells us that Ix 12 > I y I2 . So we have
IX 1 2 = l y l z. For all x E K, x; 0, we therefore get

log I x I l_ log l y l t
log 1x12 Fog I Y 12

hence Ixlt = IxI'. But IYIi > 1 implies 1Y12 > 1, hence s > 0.

The proof shows that the equivalence of I I1 and 1 12 is also equivalent
to the condition

Ixll<1 Ix12<1.
We use this for the proof of the following approximation theorem, which
may be considered a variant of the Chinese remainder theorem.

(3.4) Approximation Theorem. Let I 11, .. , I I n bepairwise inequivalent
valuations of the field K and let at, ..., a, e K be given elements. Then
for every s > 0 there exists an x E K such that

Ix - aiIi < s foralIi = 1, ..., n.
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Proof: By the above remark, since 1 11 and I 1n are inequivalent, there
exists a E K such that I a I I < 1 and la l,, > 1. By the same token, there
exists E K such that (f In < 1 and I,81> > 1. Putting y = ,B/a, one finds
lyl1 >1andIyI, <1.

We now prove by induction on n that there exists z E K such that

Izli>1 and Izli<1 for j = 2, . .., n.
We have just done this for n = 2. Assume we have found z c K satisfying

Izl1>1 and Izlj<1 forj=2,...,n-l.
If Iz1n < 1, then zmy will do, form large. If however Iz1n > 1, the sequence
tm = zm /(1 + zm) will converge to 1 with respect to I I, and 1 In, and to 0
with respect to 1 12, , 1

If_I. Hence, for m large, tnty will suffice.
The sequence zm/(1 + zm) converges to 1 with respect to I II and to 0

with respect to 112, , I In For every i we may construct in this way a zi
which is very close to 1 with respect to 11; , and very close to 0 with respect
to I li for j ; i. The element

x = ai zi + ... + a zn
then satisfies the statement of the approximation theorem.

(3.5) Definition. The valuation I I is called nonarchimedean if InI stays
bounded, for all n E N. Otherwise it is called archimedean.

(3.6) Proposition. The valuation I I is nonarchimedean if and only if it
satisfies the strong triangle inequality

Ix+yl <max{IxI,lyl}.

Proof: If the strong triangle inequality holds, then one has

InI < N for all n E N. Let x, y E K and suppose Ix1 ? 1yI
Then IxI"lyln < IxI' for v > 0 and one gets

n

Ix+y1n vIXI°lyln-° <N(n+1)Ixln,
v=0

hence

Ix+yl <NI/n(1+n)t/nIX I _NI/,'(1+n)'/nmax{IxI,IyI},

and thus Ix + yI < max(Ix1, 1 yI} by letting n -+ oo.
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Remark : The strong triangle inequality immediately implies that

IXI:AIYI = Ix+yI=max}IxI,Iyl}.
One may extend the nonarchimedean valuation I I of K to a valuation of
the function field K(t) in a canonical way by setting, for a polynomial
f(t) =a0+alt +...+ant°,

If I = max[ laol, ..., lanI } .
The triangle inequality If + gI < maxflf I, IgI) is immediate. The proof
that I fg I = I f I I %I is the same as the proof of Gauss's lemma for polynomials
over factorial rings once we replace the content off in this lemma by the
absolute value If 1.

For the field Q, we have the usual absolute value I Ioo = I I, this being
the archimedean valuation, and for each prime number p the nonarchimedean
valuation I Ip. As a matter of fact:

(3.7) Proposition. Every valuation of Q is equivalent to one of the valua-
tions I I p or I I,,

Proof: Let II II be a nonarchimedean valuation of Q. Then IInII =
11 1 + . - + 111 < 1, and there is a prime number p such that II p II < 1 because,
if not, unique prime factorization would imply IlxJI = 1 for all x E Q*. The
set a=[aEZIIlall<1}
is an ideal of Z satisfying p7L C a Z, and since pZ is a maximal ideal,
we have a = p7L. If now a E Z and a = bpm with p f b, so that b V a, then
II b II = 1 and hence

IIa1I = Ilpllm = Ialp
where s = - log 11pII/ log p. Consequently 1111 is equivalent to I Ip.

Now let 11 II be archimedean. Then one has, for every two natural numbers
n,m>1,
(*) IImIl1/109m = IIn1I1/1ogn

In fact, we may write
m

where ai E (0, 1, ..., n - 1) and n' < m. Hence, observing that
r < log m / log n and II ai ll = Ill

+_ - . + 111 < ai II 1 II < n, one gets the
inequality

\llIlmll Ilai 11 IInII` < r Ilaill . llnll'- < (1 + loge In - I1n11logm/logn

g
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Substituting here mk for m, taking k-th roots on both sides, and letting k
tend to oo, one finally obtains

IImII
Ilnlllogm/logn or Ilmlll/togn: IInII1/t°gn.

Swapping m with n gives the identity (*). Putting c = IInlll/tog" we have

IInII = Clogn and putting c = e' yields, for every positive rational number
x = a/b,

Ilxll = eslogx = IxIS.

Therefore II II is equivalent to the usual absolute value I I on Q.

Let I I be a nonarchimedean valuation of the field K. Putting
v(x) _ -log IxI forx # 0, and v(0) = oo,

we obtain a function v:K-+JRU{oo)
verifying the properties
(i)

(ii) v(xy) = u(x) + v(y),
(iii) v(x + y) > min{v(x), v(y)},
where we fix the following conventions regarding elements a E JR and the
symbol oc: a < oo, a + oo = oo, oc + oo = oo.

A function v on K with these properties is called an exponential
valuation of K. We exclude the case of the trivial function v(x) = 0
for x 0 0, v(O) = oo. Two exponential valuations vl and v2 of K are called
equivalent if vl = sv2, for some real number s > 0. For every exponential
valuation v we obtain a valuation in the sense of (3.1) by putting

IxI
for some fixed real number q > 1. To distinguish it from v, we call I I

an associated multiplicative valuation, or absolute value. Replacing v by
an equivalent valuation sv (i.e., replacing q by q' = qs) changes I I into
the equivalent multiplicative valuation I S. The conditions (i), (ii), (iii)
immediately imply the

(3.8) Proposition. The subset
o = { x E K I v(x)>0} ={xEKI IxI <1}

is a ring with group of units
o*=Ix EKI v(x)=0} ={xEKI IxI=1}

and the unique maximal ideal
p={xEKI v(x)>0} =IX EKI IxI <1}.
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o is an integral domain with field of fractions K and has the property that,
for every x E K, either x E o or x-1 E o. Such a ring is called a valuation
ring. Its only maximal ideal is p = {x E o I x-1 0 o). The field a/p is called
the residue class field of o. A valuation ring is always integrally closed. For
if x E K is integral over o, then there is an equation

xn+a1xn-1+...+an = 0
with ai E o and the hypothesis x o, so that x-1 E o, would imply the
contradiction x = -a1 - a2x-1 - - an (x-1)n-1 E o

An exponential valuation v is called discrete if it admits a smallest
positive value s. In this case, one finds

v(K*) =sZ.
It is called normalized if s = 1. Dividing by s we may always pass to a
normalized valuation without changing the invariants o, o*, p. Having done
so, an element

7r E o such that v(7r) = 1
is a prime element, and every element x E K* admits a unique representation

X = u 7rm

with m E Z and u e o*. For if v(x) = m, then v(x n-m) = 0, hence
u = x7r-" E 0*.

(3.9) Proposition. If v is a discrete exponential valuation of K, then

o = Ix cKIv(x)>0}
is a principal ideal domain, hence a discrete valuation ring (see I, (11.3)).

Suppose v is normalized. Then the nonzero ideals of o are given by
pn=nno={xEKI v(x)>n}, n>0,

where n is a prime element, i.e., v(7r) = 1. One has
pn/pn+1 a/p

Proof : Let a ; 0 be an ideal of o and x 54 0 an element in a with
smallest possible value v(x) = n. Then x = u 7rn, u E o*, so that 7r1o C_ a.
If y = E n' E a is arbitrary with s E o*, then m = v(y) > n, hence
y = (E nm-n)nn E 7rno, so that a = 7r"o. The isomorphism

pn/pn+t = o/p

results from the correspondence an" H a mod p.
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In a discretely valued field K the chain

0

consisting of the ideals of the valuation ring o forms a basis of
neighbourhoods of the zero element. Indeed, if v is a normalized exponential
valuation and t = q-D (q > 1) an associated multiplicative valuation, then

p'Z={xEKIW< 1
} .qR_1

As a basis of neighbourhoods of the element 1 of K*, we obtain in the
same way the descending chain

* = U (O) U(1) D U(Z) .. .

of subgroups

U(n)=1+pn={XEK*I I1-XI < 1 }n-i n>0,
q

of o*. (Observe that 1+p' is closed under multiplication and that, if x E U(n),
then so is x-1 because 1 1 - x-1 = Jx -1 jx - 11 = I l - x I < qrt ,, .) U(n)

is called the n-th higher unit group and U(1) the group of principal units.
Regarding the successive quotients of the chain of higher unit groups, we
have the

(3.10) Proposition. o*/U(n) = (o/pn)* and U(n)/U(n+1) - o/p, for
n>1.

Proof: The first isomorphism is induced by the canonical and obviously
surjective homomorphism

o* -) (o/pn)*, u H u mod pn,

the kernel of which is U('). The second isomorphism is given, once we
choose a prime element 7r, by the surjective homomorphism

U(n) = 1 +7rno - o/p, 1 +7rna H a mod p,

which has kernel U(1+1) (]
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Vf-Exercise 1. Show that i z _ (zz )'/2 = NC1R (z) I is the only valuation of C which
extends the absolute value I of R.

Exercise 2. What is the relation between the Chinese remainder theorem and the
approximation theorem (3.4)?

Exercise 3. Let k be a field and K = k(t) the function field in one variable. Show that
the valuations vp associated to the prime ideals p = (p(t)) of k[t], together with the
degree valuation vm, are the only valuations of K, up to equivalence. What are the
residue class fields?

Exercise 4. Let o be an arbitrary valuation ring with field of fractions K,
and let F = K*/o*. Then P becomes a totally ordered group if we define
x mod O* > y mod o* to mean x/y E O.

Write r additively and show that the function
v:K-) FU(oo),

v(0) = oo, v(x) = x mod 0* for X E K, satisfies the conditions
1) v(X) = 00 X = 0,
2) v(xy) = v(x) +v()'),
3) v(x + y) > miri(v(x),v(y)}.

v is called a Krull valuation.

§ 4. Completions

(4.1) Definition. A valued field (K, 1 1) is called complete if every Cauchy
sequence {an}fEty in K converges to an element a E K, i.e.,

lim I a,= - a I = 0.nicc

Here, as usual, we call {an}fEN a Cauchy sequence if for every s > 0
there exists N E N such that

Ian-aml <e for all n,m>-N.
From any valued field (K, 1 1) we get a complete valued field (K, 1 () by
the process of completion. This completion is obtained in the same way as
the field of real numbers is constructed from the field of rational numbers.

Take the ring R of all Cauchy sequences of (K, I (), consider therein the
maximal ideal m of all nullsequences with respect to 1, and define

K = R/m.
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One embeds the field K into K by sending every a e K to the class of the
constant Cauchy sequence (a, a, a, ... ). The valuation I I is extended from
K to K by giving the element a E K which is represented by the Cauchy
sequence (an ), N the absolute value

Ial = lira

I n
I

implies that Ian I is a
Cauchy sequence of real numbers. As in the case of the field of real numbers,
one proves that K is complete with respect to the extended I (, and that each
a E K is a limit of asequence (an) in K. Finally one proves the uniqueness
of the completion (K, 1 I): if (K', I I') is another complete valued field that
contains (K, 1 I) as a dense subfield, then mapping

I
I -lim an H I I'-lim a

n-->00 n- oo

gives a K -isomorphism a : K -+ K' such that IaI = I a a I'.

The fields JR and C are the most familiar examples of complete fields.
They are complete with respect to an archimedean valuation. Amazingly
enough, there are no others of this type. More precisely we have the

(4.2) Theorem (OsTRowsxr). Let K be a field which is complete with respect
to an archimedean valuation I I. Then there is an isomorphism a from K
onto JR or C satisfying

IaI=laals forall aEK,
for some fixed s E (0, 1].

Proof: We may assume without loss of generality that JR c K and that the
valuation 1 I of K is an extension of the usual absolute value of R. In fact,
replacing I I by I Is-` for a suitable s > 0, we may assume by (3.7) that the
restriction of I to Q is equal to the usual absolute value. Then taking the
closure Q in K we find that Q is complete with respect to the restriction
of I I to Q, in other words, it is a completion of (Q, 1 1). In view of the
uniqueness of completions, there is an isomorphism a : 18 Q such that
IaI = laal as required.

In order to prove that K = JR or = C we show that each E K satisfies
a quadratic equation over R. For this, consider the continuous function
f : C -+ JR defined by

f(Z) = (Z+Z)
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Note here that z + i, zz E R C K. Since lim f (z) = oo, f (z) has a
z-+co

minimum m. The set

S={zECCI f(z)=m}
is therefore nonempty, bounded, and closed, and there is a zo E S such that
I zo I > I z I for all z E S. It suffices to show that m = 0, because then one has
the equation 2 - (zo + io) + zozo = 0.

Assume m > 0. Consider the real polynomial

g(x) = x2 - (zo + io)x + zoio + E,

where 0 < E < m, with the roots z1, i1 E C. We have zIz1 = zozo + E,
hence Iz1 > Izol and thus

f(z1)>m.
For fixed n E N, consider on the other hand the real polynomial

2n 2n7

G(x) = {g (x) - s] - (-s)n = fl (x - ai) = 1 1 (x - ai)
i=1 i=1

with roots al, ..., a2n E C. It follows that G(z1) = 0; say, zl = al. We
may substitute E K into the polynomial

2n

G(x)2 = fl (x2 - (ai + ai)x + aia;)
i=1

and get

G(P)I 2 = 11 f (ai) > f (al)m2n-1

i=1

From this and the inequality

G(P) I < (zo + Fog + zoioIn + I In = f (zO)n + En = mn + En,

it follows that f (a1)m2n-1 < (mn + En)2 and hence

Pal)
m

1) < (I + ( )n)2.

For n -+ oo we have f (a1) < m, which contradicts the inequality f (al) > m
proved before.

In view of OsmowsKz's theorem, we will henceforth restrict attention to
the case of nonarchimedean valuations. In this case it is usually expedient -
both with regard to the substance and to practical technique - to work with
the exponential valuations v rather than the multiplicative valuations. So let v



126 Chapter H. The Theory of Valuations

be an exponential valuation of the field K. It is canonically continued to an
exponential valuation v of the completion k by setting

v (a) = lim
n- oo

where a = lim an E k' an E K. Observe here that the sequence v(a0)
n-+00

has to become stationary (provided a 0) because, for n > no, one
has v(a - an) > i (a), so that it follows from the remark on p. 119

v(an) = v(an - a + a) = min{v(a - a),v"(a)j = v(a).

Therefore it follows that
v(K*) = v(K*),

and if v is discrete and normalized, then so is the extension U. In the
nonarchimedean case, for a sequence {an}oOty to be a Cauchy sequence,
it suffices that an+1 - an be a nullsequence. In fact, v(an - a,,,)
minor<i<n(v((i+l - a=)). By the same token an infinite series 100 a
converges in K if and only if the sequence of its terms a is a nullsequence.
The following proposition is proved exactly as its analogue, proposition (2.4),
in the special case (Q, vp).

(4.3) Proposition. If o c K, resp. o c K, is the valuation ring of v, resp.
of v, and p, resp. p, is the maximal ideal, then one has

and, if v is discrete, one has furthermore

a/ n = a/pn for n>1.

Generalizing the p-adic expansion to the case of an arbitrary discrete
valuation v of the field K, we have the

(4.4) Proposition. Let R c_ o be a system of representatives for K = o%
such that 0 E R, and let 7r E o be a prime element. Then every x 0 0 in K
admits a unique representation as a convergent series

x =7rn2(ao+a17r +a27r2+...)

whereat E R,ao:A0,rn EZ.
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Proof: Let x = Trmu with u e o'. Since a/ p = o/.p, the class u mod p
has a unique representative ao E R, ao 0 0. We thus have u = ao + Tr b 1,
for some b1 E o. Assume now that ao, ... , an-1 E R have been found,
satisfying

u = ao + a17r + ... + an-17tH-1 +7rnb,:
for some bn E o, and that the ai are uniquely determined by this equation.
Then the representative an E R of bn mod 7ro E o/li - o/p is also
uniquely determined by u and we have bn = an + Tr bn+i , for some bn+1 E
Hence

u = ao + a17r + + an_17rn-1 + an,rn + Trn+lbn+1

In this way we find an infinite series FO°o which is uniquely determined
by u. It converges to is because the remainder term Trn+lbn+1 tends to zero.

In the case of the field of rational numbers Q and the p-adic valuation vp
with its completion Qp, the numbers 0, 1, ..., p - 1 form a system of
representatives R for the residue class field Z/p7L of the valuation, and
we get back the representation of p-adic numbers which has already been
discussed in §2:

x = pm(ao+a1p+a2p2+...),
where 0 < a< < p and m e Z.

In the case of the rational function field k(r) and the valuation vp attached
to a prime ideal p = (t - a) of k[t] (see §2), we may take as a system of
representatives R the field of coefficients k itself. The completion then turns
out to be the field of formal power series k((x)), x = t - a, consisting of
all formal Laurent series

f(t) = (t -a)m(ao+a1(t -a)+a2(t -a)2+...),
with ai E k and m e Z. The motivating analogy of the beginning of this
chapter, between power series and p-adic numbers, thus appears as two
special instances of the same concrete mathematical situation.

In § 1 we identified the ring Z of p-adic integers as being the projective
limit im 7L/pn7L. We obtain a similar result in the general setting of

valuation theory. To explain this, let K be complete with respect to a discrete
valuation. Let o be the valuation ring with the maximal ideal p. We then
have for every n > 1 the canonical homomorphisms

0 o/pn
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and

O/p 1 O/p2 4 ? O/p3
This gives us a homomorphism

o - l m o/pn

into the projective limit
n

O/Pn = { (xn) E 1 1 O/p1 I n (xn+1) = Xn }
n n=1

Considering the rings o/p" as topological rings, for the discrete topology,
gives us the product topology on fl 1 o/p", and the projective limit

o/pn becomes a topological ring in a canonical way, being a closed
n

subset of the product (see chap. IV, § 2).

(4.5) Proposition. The canonical mapping

O - O/pn
n

is an isomorphism and a homeomorphism. The same is true for the mapping

O* O*/U(n).
n

Proof: The map is injective since its kernel is n,°O
1

p" = (0). To prove
surjectivity, let p = rro and let R C O, R 3 0, be a system of representatives
of o/p. We saw in the proof of (4.4) (and in fact already in (1.2)) that the
elements a mod p" E O/p" can be given uniquely in the form

a = ao + al lr + ... + an_ 1 n n-1 mod p',

where a, E R. Each element s E o/p" is therefore given by a sequence
of sums n

sn =ao+a1rt+...+an-1n-1, n = 1,2, ...,
with fixed coefficients a1 E R, and it is thus the image of the element
x = lim sn = E n.n- co

The sets P, = o/p" form a basis of neighbourhoods of the zero
element of flt o/p°. Under the bijection

O - 1 m_ O/p°
V
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the basis of neighbourhoods pn of zero in o is mapped onto the basis of
neighbourhoods P, n o/p° of zero in lam o/p°. Thus the bijection is

a homeomorphism. It induces an isomorphism and homeomorphism on the
group of units

O* _ ( O/pn)* (O/pn)* =

One of our chief concerns will be to study the finite extensions L I K of a
complete valued field K. This means that we have to turn to the question of
factoring algebraic equations

f (x) = anxn + an-lxn-i + ... + ao = 0

over complete valued fields. For this, Hensel's seminal "lemma" is of
fundamental importance. Let K again be a field which is, complete with
respect to a nonarchimedean valuation I I. Let o be the corresponding
valuation ring with maximal ideal p and residue class field Ic = o/p.
We call a polynomial f (x) = ao + aix + ... + anxn E o[x] primitive
if f (x) # 0 mod p, i.e., if

IfI =max{Iaol, ..., IanI} = 1.

(4.6) Hensel's Lemma. If a primitive polynomial f (x) E o[x] admits
modulo p a factorization

f (x) - g (x)h (x) mod p

into relatively prime polynomials g, h E ic[x], then f (x) admits a factoriza-
Lion

f(x) = g(x)h(x)

into polynomials g, h E o[x] such that deg(g) = deg(g) and

g(x)_-g(x)modp and h (x) h(x) mod p.

Proof: Let d = deg(f), m = deg(g), hence d - m > deg(h). Let go,
ho c= o[x] be polynomials such that go _- g mod p, ho = h mod p and
deg(go) = m, deg(ho) < d - m. Since (g, h) = 1, there exist polynomials
a(x), b(x) E o[x] satisfying ago + bho - 1 mod p. Among the coefficients
of the two polynomials f - goho and ago + bho - 1 E p[x] we pick one with
minimum value and call it .7r.
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130 Chapter II. The Theory of Valuations

Let us look for the polynomials g and h in the following form:

g =go+p17r +p27r2+ ,

h=ho+qi
where pi, qi E o[x] are polynomials of degree < m, resp. < d - m. We then
determine successively the polynomials

gn-i = go + pig + ... + pn-i7rn-1

hn-1 = ho + q1n' + ... + Qn-i7rn-1,
in such a way that one has

f = gn-lhn-i mod 7tn.
Passing to the limit as n -* oo, we will finally obtain the identity f = gh.
For n = 1 the congruence is satisfied in view of our choice of it. Let us
assume that it is already established for some n > 1. Then, in view of the
relation

gn = gn-1 +
pnjrn,

hn = hn-1 + gnirn,

the condition on g,, h reduces to

f - gn-ihn-1 = (g,,-Iqn + hn-IPn)7tn mod 7Cn+1

Dividing by 7r', this means

gn-1qn + hn-lPn = goqn + hoPn = fn mod it,

where fn = Ir-n(f - gn-Ihn-1) E o[x]. Since goa +hob 1 mod it, one
has

goafn + hobf,, = fn mod 7r.
At this point we would like to put qn = afn and pn = bfn, but the degrees
might be too big. For this reason, we write

b(x)fn(x) = q(x)go(x) + p, (x),

where deg(pn) < deg(go) = m. Since go - g mod p and deg(go) = deg(g),
the highest coefficient of go is a unit; hence q(x) E o[x] and we obtain the
congruence

go(af, + hoq) + hop, ° f, mod 7r.
Omitting now from the polynomial afn +hoq all coefficients divisible by it,
we get a polynomial qn such that goq,, + hop, - fn mod it and which, in
view of deg(f,,) < d, deg(go) = m and deg(hop,) < (d - m) + m = d, has
degree < d - m as required.
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Example : The polynomial x P-1-1 E Z p [x] splits over the residue class field
Z p / p7L p = F p into distinct linear factors. Applying (repeatedly) Hensel's
lemma, we see that it also splits into linear factors over Z,,. We thus obtain the
astonishing result that the field Qp of p-adic numbers contains the (p -1)-th
roots of unity. These, together with 0, even form a system of representatives
for the residue class field, which is closed under multiplication.

(4.7) Corollary. Let the field K be complete with respect to the nonar-
chimedean valuation

1
1. Then, for every irreducible polynomial f (x) _

ao + a1x + + a"x" E K [x] such that aoa, : 0, one has

IfI =max{laol,Ia,:l}.
In particular, a = 1 and ao E o imply that f E o[x].

Proof: After multiplying by a suitable element of K we may assume that
f c o[x] and I f I = 1. Let ar be the first one among the coefficients
a 0 . . . . . a" such that l ar I = 1. In other words, we have

f (x) = x' (ar + ar+tx + ... + a"x"-r) mod p.

If one had max(I ao I , I a" 1) < 1, then 0 < r < n and the congruence would
contradict Hensel's lemma.

From this corollary we can now deduce the following theorem on
extensions of valuations.

(4.8) Theorem. Let K be complete with respect to the valuation 1 1.

Then I I may be extended in a unique way to a valuation of any given
algebraic extension L I K. This extension is given by the formula

lal = n
INLIK(01)1 ,

when L I K has finite degree n. In this case L is again complete.

Proof: If the valuation I I is archimedean, then by Ostrowski's theorem,
K = IR or C. We have NCIR(z) = zz = Iz12 and the theorem is part
of classical analysis. So let I I be nonarchimedean. Since every algebraic
extension L IK is the union of its finite subextensions, we may assume that
the degree n = [L : K] is finite.
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Existence of the extended valuation: let o be the valuation ring of K and 0
its integral closure in L. Then one has

(*) 0 = {a ELI NLIK(a) E 01 .

The implication a e 0 => NLI K(a) E o is evident (see chap. I, § 2, p. 12).
Conversely, let a E L* and NLI K00 E o. Let

f (x) = xd + ad_lxd-1 + ... + ao r= K[x]

be the minimal polynomial of a over K. Then NLI K (a) = ±a' E o, so that
laol < 1, i.e., ao E o. By (4.7) this gives f(x) E o[x], i.e., a E 0.

For the function l a l=" i NL I K (a) I, the conditions I a l= 0 a = 0
and I up I= I a I I fi I are obvious. The strong triangle inequality

la+PI <-max{lal,Ifl}
reduces, after dividing by a or $, to the implication

lal < 1 la + ll < 1,
and then, by (*), to a E 0 = a + 1 E 0, which is trivially true. Thus
the formula la l = n INLIK (a) I does define a valuation of L and, restricted
to K, it clearly gives back the given valuation. Equally obviously it has 0
as its valuation ring.

Uniqueness of the extended valuation: let
I

I' be another extension with
valuation ring 0. Let T, resp. T', be the maximal ideal of 0, resp. 0. We
show that 0 c 0. Let a E 0 N 0' and let

f (x) = xd + alxd-1 + ...+ ad
be the minimal polynomial of a over K. Then one has a1, ..., ad E o and
a-1 E 3', hence 1 = -a1a-1 - - ad(a-1)d E T', a contradiction.
This shows the inclusion 0 c 0. In other words, we have that
Jul < 1 => Jul' < 1 and this implies that the valuations

I I and I I'
are equivalent. For if they were not, then the approximation theorem (3.4)
would allow us to find an a E L such that l a l < 1 la l' > 1. Thus I I and

I' are equal because they agree on K.
The fact that L is again complete with respect to the extended valuation

is deduced from the following general result.

(4.9) Proposition. Let K be complete with respect to the valuation I I and
let V be an n-dimensional nonmed vector space over K. Then, for any basis
v1, ..., v, of V the maximum norm

IIxiv1 11 =max{ Ixi1, ..., Ix,,I}
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is equivalent to the given norm on V. In particular, V is complete and the
isomorphism

Kn-) V,
is a homeomorphism.

(X1, ... , xn) H XI VI +--' + Xn Vn ,

Proof: Let v1, ..., vn be a basis and II it be the corresponding maximum
norm on V.' It suffices to show that, for every norm I I on V, there exist
constants p, p' > 0 such that

pllxll < IxI < p'llxli for all X E V V.

Then the norm I I defines the same topology on V as the norm II II ,
and we obtain the topological isomorphism K' - V, (xi, ..., xn)
x 1 v 1 + - +xn vn . In fact, II Il is transformed into the maximum norm on V.

For p' we may obviously take I v1 I + - + I v, 1. The existence of p is
proved by induction on n. For n = 1 we may take p = Ivi I. Suppose that
everything is proved for (n - 1)-dimensional vector spaces. Let

V = Vi + Kvi. Then V, is complete with respect to the restriction
of I I by induction, hence it is closed in V. Thus V; + v, is also closed.
Since 0 0 U 1(V1 + vi), there exists a neighbourhood of 0 which is disjoint
from U'=, (Vi + vi), i.e., there exists p > 0 such that

I wi + v, I > p for all wi E Vi and all i = 1, ..., n.
For x = x1 v 1 + + xn vn 54 0 and Ix,- I = max{ I xi I } , one finds

Ix,1xl = xl V1+...+Vr+...+ Xn Vn > p,
Xr Xr

so that one has IxI > plxrl = pllxll. El

The fact that an exponential valuation v on K associated with I I extends
uniquely to L is a trivial consequence of theorem (4.8). The extension w is
given by the formula

w(a) = 1 V(NLIK(a))

if n = [L : K] < oo.



s`~

Q
.,

134 Chapter H. The Theory of Valuations

Exercise 1. An infinite algebraic extension of a complete field K is never complete.
Exercise 2. Let X0, X1, ... be an infinite sequence of unknowns, p a fixed prime
number and W = Xo"

+ pX i
-

' + . + p" X , n > 0. Show that there exist
polynomials So, Sl, ; Po, P1, ... E Z[Xo, X1, ... ; Yo, Yl, ... ] such that

Wn(So, S1, ...) = Wn(Xo,X1, ...) + WW(Yo,Y1, ...),

W,,(Po, P1, ...) = W n(Xo, Xl, ...) Wn(Yo, Yl, ...).
Exercise 3. Let A be a commutative ring. For a = (ao, al, ...), b = (bo, b1, ...),
a;, b; E A, put

a + b = (So(a, b), SL (a, b), ...), a b = (P0(a, b), Pt (a, b), ...) .
Show that with these operations the vectors a = (ao, a1, ...) form a commutative
ring W (A) with 1. It is called the ring of Witt vectors over A.
Exercise 4. Assume pA = 0. For every Witt vector a = (ao, a 1, ...) E W (A)
consider the "ghost components"

a(") = Wn (a) = aa" +
pal + ... + p"an

as well as the mappings V, F : W (A) -* W (A) defined by
Va = (O,ao,a1, ...) and Fa = (ao,av, ...),

called respectively "transfer" ("Verschiebung" in German) and "Frobenius". Show
that

(Va)(") = pa("-1) and a(n) = (Fa)(") + pnan

Exercise 5. Let k be a field of characteristic p. Then V is a homomorphism of the
additive group of W (k) and F is a ring homomorphism, and one has

VFa = FVa = pa.
Exercise 6. If k is a perfect field of characteristic p, then W (k) is a complete
discrete valuation ring with residue class field k.

§ 5. Local Fields

Among all complete (nonarchimedean) valued fields, those arising as
completions of a global field, i.e., of a finite extension of either Q or ]Fp(t),
have the most eminent relevance for number theory. The valuation on such
a completion is discrete and has a finite residue class field, as we shall see
shortly. In contrast to the global fields, all fields which are complete with
respect to a discrete valuation and have a finite residue class field are called
local fields. For such a local field, the normalized exponential valuation is
denoted by vp, and I lp denotes the absolute value normalized by

jxjp = q-"p(x)
where q is the cardinality of the residue class field.
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§5. Local Fields 135

(5.1) Proposition. A local field K is locally compact. Its valuation ring o
is compact.

Proof: By (4.5) we have o = lam o/p", both algebraically and topo-
logically. Since p°/p°}i = o/p (see (3.9)), the rings c)/p' are finite,
hence compact. Being a closed subset of the compact product no" I o/p",
it follows that the projective limit m_ o/p", and thus o, is also compact.
For every a E K, the set a + o is an open, and at the same time compact
neighbourhood, so that K is locally compact.

In happy concord with the definition of global fields as the finite extensions
of Q and lF p (t), we now obtain the following characterization of local fields.

(5.2) Proposition. The local fields are precisely the finite extensions of the
fields Qp and lFp((t)).

Proof: A finite extension K of k = Q. or k = lFp((t)) is again complete,
by (4.8), with respect to the extended valuation I a I = " I NK Jk (a) I ,

which itself is obviously again discrete. Since K1k is of finite degree,
so is the residue class field extension K I IF p, for if Y1, ... , x, E K
are linearly independent, then any choice of preimages xi, ... , x" E K
is linearly independent over k. Indeed, dividing any nontrivial k-linear
relation ),lxl + +.k"x" = 0, .ki e k, by the coefficient Xj with biggest
absolute value, yields a linear combination with coefficients in the valuation
ring of k with 1 as i -th coefficient, from which we obtain a nontrivial relation
ix i + . + A, = 0 by reducing to x. Therefore K is a local field.

Conversely, let K be a local field, v its discrete exponential valuation,
and p the characteristic of its residue class field K. If K has characteristic 0,
then the restriction of v to Q is equivalent to the p-adic valuation vp of Q
because v(p) > 0. In view of the completeness of K, the closure of Q in K
is the completion of Q with respect to vp, in other words Qp C K. The
fact that KIQp is of finite degree results from the local compactness of the
vector space K, by a general theorem of topological linear algebra (see [18],
chap. I, §2, n° 4, th. 3), but it also follows from (6.8) below. If on the other
hand the characteristic of K is not equal to zero, then it has to equal p.
In this case we find K = K((t)), for a prime element t of K (see p.127),
hence Fp((t)) c K. In fact, if K = Fp(a) and p(X) E Fp[X] c K[X] is
the minimal polynomial of a over IF,,, then, by Hensel's lemma, p (X) splits
over K into linear factors. We may therefore view K as a subfield of K, and
then the elements of K turn out to be, by (4.4), the Laurent series in t with
coefficients in K.
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Remark : One can show that a field K which is locally compact with respect
to a nondiscrete topology is isomorphic either to I[8 or C, or to a finite
extension of Qp or IFp((t)), i.e., to a local field (see [137], chap. 1, §3).

We have just seen that the local fields of characteristic p are the power
series fields Fq((t)), with q = pf. The local fields of characteristic 0, i.e.,
the finite extensions KIQ of the fields of p-adic numbers Qp, are called
p-adic number fields. For them one has an exponential function and a
logarithm function. In contrast to the real and complex case, however, the
former is not defined on all of K, whereas the latter is given on the whole
multiplicative group K*. For the definition of the logarithm we make use of
the following fact.

(5.3) Proposition. The multiplicative group of a local field K admits the
decomposition

K* = (it) X Aq-1 X U(1) .

Here rr is a prime element, (7r) = (irk I k E Z}, q = #K is the number of
elements in the residue class field K = o/p, and UM = 1 + p is the group
of principal units.

Proof: For every a E K*, one has a unique representation a = i"u with
n E Z, at E o* so that K* = (zr) x o*. Since the polynomial Xq-1 - 1 splits
into linear factors over K by Hensel's lemma, o* contains the group µq_1 of
(q - l)-th roots of unity. The homomorphism o* --)- K*, u > u mod p, has
kernel UM and maps µq_1 bijectively onto K*. Hence o* = µq_1 x U0).

(5.4) Proposition. For a p-adic number field K there is a uniquely
determined continuous homomorphism

log:K*-*K
such that log p = 0 which on principal units (1 + x) E UM is given by the
series

x2 x3
log(l + x) = x - +

2 3

Proof: By §4, we can think of the p-adic valuation vp of Qp as extended
to K. Observing that vp(x) > 0, so that c = p"P(x) > 1, and p"P(v) < v,
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giving vp (v) < In pp (with the usual logarithm), we compute the valuation of
the terms x°/v of the series,

x" In c In v ln(c°/v)VP(n>=vvp(x)-vp(v)>vlnp-lnp= In p

This shows that x°/v is a nullsequence, i.e., the logarithm series converges.
It defines a homomorphism because

log((1 + x)(1 + y)) = log(' + x) + log(' + y)

is an identity of formal power series and all series in it converge provided
l+x, l+y E U(1).

For every a E K*, choosing a prime element n, we have a unique
representation

a =ntip(a)0) (a)(a),

where vp = evp is the normalized valuation of K, 0v(a) E µq_1, (a) E U(1).
As suggested by the equation p = new(p)(p), we define loge = -e log (p)
and thus obtain the homomorphism log : K* K by

log a = vp (a) log n + log (a).

It is obviously continuous and has the property that log p = 0. If ?.: K * K
is any continuation of log : U(1) ---> K such that X(p) = 0, then we
find that ?.(') = 1 ?.(4q-1) = 0 for each E µq_1. It follows thatq-1
0 = e.(rr) + k((p)) = e?.(rr) + log (p), so that ?.(jr) = loge, and thus
X(a) = vp(a)A(n)+,L((a)) = vp(a) logrr +log (a) = logo, for all a E K*.
log is therefore uniquely determined and independent of the choice of jr.

(5.5) Proposition. Let K IQ be a p -adic number field with valuation ring
o and maximal ideal p, and let po = pe. Then the power series

xz x3 Z2 Z3exp(x)=1+x+2 +3i + and log(l+z) =z-
2

+
3
- ,

yield, for n >
P

e 1, two mutually inverse isomorphisms (and homeomor-
phisms)

exp

pn
) U(n)

log

We prepare the proof by the following elementary lemma.
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(5.6) Lemma. Let v = E'=o ai p', 0 < ai < p, be the p-adic expansion of
the natural number v E N. Then

Vp(V!)_ ai(P`-1).P-1i=o

Proof : Let [c] signify the biggest integer < c. Then we have

[VIP] = at + a2P + ... + a,, pr-1
[viP2] = a2

+...+a,-p'-2

[V/Pr] = ar.
Now we count how many numbers 1, 2, ... , v are divisible by p, and then
by p2, etc. We find

vp(v!) = [vIP]+...+[vIPr] =at+(P+1)a2+...+(P'-t +...+1)ar

and hence

(P-1)vp(v!) = (P-1)al+(p2-1)a2+...+(Pr-1)ar = >ai(P` -1).
i=O

Proof of (5.5): We again think of the p-adic valuation vp of Qp as being
extended to K. Then vp = evp is the normalized valuation of K. For every
natural number v > 1, one has the estimate

vp(v) 1

v-1 - p-1
for if v = pavo, with (vo, p) = 1 and a > 0, then

vp(v) a a 1 a 1

v-1 pavo-1 - pa-1 p-1 pa-t+...+p+l p-1
For vp (z) > 1 , z ; 0, i.e., vp (z) > e this yieldsp-1 p-
vp

zv
vp(Z) _ (V - 1)vp(Z) - Vp(V) >(v (v - 1)( 1

VP (V) > 0,
p - 1 v-1 )

and thus vp(log(1 + z)) = vp(z). For n >
P

e log therefore maps Ut11
into pn.

For the exponential series E °x/v!, we compute the valuations
vp(x°/v!) as follows. Writing, for v > 0,

v=ao+alp+...+arp' 0<ai < p
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we get from (5.6) that

vp(v!)= 1 ai(P`-1)= 1 (v-(ao+a1+...+a,.))P-1i-o P-
Putting s = ao + - - + a, this becomes

x"
V-SV

1 SV,( = vV,(X) - = UVp(x) - I }v. p- p-
For vp(x) >

'

p
e

1
, i.e., vp(x) > p 1

, this implies the convergence of the
exponential series. If furthermore x 0 and v > 1, then one has

Vp(XV )-vp(x)=(v-1)vp(x)- v-1 sv- >0.
V! p-1 p-1 p-1 -

Therefore v exp(x) - 1 e
1

p( ) = vp(x), i.e., for n > p ,exp maps the group p"
into U("). Furthermore, one has for vp(x), vp(z) > p

e
I

that

exp log(1 + z) = 1 + z and log exp x = x ,
for these are identities of formal power series and all of the series converge.
This proves the proposition. D

For an arbitrary local field K, the group of principal units U(1) is a 7L -
module (where p = char(K)) in a canonical way, i.e., for every 1 +x E U )
and every z E 7Lp, one has the power (1 +x)Z E U(1). This is a consequence
of the fact that U(1)/U(n+l) has order qn for all n (where q = #o/p - the
reason for this is that U(1)/U(i+1) = o/p, by (3.10), so that U(1)/U(n+1)
is a 7L/q°Z-module) and of the formulas

U(1) _ U(1)/U(n+1) and 7Lp = 7L/q"7L.
n n

This obviously extends the 7L-module structure of U(1). The function

f(z) = (1+x)Z
is continuous because the congruence z = z' mod gn7L p implies (1 + x)z
(1 + x) " mod U('+'), so that the neighbourhood z + q"7L p of z is mapped
to the neighbourhood (1 +x)zU(n+l) of f (z). In particular, (1 +x)z may be
expressed as the limit

(1 + x)z = lim (1 + X)z`

of ordinary powers (1 + x)zi, zi E Z, if z = lim z,.
1-> 00

After this discussion we can now determine explicitly the structure of the
locally compact multiplicative group K* of a local field K.
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(5.7) Proposition. Let K be a local field and q = pf the number of
elements in the residue class field. Then the following hold.
(i) If K has characteristic 0, then one has (both algebraically and
topologically)

K* = Z®Z/(q-1)Z ®7L/p°7L®7Gp,
where a>Oandd=[K:Q ].
(ii) If K has characteristic p, then one has (both algebraically and
topologically)

K* = Z Z/(q - 1)76 ®Z .

Proof: By (5.3) we have (both algebraically and topologically)

K* = (7C) X /tq-1 x 0) = Z E D - 1)Z ®01)
This reduces us to the computation of the Zp-module U(1).

(i) Assume char(K) = 0. For n sufficiently big, (5.5) gives us the
isomorphism

log:U(°)-, pn=7rno - o.
Since log, exp, and f (z) = (1 + x)Z are continuous, this is a topological
isomorphism of Zp-modules. By chap.I, (2.9), o admits an integral basis
al, ..., ad over 7Gp, i.e., o = Zpa1 ® ... ®7Gpad = Z d. Therefore

U(n) = Z d. Since the index (Utl) : U(n)) is finite and U01) is a finitely
generated Zp-module of rank d, so is UM. The torsion subgroup of U° is
the group µpa of roots of unity in K of p-power order. By the main theorem
on modules over principal ideal domains, there exists in U(1) a free, finitely
generated, and therefore closed, Zp-submodule V of rank d such that

UM _ I.Lpa X V = Z/p°7G ®Zd

both algebraically and topologically.

(ii) If char(K) = p, we have K = Fq((t)) (see p. 127) and

U(I) = 1 +P = l + t ]F'q[[t]]

The following argument is taken from the book [79] of K. IWASAWA.

Let a)1, ..., cv f be a basis of IFq I ]Fp. For every natural number n relatively
prime to p we consider the continuous homomorphism

f
gn

Zp U(n), gn(al, ..., af) _ fl(1+witn)°`.
i=1
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This function has the following properties. If m = nps, s > 0, then

(1) U(m) = gn(PsZf)U(m+1)

and, for a = (a1, ... , af) E 7Gp ,

(2) a 0 PZP gn(Psa) U(m+1)

Indeed, for co = F 1 biro; E lFq, bi E Z, bi = ai mod p, we have
f

gn(a) m (1 I witn)b1 m 1 1 wtn mod pn+1
i=1

and hence, since we are in characteristic p,
gn(Psa) = g(a)ps = 1 + COP" t" mod p'+1

As a varies over the elements of Z , w, and thus also wps , varies over the ele-
ments of F., and we get (1). Furthermore one has g (psa) = 1 mod pm+1
w = 0 bi =_0 mod p, for i = 1, ... , f ai =_0 mod p, for
i = 1, ... , f a E p7Lp , and this amounts to (2).

We now consider the continuous homomorphism of ZP -modules

g=flgn:A=fZp-_U(1),
(n, p)=1 (n, p)=1

where the product fT(n p)=1 Z is taken over all n > 1 such that (n, p) = 1,
each factor being a copy of Z P. Observe that the product g fl gn (an )
converges because gn(an) E U(n). Let m = nps, with (n, p) = 1, be any
natural number. As c g(A), it follows from (1) that each coset
of U(m)/U(n,+1) is represented by an element of g(A). This means that g(A)
is dense in U(1). Since A is compact and g is continuous, g is actually
surjective.

On the other hand, let ; _ (... , a,, ...) E A, 0, i.e., an 0 for
some n. Such an a, is of the form an = ps/3n with s = 0, and
n E Zp -, p7Gp . It now follows from (2) that

g,,(an) E U(m), gn(an) 0 U(m+1) for m =m(an) =nps.
Since the n are prime to p, all the m(an) have to be distinct, for all an 0 0.
Let n be the natural number, prime to p and such that an 0, which
satisfies m(an) < m(an,), for all n' # n such that an, 0. Then one has, for
all n' n, that

gn'(an') E U(m+1) where in = m(an) < m(an,).
Consequently (m+1)g()=g(an) 1mod U
and so 1. This shows the injectivity of g. Since A = Z N, this proves
the claim (ii).
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(5.8) Corollary. If the natural number n is not divisible by the characteristic
of K, then one finds the following indices for the subgroups of n-th
powers K*" and U" in the multiplicative group K* and in the unit group U:

(K* : K*") = n(U : U") = Inly#µ,:(K).

Proof: The first equality is a consequence of K* = (ir) x U. By (5.7), we
have

U = µ(K) x Zd , resp. U = µ(K) x 7LP
when char (K) = 0, resp. p > 0. From the exact sequence

1 ) l-tn(K) , g(K) n A(K) .
A(K)lg(K)' 1,

one has #.t(K)/µ(K)". When char(K) = 0, this gives:
(U : U1) = #IL (K)#(Zp/n7ZP)d = #A,(K)pduP(n) = #,u,(K)/I n I p,

and when char(K) = p one gets simply (U : U") = #µ (K) = #A, (K) / In I
because (n, p) = 1, i.e., n7LP = 7LP.

Exercise 1. The logarithm function can be continued to a continuous homomorphism
log and the exponential function to a, continuous homomorphism
exp : p r - where P r = (x e Q I vP(x) >

P
} and v,, is the uniqueP' I

extension of the normalized valuation on Q p.

Exercise 2. Let KIQ be a p-adic number field. For 1 +x e U(1) and Z E 7Z one
has

co

u=0

The series converges even for x E K such that vp(x) > eP-
Exercise 3. Under the above hypotheses one has

(1 + x)Z = exp(zlog(1 + x)) and log(l + x)= = z log(1+x).
Exercise 4. For a p-adic number field K, every subgroup of finite index in K* is
both open and closed.
Exercise 5. If K is a p-adic number field, then the groups K*", for n E N, form a
basis of neighbourhoods of 1 in K*.
Exercise 6. Let K be a p-adic number field, vp the normalized exponential valuation
of K, and dx the Haar measure on the locally compact additive group K, scaled so
that f o dx = 1. Then one has u (a) = fac dx. Furthermore,

Ixipd
is a Haar measure on the locally compact group K*.
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§ 6. Henselian Fields

Most results on complete valued fields can be derived from Hensel's
lemma alone, without the full strength of completeness. This lemma is valid
in a much bigger class of nonarchimedean valued fields than the complete
ones. For example, let (K, v) be a nonarchimedean valued field and (K, 0 )
its completion. Let o, resp. o, be the valuation rings of K, resp. K. We then
consider the separable closure K of K in K, and the valuation ring o, C K,
with maximal ideal p,,, which is associated to the restriction of v to K,,,

KcKUcK,
Then Hensel's lemma holds in the ring o as well as in the ring n even
though K will not, as a rule, be complete. When K is algebraically closed
in K - hence in particular char(K) = 0 - this is immediately obvious
(otherwise it follows from (6.6) and § 6, exercise 3 below). Indeed, by (4.3)
we have

o/p = oa/pv =,66,
and if a primitive polynomial f (x) E splits over into
relatively prime factors g (x), h (x), then we have by Hensel's lemma (4.6) a
factorization in o

f (x) = g(x)h(x)

such that g mod p, h mod li, deg(g) = deg(g). But this factorization
already takes place over o once the highest coefficient of g is chosen to be
in ov, because the coefficients of f, and therefore also those of g and h are
algebraic over K.

The valued field K is called the henselization of the field K with respect
to v. It enjoys all the relevant algebraic properties of the completion K, but
offers the advantage of being itself an algebraic extension of K which can
also be obtained in a purely algebraic manner, without the analytic recourse
to the completion (see § 9, exercise 4). The consequence is that taking the
henselization of an infinite algebraic extension L I K is possible within the
category of algebraic extensions. Let us define in general:

(6.1) Definition. A henselian field is a field with a nonarchimedean
valuation v whose valuation ring o satisfies Hensel's lemma in the sense
of (4.6). One also calls the valuation v or the valuation ring o henselian.
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(6.2) Theorem. Let K be a henselian field with respect to the valua-
tion 1 1. Then I I admits one and only one extension to any given algebraic
extension L I K. It is given by

IaI = NLIK(a)1,

if L I K has finite degree n. In any case, the valuation ring of the extended
valuation is the integral closure of the valuation ring of K in L.

The proof of this theorem is verbatim the same as in the case of a
complete field (see (4.8)). What is remarkable about our current setting is
that, conversely, the unique extendability also characterizes henselian fields.
In order to prove this, we appeal to a method which allows us to express
the valuations of the roots of a polynomial in terms of the valuations of
the coefficients. It relies on the notion of Newton polygon, which arises as
follows.

Let v be an arbitrary exponential valuation of the field K and let

f (x) E K[x]

be a polynomial satisfying aoa ; 0. To each term aix' we associate a point
(i, v (a;)) E R2 , ignoring however the point (i, oo) if a1 = 0. We now take
the lower convex envelope of the set of points

{ (0, v(ao)), (1, v(a1)), ... , (n, v(an))} .

This produces a polygonal chain which is called the Newton polygon of
f W.

(i, v(ai))

The polygon consists of a sequence of line segments S1, S2, ... whose
slopes are strictly increasing, and which are subject to the following
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(6.3) Proposition. Let f (x) = ap + a1x + + anxn, aoa, ; 0, be a
polynomial over the held K, v an exponential valuation of K, and w an
extension to the splitting field L off .

If (r, v(a,.)) H (s, v(as)) is a line segment of slope -m occurring in the
Newton polygon of f, then f (x) has precisely s - r roots al, ..., ar-,. of
value

w(a1)=...=1v(as-T)=m.

Proof: Dividing by an only shifts the polygon up or down. Thus we may
assume that an = 1. We number the roots al, ..., an E L of f in such a
way that

w(a1) =... = w(asi) = ml,
w(asl+1) = ... = w(as2) = m2,

w(as,+i) = ... = w(an) = mt+1,
where m 1 < m2 < ... < mr+1. Viewing the coefficients a; as elementary
symmetric functions of the roots aj, we immediately find

v(an) = v(1) = 0,

v(an-1) > min{ w(a1)} = MI,

v(an-2) > min{w(a;aj)} = 2m1,
t,j.

v(an-,s1) = min { w(ail ... a,sl )} = slm1,

the latter because the value of the term al ... a,, is smaller than that of all
the others,

v(an-s,-i) > min {w(aj1 ...a;slt1)} = slm1 +m2,
I,,..., ill +I

v(an-sl-2) ? . min {w(a11 ...a;s1+2)} = s1m1 +2m2,

v(an-,,) = min { w(ail ... ai,2)} = s1m1 + (s2 - s1)m2,

and so on. From this result one concludes that the vertices of the Newton
polygon, from right to left, are given by

(n, 0), (n - s1, sim1), (n - s2, s1m1 + (s2 - s1)m2), .. .
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The slope of the extreme right-hand line segment is
0-stmt

n - (n - st) -MI,

and, proceeding further to the left,
(stmt +. + (sj - sj-i)mj) - (simi + ... + (sj+l - sj)mj+t)

(n - sj) - (n - sj+1) -m j+l

We emphasize that, according to the preceding proposition, the Newton
polygon consists of precisely one segment if and only if the roots a1, ... , a
off all have the same value. In general, f (x) factors into a product according
to the slopes -mr < < -ml,

r
f (x) =

a,,
-71 1 fj (x)

j=1
where

fj(x)= 11 (x-ai).
w(a; )=mj

Here the factor fj corresponds to the (r - j + 1)-th segment of the Newton
polygon, whose slope equals minus the value of the roots of fj.

(6.4) Proposition. If the valuation v admits a unique extension w to the
splitting field L off , then the factorization

f (x) = a 1 1 fl (x)
j=1

is defined already over K, i.e., fj (x) = (x - ai) E K[x].

Proof : We may clearly assume that a = 1. The statement is obvious when
f (x) is irreducible because then one has ai = Qia1 for some Qi E G(LIK),
and since, for any extension w of v, w o of is another one, the uniqueness
implies that w (ai) = w (oi a I) = m 1, hence f j (x) = f (x).

The general case follows by induction on n. For n = 1 there is nothing to
show. Let p(x) be the minimal polynomial of a1 and g(x) = f (x)/p(x) E
K [x]. Since all roots of P (x) have the same value ml, p (x) is a divisor
of fi(x). Let gi(x) = fi(x)/p(x). The factorization of g(x) according to
the slopes is

,'

g(x) = gt(x) fl fj(x)
j=2

Since deg(g) < deg(f ), it follows that f j (x) E K [x] for all j = 1, ... , r.
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If the polynomial f is irreducible, then, by the above factorization result,
there is only one slope, i.e., the Newton polygon consists of a single segment.
The values of all coefficients lie on or above this line segment and we get the

(6.5) Corollary. Let f (x) = ao+arx+- - E K[x] be an irreducible
polynomial with a,, 0. Then, if I I is a nonarchimedean valuation of K
with a unique extension to the splitting field, one has

Ifl=max{loot,Ia"I}.

In (4.7) we deduced this result for complete fields from Hensel's lemma
and thus obtained the uniqueness of the extended valuation. Here we obtain
it, by contrast, as a consequence of the uniqueness of the extended valuation.
We now proceed to deduce Hensel's lemma from the unique extendability.

(6.6) Theorem. A nonarchimedean valued field (K, I I) is henselian if and
only if the valuation I I can be uniquely extended to any algebraic extension.

Proof: The fact that a henselian valuation I I extends uniquely was dealt
with in (6.2). Let us assume conversely that I I admits one and only one
extension to any given algebraic extension. We first show:

Let f (x) = ao + alx + + a primitive, irreducible
polynomial such that aoa" 0 0, and let j (x) = f (x) mod p E ic[x]. Then
we have deg(f) = 0 or deg(f) = deg(f), and we find

for some irreducible polynomial ip(x) E K[x] and a constant a.

As f is irreducible, the Newton polygon is a single line segment and thus
if I = max{ Iao i, Ian I }. We may assume that a" is a unit, because otherwise
the Newton polygon is a segment which does not lie on the x-axis and this
means that f (x) = ao.

Let L I K be the splitting field of f (x) over K and 0 the valuation ring
of the unique extension I I to L, with maximal ideal T. For an arbitrary
K-automorphism a E G = G (L I K), we have I va I= Ia I for all a E L,
because I I and the composite I I o or extend the same valuation. This shows
that o0 = 0, o, q3 = T. If a is a zero of f (x) and it its multiplicity, then
as E O for all cr E G. Indeed, if a ' 0, then Hv Il' = I Fo o a I " > 1
would imply that the constant coefficient ao could not belong to o. Thus
every a E G induces a rc -automorphism 5 of Q/43, and the zeroes a`a = Q a
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of f (x) are all conjugate over K. It follows that f (x) = dip(x)m, if irp(x) is
the minimal polynomial of a over K. Since a E o*, we have furthermore
that deg(f) = deg(f).

Let now f (x) E o[x] be an arbitrary primitive polynomial, and let

f (x) = fi (x) ... fr (x)
be its factorization into irreducibles over K. Since 1 = If I = r[ I fi 1,
multiplying the f1 by suitable constants yields I fi I = 1. The f1 (x) are
therefore primitive, irreducible polynomials in o[x]. It follows that

f(x) = f1(x)...fr(x),

where deg(f 1) = 0 or deg(f 1) = deg(f1), and f i is, up to a constant factor,
the power of an irreducible polynomial. If f = g h is a factorization into
relatively prime polynomials g,h E K[x], then we must have

g=aflfi, h=bflfj
iEI JEJ

wherea,b EKand(1,...,r)=I UJanddeg(f1)=deg(fi)fori E1.
We now put

g=aflfi, h=bfl fj,
iEI

for a, b E o* such that a - a, b mod p and f = gh.

We have introduced henselian fields by a condition of which the reader
will find weaker versions in the literature, restricted to manic polynomials
only. Both are equivalent as is shown by the following

(6.7) Proposition. A nonarchimedean field (K, v) is henselian if any monic
polynomial f (x) E o[x] which splits over the residue class field K = o/p as

f (x) - g(x)h(x) mod p

with relatively prime monic factors g (X), h (x) E K [x], admits itself a splitting

f(x) = g(x)h(x)

into monic factors g(x), h(x) E a[x] such that

g(x) - g(x) mod p and h(x) - h(x) mod p.



§ 6. Henselian Fields 149

Proof (E. NART): We have just seen that the property of K to be henselian
follows from the condition that the Newton polygon of every irreducible
polynomial f (x) = ao + aix + + a"x" E K[x] is a single line segment.
It is therefore sufficient to show this. We may assume that a" = 1. Let L I K
be the splitting field of f. Then there is always an extension w of v to L.
It is obtained for example by taking the completion k of K, extending the
valuation of K in a unique way to a valuation v of the algebraic closure K
of k, embedding L into k, and restricting v to L. It is also possible to get
the extension w directly, without passing through the completion. For this
we refer to [93], chap. XII, § 4, th. 1.

Assume now that the Newton polygon of f consists of more than one
segment:

m
e

Let the last segment be given by the points (m, e) and (n, 0). If e = 0, we
immediately have a contradiction. Because then we have v (a;) > 0, so that
f (x) E o[x], and ao - - am_t = 0 mod p, a", # 0 mod p. Therefore
f (x) _ (X"-' + + a",)X' mod p, with m > 0 because there is more
than one segment. In view of the condition of the proposition this contradicts
the irreducibility of f.

We will now reduce to e = 0 by a transformation. Let a E L be a root
of f (x) of minimum value w(a) and let a E K such that v(a) = e. We
consider the characteristic polynomial g(x) of a-la' E K(a), r = n - m.
If f (x) = ft I(x - a-), then g(x) = fn I(x - aD2a-1). Proposition (6.3)
shows that the Newton polygon of g(x) also has more than one segment, the
last one of slope

-w(a-1ar) = v(a) - rw(a) = e - re = 0.
Since g(x) is a power of the minimal polynomial of a-la', hence of an
irreducible polynomial, this produces the same contradiction as before.

Let K be a field which is henselian with respect to the exponential
valuation v. If L IK is a finite extension of degree n, then v extends uniquely
to an exponential valuation w of L, namely

w(a) = n v(NLJK(a)) .
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This follows from (6.2) by taking the logarithm. For the value groups and
residue class fields of v and w, one gets the inclusions

v(K*) C w(L*) and K C X.

The index
e = e(w I v) _ (w(L*) : v(K*))

is called the ramification index of the extension L I K and the degree

f=f(wlv)=[;.:x]
is called the inertia degree. If v, and hence w = nv o NLIK, is discrete
and if o, p, 'r, resp. 0, q3, Fl, are the valuation ring, the maximal ideal and a
prime element of K, resp. L, then one has

e = (w(II)Z : v(7r)Z)

so that v(7r) = ew(l1), and we find

n = slle,
for some unit s E 0*. From this one deduces the familiar (see chap. I)
interpretation of the ramification index: p 0 = it 0 = RIO = c3e, or

p = 43e

(6.8) Proposition. One has [L : K] > of and the fundamental identity

[L:K]=ef,
if v is discrete and L I K is separable.

Proof : Let cot, ..., w f be representatives of a basis of I K and let
7ro, ..., zre-1 E L* be elements the values of which represent the various
cosets in w(L*)/v(K*) (the finiteness of e will be a consequence of what
follows). If v is discrete, we may choose for instance 3r; = II' . We show that
the elements

Wjn'i, I=l,.. ,f, i=0,.. ,e-l,
are linearly independent over K, and in the discrete case form even a basis
of LIK. Let

e-1 f

F E aijWjri = 0
i=Oj=1

with ai j E K. Assume that not all ai j = 0. Then there exist nonzero sums
si = rj laijwj, and each time that si 0 we find w(si) E v(K*). In
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fact, dividing si by the coefficient ai of minimum value, we get a linear
combination of the wi, ... , cwf with coefficients in the valuation ring o c K
one of which equals 1. This linear combination is # 0 mod 93, hence a unit,
so that w(si) = E v(K*).

In the sum si7ri, two nonzero summands must have the same value,
say w (si 7ri) = w (sgrj) , i 0 j, because otherwise it could not be zero
(observe that w(x) w(y) = w(x+y) = min(w(x), w(y)}). It follows that

w(7ri) = w(7r,) + w(sj) - w(si) = w(7rj) mod v(K*),
a contradiction. This shows the linear independence of the wJ 7ri. In particular,
we have of < [L : K].

Assume now that v, and thus also w, is discrete and let II be a prime
element in the valuation ring 0 of w. We consider the o-module

e-1 f
M = Y > ocoj7ri

i=o,j=1

where ni = rJi and show that M = 0, i.e., [w.j7ri } is even an integral basis
of 0 over o. We put f

N=Locvj,
j=1

so that We find that
O=N+rlo,

because, for a E O, we have a = a, wl + + a f wf mod 110, ai E o. This
implies

0 = M + ]3e = M + pO. Since L I K is separable, 0 is a finitely
generated o-module (see chap. I, (2.11)), and we conclude 0 = M from
Nakayama's lemma (chap. I, § 11, exercise 7).

Remark: We had already proved the identity [L : K] = of in a somewhat
different way in chap. I, (8.2), also in the case where v was discrete and
L I K separable. Both hypotheses are actually needed. But, strangely enough,
the separability condition can be dropped once K is complete with respect
to the discrete valuation. In this case, one deduces the equality 0 = M in
the above proof from 0 = M + pO, not by means of Nakayama's lemma,
but rather like this: as pi M C M, we get successively

0=M+p(M+pO)=M+p2O=...=M+pvO
for all v > 1, and since is a basis of neighbourhoods of zero in 0,
M is dense in 0. Since o is closed in K, (4.9) implies that M is closed in 0,
so that M=0.
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Exercise 1. In a henselian field the zeroes of a polynomial are continuous functions
of its coefficients. More precisely, one has: let f (x) E K[.x] be a monic polynomial
of degree n and

f (x) _ fl (x - a; )
its decomposition into linear factors, with m; > 1, a; ¢ aj for i j. If the monic
polynomial g(x) of degree n has all coefficients sufficiently close to those of f (x),
then it has r roots P1, ... , $,. which approximate the ata t , ar to any previously
given precision.

Exercise 2 (Krasner's Lemma). Let a E K be separable over K and let a =
a1, ... , a,, be its conjugates over K. If f E K is such that

la-fl <la-a/1 for i=2,...,n,
then one has K(a) S-= K
Exercise 3. A field which is henselian with respect to two inequivalent valuations is
separably closed (Theorem of F.K. SCHMIDT).

Exercise 4. A separably closed field K is henselian with respect to any
nonarchimedean valuation.

More generally, every valuation of K admits a unique extension to any purely
inseparable extension L I K.

Hint: If aP = a E K, one is forced to put w(a) =
P

v(a).

Exercise S. Let K be a nonarchimedean valued field, o the valuation ring,
and p the maximal ideal. K is henselian if and only if every polynomial
f (x) = x" + a,_1x"-' + + ao E o[x] such that ao E p and a, p has a
zero a E P.
Hint: The Newton polygon.
Remark: A local ring o with maximal ideal p is called henselian if Hensel's lemma
in the sense of (6.7) holds for it. A characterization of these rings which is important
in algebraic geometry is the following:

A local ring o is henselian if and only if every finite commutative o-algebra A
splits into a direct product A = r[;=t A; of local rings A;.

The proof is not straightforward, we refer to [103], chap. I, §4, th. 4.2.

§ 7. Unramified and Tamely Ramified Extensions

In this section we fix a base field K which is henselian with respect to
a nonarchimedean valuation v or 1 1. As before, we denote the valuation
ring, the maximal ideal and the residue class field by n, p, x, respectively.
If L I K is an algebraic extension, then the corresponding invariants are
labelled w, 0, 3, A, respectively. An especially important role among these
extensions is played by the unramified extensions, which are defined as
follows.
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(7.1) Definition. A finite extension LIK is called unramified if the
extension a.IK of the residue class field is separable and one has

[L:K]=[A:K].
An arbitrary algebraic extension L I K is called unramified if it is a union of
finite unramified subextensions.

Remark: This definition does not require K to be henselian; it applies in
all cases where v extends uniquely to L.

(7.2) Proposition. Let L I K and K' J K be two extensions inside an algebraic
closure K IK and let L' = LK'. Then one has

L I K unramified = L' I K' unramified.

Each subextension of an unramified extension is unramified.

Proof : The notations o, p, x ; o', p', K; 0, T, A ; 0', q3', A' are self-
explanatory. We may assume that LIK is finite. Then AJK is also finite
and, being separable, is therefore generated by a primitive element a,
A = K(a). Let a E 0 be a lifting, f (x) E o[x] the minimal polynomial of a
and f (x) = f (x) mod p E K[x]. Since

[X:K]:5 deg(.f)=deg(f)=[K(a):K]<[L:K]K],
one has L = K(a) and I (x) is the minimal polynomial of over K.

We thus have L' = K'(a). In order to prove that L'IK' is unramified,
let g(x) e o'[x] be the minimal polynomial of a over K' and g(x) =
g(x) mod p' E K'[x]. Being a factor of f(x), g(x) is separable and hence
irreducible over K', because otherwise g(x) is reducible by Hensel's lemma.
We obtain

[A' : K'] < [L' : K'] = deg(g) = deg(g) = [K'(a) : K'] < [A' : K'].

This implies [L' : K'] = : K'], i.e., L'IK' is unramified.
If L I K is a subextension of the unramified extension L' I K, then it follows

from what we have just proved that L'IL is unramified. Hence so is L I K, by
the formula for the degree.

(7.3) Corollary. The composite of two unramified extensions of K is again
unramified.
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Proof: It suffices to show this for two finite extensions LIK and L' I K .
L I K is unramified, hence so is L L' I L', by (7.2). This implies that L L' I K is
unramified as well because separability is transitive and the degrees of field
(and residue field) extensions are multiplicative.

(7.4) Definition. Let L K be an algebraic extension. Then the composite
T )K of all unramified subextensions is called the maximal unramified
subextension of L I K.

(7.5) Proposition. The residue class field of T is the separable closure )
of K in the residue class field extension a,IK of LIK, whereas the value
group of T equals that of K.

Proof: Let Ao be the residue class field of T and assume a` E X is
separable over K. We have to show that a E Let I (X) E K[x] be the
minimal polynomial of a and f (x) E o[x] a monic polynomial such that
f = f mod p. Then f (x) is irreducible and by Hensel's lemma has a root a
in L such that i = a mod 93, i.e., [K(a) : K] = [K(a) : K]. This implies
that K (a) I K is unramified, so that K (a) C T, and thus a E Ao.

In order to prove w(T*) = v(K*) we may suppose LIK to be finite. The
claim then follows from

[T : K] ? (w(T*) : v(K*)) [).o : K] = (w(T*) : v(K*)) [T : K].

The composite of all unramified extensions inside the algebraic closure K
of K is simply called the maximal unramified extension K,,,IK of K
(nr = `non ramifiee'). Its residue class field is the separable closure KS IK.
K,,,- contains all roots of unity of order m not divisible by the characteristic
of K because the separable polynomial x°' - 1 splits over a,. and hence also
over K,,,., by Hensel's lemma. If K is a finite field, then the extension K,,, K
is even generated by these roots of unity because they generate a,IK.

If the characteristic p = char(K) of the residue class field is positive, then
one has the following weaker notion accompanying that of an unramified
extension.

(7.6) Definition. An algebraic extension L I K is called tamely ramified
if the extension AIK of the residue class fields is separable and one has
([L : TI, p) = 1. In the infinite case this latter condition is taken to mean
that the degree of each finite subextension of L IT is prime to p.
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As before, in this definition K need not be henselian. We apply it whenever
the valuation v of K has a unique extension to L. When the fundamental
identity e f = [L : K] holds and XIK is separable, to say that the extension
is unramified, resp. tamely ramified, simply amounts to saying that e = 1,
resp. (e, p) = 1.

(7.7) Proposition. A finite extension L I K is tamely ramified if and only if
the extension L IT is generated by radicals

L=T(m'a1, nsra,
such that (mi, p) = 1. In this case the fundamental identity always holds:

[L:K]=ef.

Proof: We may assume that K = T because L I K is obviously tamely
ramified if and only if L IT is tamely ramified, and if this is the case, then
[T : K] _ [X : K] = f. Let LIK be tamely ramified, so that K = ,l and
([L : K], p) = 1. We first show that e = 1 implies L = K. Let a E L N K.
Writing a = a1, ..., a,n for the conjugates and a = Tr(a) _ Fi_1 ai,
the element = a - -1-" a E LNK has trace Tr(,B) Pi = 0. Since
v(K*) = w(L*), we may choose a b E K* such that v(b) = w(p) and obtain
a unit s = p8/b E LNK with trace F" 1 si = 0. But the conjugates si have
the same residue classes si in k, because A = is. Hence 0 = -i=1 Ei = ms,
and thus m - 0 mod p, which contradicts p t [L : K] and m I [L : K].

Now let cot, ..., co, E w(L*) be a system of representatives for the
quotient w(L*)/v(K*) and mi the order of cwt mod v(K*). Since
w(L*) = n v(NLJK(L*)) C n v(K*), where n = [L : K], we have miIn, so
that (mi, p) = 1. Let yi E L* be an element such that w(yi) = wi. Then
W(yim') = v(ci), with ci E K, so that yinT' = cisi for some unit si in L.
As ), = x we may write si = b i ui , where bi e K and ui is a unit in L
which tends to 1 in A. By Hensel's lemma the equation xmi - ui = 0 has a
solution Lei E L. Putting ai = yi pi 1 E L, we find w (ai) = cot and

m;ai =ai, r,
where ai = cibi e K, i.e., we have K(m1 a1, ... , "Va,) C L. By
construction, both fields have the same value group and the same residue
class field. So, by what we proved first, we have

L=K(" a1,.. , m'a,) .

The inequality [L : K] < e and thus, in view of (6.8), the equality
[L : K] = e, now follows by induction on r. If L I = K(" `' al , then
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cot E w(L*) yields

e(L1IK) = (w(L*) : v(K*)) > ml > [L1 : K].

Also e(LIL1) > [L : L1], because w(L*)/w(L1) is generated by the residue
classes of &)2, ... , cv,.. Thus

e =e(LIL1)e(L1IK) > [L : L1][L1 : K] = [L : K].
In order to prove that an extension L = K (' a t , ..., fl/21) is tamely
ramified, it suffices to look at the case r = 1, i.e., L = K(/),
where (m, p) = 1. The general case then follows by induction. We may
assume without loss of generality that K is separably closed. This is seen
by passing to the maximal unramified extension K1 = K,,,. , which has the
separable closure Ki = iZ of x as its residue class field. We obtain the
following diagram

where L fl Kt = T = K and L 1 = K1(, ). If now L 1 I K1 is tamely
ramified, then A1Irc1 is separable; hence Al = Kl and p { [L1 : K1] _
[L : K] = [L : T ], i.e., L I K is also tamely ramified.

Let a Za-. We may assume that [L : K] = [K(°) : K] = m.
In fact, if d is the greatest divisor of m such that a = a'd for some
a' E K*, and if m'=m/d, then a=°: a'and[K("` K]=m'.Now
let n = ord(w(a) mod v(K*)). Since mw(a) = v(a) E v(K*), we have
m = dn. Consequently w(a") = v(b), b E K*, and v(bd) = w(am) = v(a);
thus all = a = Ebd for some unit s in K. As (d, p) = 1, the equation
xd - s = 0 splits over the separably closed residue field x into distinct linear
factors, hence also over K by Hensel's lemma. Therefore aD1 = bd = a
for some new b E K*. Since xm - a is irreducible, we have d = 1, and
hence m = n. Thus e>n=[L:K]>ef >e,
in other words f = 1, and so A = K and p t n = e. This shows that L I K is
tamely ramified.

(7.8) Corollary. Let L I K and K' j K be two extensions inside the algebraic
closure K I K, and L' = LK'. Then we have:

L I K tamely ramified ; L' I K' tamely ramified.

Every subextension of a tamely ramified extension is tamely ramified.
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Proof: We may assume without loss of generality that LIK is finite and
consider the diagram

L L'

I I

T T'

I I

K K'.

The inclusion T C T' follows from (7.2). If LIK is tamely ramified,
then L = T (°''

al_..

(m; , p) = 1; hence L' = LK' = LT' _
T'(`'1-5-, , ... , DVa,. ), so that L'IK' is also tamely ramified, by (7.7).

The claim concerning the subextensions follows exactly as in the
unramified case.

(7.9) Corollary. The composite of tamely ramified extensions is tamely
ramified.

Proof: This follows from (7.8), exactly as (7.3) followed from (7.2) in the
unramified case.

(7.10) Definition. Let L I K be an algebraic extension. Then the compos-
ite V I K of all tamely ramified subextensions is called the maximal tamely
ramified subextension of L I K.

Let w(L*)(P) denote the subgroup of all elements co E w(L*) such
that mco E v(K*) for some m satisfying (m, p) = 1. The quotient group
w(L*)(p)/v(K*) then consists of all elements of w(L*)/v(K*) whose order
is prime to p.

(7.11) Proposition. The maximal tamely ramified subextension VI K of
LIK has value group w(V*) = w(L*)(P) and residue class field equal to the
separable closure As of K in ),IK.

Proof: We may restrict to the case of a finite extension LIK. By
passing from K to the maximal unramified subextension, we may assume
by (7.5) that k = K. As p {' e(V I K) = #w(V*)/v(K*), we certainly
have w(V*) c w(L*)(P). Conversely we find, as in the proof of (7.7), for
every w E w(L*)(P) a radical a = E L such that a E K, (m, p) = I and
w(a)=co,so that one has a E V,and wE w(V*).
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The results obtained in this section may be summarized in the following
picture:

K C T C V C L

A3 C A

v(K*) = w(T*) c w(L*)(P) c w(L*).

If L I K is finite and e = e' p° where (e', p) = 1, then [V : T ] = e'. The
extension L I K is called totally (or purely) ramified if T = K, and wildly
ramified if it is not tamely ramified, i.e., if V 0 L.

Important Example: Consider the extension Q for a primitive
n-th root of unity . In the two cases (n, p) = 1 and n = p', this extension
behaves completely differently. Let us first look at the case (n, p) = 1 and
choose as our base field, instead of Q., any discretely valued complete field
K with finite residue class field K =1Fq, with q = p'.

(7.12) Proposition. Let L = and let OIo, resp. ASK, be the extension
of valuation rings, resp. residue class fields, of L I K. Suppose that (n, p) = 1.
Then one has:
(i) The extension L I K is unramified of degree f, where f is the smallest
natural number such that of - 1 mod n.
(ii) The Galois group G(L I K) is canonically isomorphic to G(AWK) and is
generated by the automorphism q : H q.
(iii) O = a[0

Proof: (i) If 4,(X) is the minimal polynomial of over K, then the
reduction 4, (X) is the minimal polynomial of = mod 3 over K.
Indeed, being a divisor of X" - 1, 4, (X) is separable and by Hensel's
lemma cannot split into factors. 4, and 4, have the same degree, so that
[L : K] = [K() : K] = [A : K] f. LIK is therefore unramified. The
polynomial X" - 1 splits over 0 and thus (because (n, p) = 1) over A into
distinct linear factors, so that A = lFq f contains the group g" of n-th roots
of unity and is generated by it. Consequently f is the smallest number such
that µ" c lF* f , i.e., such that n I q f - 1. This shows (i). (ii) results trivially
from this.
(iii) Since L I K is unramified, we have pO and since 1, , ... , f
represents a basis of AlK, we have 0 = pO, and 0 = o[ff] by
Nakayama's lemma.
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(7.13) Proposition. Let be a primitive p"' -th root of unity. Then one has:
(i) is totally ramified of degree co(p":) = (p - 1) p'
(ii) (Z/p`Z)*.
(iii) is the valuation ring ofQp
(iv) 1 - is a prime element of Zp[f ] with norm p.

Proof: = pn ' is a- primitive p-th root of unity, i.e.,
p-' + p-2 + ... + 1 = 0, hence

(p-t )p`-' + (p-2) pm-' + + 1 = 0.
Denoting by 0 the polynomial on the left, - 1 is a root of the equation
¢ (X -I-1) = 0. But this is irreducible because it satisfies Eisenstein's criterion:
0(1) = p and O(X) = (XP' - 1)/(Xp"'-' - 1) _ (X - 1)P'-'(p-J) mod p.
It follows that [Q Qp] _ V(p'). The canonical

(7L/pm7G)*, Q H n(v), where ac is therefore bijective, since
both groups have order gp(pm). Thus

NQp(C)IQ (1 - fl(1 - Qc) _ (1) = p.
Writing w for the extension of the normalized valuation vp of Qp, we find
furthermore that rp(pm)w(c - 1) = vp(p) = 1, i.e., Qp(c)IQp is totally
ramified and - 1 is a prime element of Qp(c). As in the proof of (6.8),
it follows that Zp[c - 1] = 7Gp[c] is the valuation ring of Qp(c). This
concludes the proof. 0

If n is a primitive n-th root of unity and n = npm, with (n', p) = 1,
then propositions (7.12) and (7.13) yield the following result for the maximal
unramified and the maximal tamely ramified extension:

Qp c T = Qp(cn') c V = T(cp) C Q().

Exercise 1. The maximal unramified extension of Qp is obtained by adjoining all
roots of unity of order prime to p.
Exercise 2. Let K be henselian and K,,, I K the maximal unramified extension.
Show that the subextensions of K,, I K correspond 1-1 to the subextensions of the
separable closure KSIK.

Exercise 3. Let L I K be totally and tamely ramified, and let A, resp, 1', be the value
group of L, resp. K. Show that the intermediate fields of LIK correspond 1-1 to
the subgroups of 6 /1'.
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§ 8. Extensions of Valuations

Having seen that the henselian valuations extend uniquely to algebraic
extensions we will now study the question of how a valuation v of a
field K extends to an algebraic extension in general. So let v be an arbitrary
archimedean or nonarchimedean valuation. There is a little discrepancy in
notation here, because archimedean valuations manifest themselves only as
absolute values while the letter v has hitherto been used for nonarchimedean
exponential valuations. In spite of this, it will prove advantageous, and agrees
with current usage, to employ the letter v simultaneously for both types of
valuations, to denote the corresponding multiplicative valuation in both cases
by 1 ( and the completion by K,,. Where confusion lurks, we will supply
clarifying remarks.

For every valuation v of K we consider the completion K and an
algebraic closure k, of K. The canonical extension of v to K is again
denoted by v and the unique extension of this latter valuation to k, by U.

Let L ( K be an algebraic extension. Choosing a K -embedding

r.L -) K,,,
we obtain by restriction of v to rL an extension

w=llor
of the valuation v to L. In other words, if v, resp. U, are given by the absolute
values 1 1,,, resp. I Iv, on K, K, resp. K,,, where I Iv extends precisely the
absolute value 1 1U of K,,, then we obtain on L the multiplicative valuation

IxI. = Irxli
The mapping r : L K is obviously continuous with respect to this
valuation. It extends in a unique way to a continuous K-embedding

r:L,,,-) K,
where, in the case of an infinite extension L I K, L,, does not mean the
completion of L with respect to w, but the union L. = Ui Liw of the
completions Li,,, of all finite subextensions Li 1 K of LIK. This union
will be henceforth called the localization of L with respect to w. When
[L : K] < oo, r is given by the rule

x = w -lim xn H rX := v -lim rxn,
n-->oo n- 00
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where is a w-Cauchy sequence in L, and hence a v-Cauchy
sequence in k, Note here that the sequence rx converges in the finite
complete extension rL K of K,,. We consider the diagram of fields

L Lw

(*)

K
Kv

The canonical extension of the valuation w from L to L,,, is precisely the
unique extension of the valuation v from K to the extension L ,,, I K,,. We
have

Lw = LKv ,

because if L I K is finite, then the field LK C L,,, is complete by (4.8),
contains the field L and therefore has to be its completion. If L,,, IK has
degree n < oo, then, by (4.8), the absolute values corresponding to v and w
satisfy the relation

1X'Iw =
n

I NLwIKv(x)I

The field diagram (*) is of central importance for algebraic number theory. It
shows the passage from the "global extension" L I K to the "local extension"
L,u I K and thus represents one of the most important methods of algebraic
number theory, the so-called local-to-global principle. This terminology
arises from the case of a function field K, for example K = C (t), where the
elements of the extension L are algebraic functions on a Riemann surface,
hence on a global object, whereas passing to K and L,,, signifies looking at
power series expansions, i.e., the local study of functions. The diagram (*)
thus expresses in an abstract manner our original goal, to provide methods
of function theory for use in the theory of numbers by means of valuations.

We saw that every K -embedding r : L - K gave us an extension
w = v or of v. For every automorphism o e G (K I K over K , we
obtain with the composite

L - K -a ) K
a new K-embedding r' = u o r of L. It will be said to be conjugate to r
over K,,. The following result gives us a complete description of the possible
extensions of v to L.

(8.1) Extension Theorem. Let L I K be an algebraic field extension and v a
valuation of K. Then one has:
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(i) Every extension w of the valuation v arises as the composite w = v o r
for some K -embedding r : L -> K,,.
(ii) Two extensions v o r and v o r' are equal if and only if r and r' are
conjugate over K,,.

Proof: (i) Let w be an extension of v to L and Lw the localization of
the canonical valuation, which is again denoted by w. This is the unique
extension of the valuation v from K to L,,,. Choosing any
r : L. -+ K,,, the valuation v o r has to coincide with w. The restriction
of r to L is therefore a K-embedding r : L -+ K such that w = v o r.
(ii) Let r and a o r, with a E G (K I K,), be two embeddings of L conjugate
over K,,. Since v is the only extension of the valuation v from K, to 'E",
one has u = v o or, and thus v o r = U o (a o r). The extensions induced to L
by r and by or o r are therefore the same.

Conversely, let r, r' : L -> K be two K-embeddings such that
v o r = v o r'. Let or : rL r'L be the K-isomorphism a = r' o r-I.
We can extend or to a K -isomorphism

Indeed, rL is dense in rL K,,, so every element x E rL K can be written
as a limit

x = lim rx
n->oo

for some sequence xn which belongs to a finite subextension of L. As
v o r = U o r', the sequence r'xn = arxn converges to an element

ax := lim arxnn-.oo

in r'L K,,. Clearly the correspondence x -> ax does not depend on the
choice of a sequence (xn}, and yields an isomorphism rL K r'L K
which leaves K fixed. Extending a to a E G(K
gives r' = v o r, so that r and r' are indeed conjugate over K,,.

Those who prefer to be given an extension L I K by an algebraic equation
f (X) = 0 will appreciate the following concrete variant of the above
extension theorem.

Let L = K (a) be generated by the zero a of an irreducible polynomial
f (X) E K [X] and let

f(X) = fl (X)" ... fr(X)mr
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be the decomposition of f (X) into irreducible factors fl (X), ... , f,. (X) over
the completion K. Of course, the mi are one if f is separable. The K-
embeddings r : L Kv are then given by the zeroes 8 of f (X) which lie
in k,:

r:L-*Kv,
r and r' are conjugate over Kv if and only if the zeroes r (a)

and r'(a) are conjugate over K, i.e., if they are zeroes of the same irreducible
factor fi. With (8.1), this gives the

(8.2) Proposition. Suppose the extension L I K is generated by the zero a
of the irreducible polynomial f (X) E K[X].

Then the valuations wt, ..., w,- extending v to L correspond 1-1 to the
irreducible factors fl, ... , fr in the decomposition

f (X) = fl (X)II ' ... f,. (X )mr

of f over the completion K.

The extended valuation wi is explicitly obtained from the factor fi as
follows: let ai E Kv be a zero of fi and let

ri:L -)- Kv, aHai,
be the corresponding K -embedding of L into K. Then one has

wi=Uori.
ri extends to an isomorphism

ri : L, Kv(ai)

on the completion L,,,i of L with respect to wi.

Let L 1 K be again an arbitrary finite extension. We will write w I v to
indicate that w is an extension of the valuation v of K to L. The inclusions
L Lw induce homomorphisms L ®K Kv -* Lv, via a ® b ab, and
hence a canonical homomorphism

(p:L®KKv-'* fLw
wIv

To begin with, the tensor product is taken in the sense of vector spaces, i.e., the
K -vector space L is lifted to a Kv -vector space L ®K K. This latter, however,
is in fact a Kv-algebra, with the multiplication (a 0 b)(a' ® b') = aa' ® bb',
and V is a homomorphism of Kv -algebras. This homomorphism is the subject
of the
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(8.3) Proposition. If L IK is separable, then L ®K K - f,,,1, Lw.

Proof: Let a be a primitive element for LIK, so that L = K (a), and let
f (X) E K [X] be its minimal polynomial. To every w v, there corresponds an
irreducible factor f. (X) E of f(X), and in view of the separability,
we have f (X) = f.1, f,,, (X). Consider all the Lw as embedded into an
algebraic closure K of K and denote by aw the image of a under L -+ L.
Then we find Lw = Kv(aw) and fw(X) is the minimal polynomial of aw
over K. We now get a commutative diagram

K,[X]l(f) F1 Kv[X]l(fw)

I
wIv

I
L®KKv flLw,

wIv

where the top arrow is an isomorphism by the Chinese remainder theorem.
The arrow on the left is induced by X r-+ a ®1 and is an isomorphism because
K[X]/(f) = K (u) = L. The arrow on the right is induced by X --* aw
and is an isomorphism because Kv[X]/(fw) = Kv(aw) = L. Hence the
bottom arrow is an isomorphism as well.

(8.4) Corollary. If L I K is separable, then one has

[L:K]=E[Lw:Kv]
and

wIv

NLIK(a) _ fl TrLIK(a) = E
wIv wIv

Proof: The first equation results from (8.3) since [L : K] = dimK(L) _
dimK, (L ®K Kv). On both sides of the isomorphism

LOK Kv = F1 fJ L,,
wIv

let us consider the endomorphism: multiplication by a. The characteristic
polynomial of a on the K -vector space L ®K K is the same as that on the
K-vector space L. Therefore

char. polynomialLIK (a) = fl char. polynomialLW IK, (a) .
wIv

This implies immediately the identities for the norm and the trace.
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If v is a nonarchimedean valuation, then we define, as in the henselian
case, the ramification index of an extension w I v by

ew = (w(L*) : v(K*))

and the inertia degree by

fw = [Xw : K],
where X, resp. K, is the residue class field of w, resp. v. From (8.4)
and (6.8), we obtain the fundamental identity of valuation theory:

(8.5) Proposition. If v is discrete and L I K separable, then

Tewf=[L:K].
wv

This proposition repeats what we have already seen in chap. I, (8.2),
working with the prime decomposition. If K is the field of fractions of a
Dedekind domain o, then to every nonzero prime ideal p of o is associated
the p-adic valuation vp of K, defined by vp(a) = vp, where (a) = fp p°'
(see chap. I, § 11, p. 67). The valuation ring of vp is the localization op. If 0
is the integral closure of o in L and if

PO = Tel ... Te.

I I'

is the prime decomposition of p in L, then the valuations wi =
e

-Ti,
i = 1, ... , r, are precisely the extensions of v = vp to L, e; are the
corresponding ramification indices and fi = [0/3i : o/p] the inertia
degrees. The fundamental identity

r
eifi=[L:K]

i=1

has thus been established in two different ways. The raison d'etre of valuation
theory, however, is not to reformulate ideal-theoretic knowledge, but rather,
as has been stressed earlier, to provide the possibility of passing from
the extension L I K to the various completions L I K where much simpler
arithmetic laws apply. Let us also emphasize once more that completions
may always be replaced with henselizations.

Exercise 1. Up to equivalence, the valuations of the field Q(om) are given as
follows.

1) Ia + b,I1 = ja + bJI and ja + b/I2 = ja - b/1 are the archimedean
valuations.
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2) If p = 2 or 5 or a prime number # 2, 5 such that (5) = -1, then there is
exactly one extension of I IP to Q(/3), namely

j a + b,/5-1 lag -
3) If p is a prime number # 2,5 such that ( 5) = 1, then there are two

extensions of I IP to Q(/), namely
Ia+b-Ip, = Ia+bylp, resp. Ia+bJIpz = Ia - byIP,

where y is a solution of x2 - 5 = 0 in Q P.
Exercise 2. Determine the valuations of the field Q(i) of the Gaussian numbers.
Exercise 3. How many extensions to "y () does the archimedean absolute value I
of Q admit?
Exercise 4. Let L I K be a finite separable extension, o the valuation ring of a
discrete valuation v and 0 its integral closure in L. If w I v varies over the extensions
of v to L and o, resp. Ow, are the valuation rings of the completions K,,, resp. Lw,
then one has

O ®o Ou = f Ow
w1u

Exercise 5. How does proposition (8.2) relate to Dedekind's proposition,
chap. I, (8.3)?

Exercise 6. Let L I K be a finite field extension, v a nonarchimedean exponential
valuation, and w an extension to L. If 0 is the integral closure of the valuation ring o
of v in L, then the localization O p of 0 at the prime ideal 3 = {a E O I w(a) > 0}
is the valuation ring of w.

§ 9. Galois Theory of Valuations

We now consider Galois extensions L IK and study the effect of the Galois
action on the extended valuations w I v. This leads to a direct generalization of
"Hilbert's ramification theory" - see chap. I, § 9, where we studied, instead
of valuations v, the prime ideals p and their decomposition p = Ti' - - - mer in
Galois extensions of algebraic number fields. The arguments stay the

?same,

so we may be rather brief here. However, we formulate and prove all results
for extensions that are not necessarily finite, using infinite Galois theory. The
reader who happens not to know this theory should feel free to assume all
extensions in this section to be finite. On the other hand, we treat infinite
Galois theory also in chap. IV, § 1 below. Its main result can be put in a
nutshell like this:

In the case of a Galois extension L I K of infinite degree, the main theorem
of ordinary Galois theory, concerning the 1-1 correspondence between
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the intermediate fields of L I K and the subgroups of the Galois group
G (L I K) ceases to hold; there are more subgroups than intermediate fields.
The correspondence can be salvaged, however, by considering a canonical
topology on the group G (L I K), the Krull topology. It is given by defining,
for every a E G (L I K), as a basis of neighbourhoods the cosets a G (L I M),
where M I K varies over the finite Galois subextensions of L I K. G (L I K) is
thus turned into a compact, Hausdorff topological group. The main theorem
of Galois theory then has to be modified in the infinite case by the condition
that the intermediate fields of L I K correspond 1-1 to the closed subgroups
of G(L I K). Otherwise, everything goes through as in the finite case. So one
tacitly restricts attention to closed subgroups, and accordingly to continuous
homomorphisms of G(L I K).

So let L I K be an arbitrary, finite or infinite, Galois extension with Galois
group G = G(L I K). If v is an (archimedean or nonarchimedean) valuation
of K and w an extension to L, then, for every a E G, w o a also extends v,
so that the group G acts on the set of extensions w I v.

(9.1) Proposition. The group G acts transitively on the set of exten-
sions w I v, i.e., every two extensions are conjugate.

Proof: Let w and w' be two extensions of v to L. Suppose L I K is finite.
If w and w' are not conjugate, then the sets

{woolaEG} and
would be disjoint. By the approximation theorem (3.4), we would be able to
find an x E L such that

Iaxlw < 1 and Iaxlw' > 1
for all a E G. Then one would have for the norm a = NLI K (x) = FlaEG ax
that I a I v= JJo I ax I w< 1 and likewise I a I v> 1, a contradiction.

If L I K is infinite, then we let M I K vary over all finite Galois subexten-
sions and consider the sets X M = {a E G ( w o or I M = w' J M 1. They are
nonempty, as we have just seen, and also closed because, for a E G N XM,
the whole open neighbourhood a G (L I M) lies in the complement of XM.
We have net XM 0, because otherwise the compactness of G would yield
a relation fl 1 X M1 _ 0 with finitely many Mt, and this is a contradiction
because if M = Ml . . . M,, then XM = ni-1 XM; .

(9.2) Definition. The decomposition group of an extension w of v to L is
defined by

Gw=GW(LIK)={a EG(LIK)I woo=w}.
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If v is a nonarchimedean valuation, then the decomposition group contains
two further canonical subgroups

G.QI.DRw,
which are defined as follows. Let o, resp. 0, be the valuation ring, p,
resp. q3, the maximal ideal, and let x = o/p, resp. X = 0/93, be the residue
class field of v, resp. w.

(9.3) Definition. The inertia group of w I v is defined by

Iw=I,,(LIK)={aEG,,,Iax=xmod93 forall xE0}
and the ramification group by

Rw=Rw(LIK)={aEGwI A 1 mod 3 for all xEL*}.

Observe in this definition that, for Or E G w , the identity w o a = w implies
that one always has o-0 = 0 and ax/x E 0, for all x E L*.

The subgroups Gw, Iw, Rw of G = G(L IK), and in fact all canonical
subgroups we will encounter in the sequel, are all closed in the Krull
topology. The proof of this is routine in all cases. Let us just illustrate the
model of the argument for the example of the decomposition group.

Let a E G = G(L IK) be an element which belongs to the closure of Gw.
This means that, in every neighbourhood a G (L I M), there is some element
am of G, Here M I K varies over all finite Galois subextensions of L I K.
Since aM E aG(LIM), we have aMI M = aIM, and w o aM = w implies
that woo-IM = w o aM I M = w I M. As L is the union of allthe M, we get
w o a = w, so that or (=- Gw. This shows that the subgroup Gw is closed
in G.

The groups Gw, I,, Rw carry very significant information about the
behaviour of the valuation v of K as it is extended to L. But before going
into this, we will treat the functorial properties of the groups Gw, Iw, R.

Consider two Galois extensions LIK and L' I K' and a commutative
diagram

L r ) L'
T T

K K'
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with homomorphisms r which will typically be inclusions. They induce a
homomorphism

r* : G(L'IK') --* G(LIK), r*(o.')
Observe here that, L I K being normal, the same is true of rL I rK, and thus
one has a'rL c rL, so that composing with r-1 makes sense.

Now let w' be a valuation of L', v'=W'IK'and to =w'or,v=WIK
Then we have the

(9.4) Proposition. r* : G(L' I K') -* G(L I K) induces homomorphisms
Gw,(L'IK') -+ GW(LIK),
I.,(L'IK')-a I.(LIK),
R.,(L'IK') -+ RW(LIK).

In the latter two cases, v is assumed to be nonarchimedean.

Proof : Let Q' E G,,,, (L' I K') and v = r* (v). If x E L, then one has
IxIwoo = Irxlw = Ir-loa'rxlw = Ior'rxlw' = I rxlw' = Ixlw,

so that or E GW (L IK). If Q' E I,,,(L'I K') and x E 0, then
w(Qx -x) = w(r-1(a'rx - rx)) = w'(a'(rx) - (rx)) > 0,

and or E I. (L I K). If Q' E Rw' (L' I K') and X E L*, then
Crxw(- - 1) = w(r-1rxx - l)) = w'(-rxx - 1) > 0,
x

so that Q E Rw (L I K).

If the two homomorphisms r : L -a L' and r : K -+ K' are
isomorphisms, then the homomorphisms (9.4) are of course isomorphisms.
In particular, in the case K = K', L = L', we find for each r E G(LIK):

Gwar = r-1Gwr, Iwor = r-11wr, Rwor = r-1Rwr,
i.e., the decomposition, inertia, and ramification groups of conjugate
valuations are conjugate.

Another special case arises from an intermediate field M of L I K by the
diagram

L = L

r* then becomes the inclusion G(L I M) G(L IK), and we trivially get the
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(9.5) Proposition. For the extensions K C M C L, one has
GW(LIM) = Gw(LIK)nG(LIM),
Iw(LIM) = Iw(LIK)nG(LIM),

RW(LIM) = Rw(LIK) (1 G(LIM).

A particularly important special case of (9.4) occurs with the diagram

L Lw

i

K
which can be associated to any extension of valuations w I v of L I K. If L I K is
infinite, then Lu, has to be read as the localization in the sense of § 8, p. 160.
(This distinction is rendered superfluous if we consider, as we may perfectly
well do, the henselization of L I K.) Since in the local extension L,,, I K the
extension of the valuation is unique, we denote the decomposition, inertia,
and ramification groups simply by G (L,, I K,), I (L,,, I K,), R (L w I KU) . In
this case, the homomorphism t* is the restriction map

G(LwIK1) -) G(LIK), a i ) orIL,

and we have the

(9.6) Proposition. GW(LIK) = G(LwIK0),

Iw(LIK) = I(LwIK1),
Rw(LIK) = R(LwIK1)

Proof: The proposition derives from the fact that the decomposition group
G,,, (L I K) consists precisely of those automorphisms a E G(L I K) which
are continuous with respect to the valuation w. Indeed, the continuity of the
a E Gw (L I K) is clear. For an arbitrary continuous automorphism or, one has

IxIw < 1 Iaxlw = IxI < 1,
because Ixl,,, < 1 means that x' and hence also ax" is a w-nullsequence,
i.e., (axles < 1. By §3, p. 117, this implies that w and w o a are equivalent,
and hence in fact equal because w I K = w o a 1 K , so that a e G,,, (L IK).

Since L is dense in L,,,, every a E GW(LIK) extends uniquely to a
continuous of Lw and it is clear that & E I (Lw I Kv),
resp. & E if or c= I,,,(LIK), resp. or E Rw(LIK). This proves the
bijectivity of the mappings in question in all three cases.
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The above proposition reduces the problems concerning a single valuation
of K to the local situation. We identify the decomposition group GU, (L I K)
with the Galois group of L,, I K and write

Gw(LIK) =G(LWIKV),
and similarly It, (LIK) = I (LwIK,) and RI(LIK) = R(LW IKI)

We now explain the concrete meaning of the subgroups Gw, I,,,, Rw of
G = G (L I K) for the field extension L I K.

The decomposition group G,u consists - as was shown in the proof
of (9.6) - of all automorphisms v E G that are continuous with respect
to the valuation w. It controls the extension of v to L in a group-theoretic
manner. Denoting by G\G the set of all right cosets G,,Q, by W the set of
extensions of v to L and choosing a fixed extension w, we obtain a bijection

Gw\G -Z W,,, G,,,o- i--> wo .

In particular, the number #W of extensions equals the index (G : Gw). As
mentioned already in chap. I, § 9 - and left for the reader to verify - the
decomposition group also describes the way a valuation v extends to an
arbitrary separable extension L I K. For this, we embed L I K into a Galois
extension N I K, choose an extension w of v to N, and put G = G (N I K),
H = G(NIL), G. = Gw(N I K), to get a bijection

Gm\G/H - W, GwQH f--* woOr IL

(9.7) Definition. The fixed field of Gu,,

Zw=Zw(LIK)=IX ELIQx=x for aller EGw},
is called the decomposition field of w over K.

The role of the decomposition field in the extension L IK is described by
the following proposition.

(9.8) Proposition.
(i) The restriction wz of w to Zw extends uniquely to L.
(ii) If v is nonarchimedean, wZ has the same residue class field and the
same value group as v.
(iii) Zw = L n Kv (the intersection is taken inside Lw).
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Proof: (i) An arbitrary extension w' of wz to L is conjugate to w over Z";
thus w' = w o or, for some or EG(LIZ,)=Gw,i.e., w' = w.

(iii) The identity Zw = L fl K follows immediately from Gw (L I K)
G(LW IK.).

(ii) Since K has the same residue class field and the same value group as K,
the same holds true for Zw = L fl K.

The inertia group Iw is defined only if w is a nonarchimedean valuation
of L. It is the kernel of a canonical homomorphism of G. For if 0 is
the valuation ring of w and 3 the maximal ideal, then, since Q O = (9 and
Qq3 = 3, every v E Gw induces a K-automorphism

v: O/3 -- O/ 3, xmod T F) axmod g3,
of the residue class field and we obtain a homomorphism

Gw -) AutK(A)

with kernel 1w.

(9.9) Proposition. The residue class field extension AIK is normal, and we
have an exact sequence

1--> 1w-) Gw) 1.

Proof : In the case of a finite Galois extension, we have proved this already
in chap. I, (9.4). In the infinite case A I K is normal since L I K, and hence
also AIK, is the union of the finite normal subextensions. In order to prove
the surjectivity of f : G w G (A. I K) all one has to show is that f (G w) is
dense in G(AIK) because f (G w), being the continuous image of a compact
set, is compact and hence closed. Let d E G (,l I K) and Q G (,lit) be a
neighbourhood of F, where tt I K is a finite Galois subextension of A I K. We
have to show that this neighbourhood contains an element of the image f (t),
r E Gw. Since Z. has the residue class field K, there exists a finite Galois
subextension M I Zw of L I Zw whose residue class field M contains the field
p. As G(MI Zw) -* G(MIK) is surjective, the composite

Gw = G(LIZW) -+ G(MIZW) - G(MIK) -* G(liJK)
is also surjective, and if r E Gw is mapped to v IN,, then f (r) E 57G (X I p),
as required.
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(9.10) Definition. The fixed field of I.,

Tw=Tw(LIK)={xELI cx=x for all aEIw},
is called the inertia field of w over K.

For the inertia field, (9.9) gives us the isomorphism

G(TWIZW) = G(),IK).

It has the following significance for the extension L IK.

(9.11) Proposition. T. I Z. is the maximal unramified subextension of L I Z,,,.

Proof: By (9.6), we may assume that K = Zw is henselian. Let T I K be the
maximal unramified subextension of L I K. It is Galois, since the conjugate
extensions are also unramified. By (7.5), T has the residue class field Xs, and
we have an isomorphism

G(TIK) -; G(X3Irc).

Surjectivity follows from (9.9) and the injectivity from the fact that T I K
is unramified: every finite Galois subextension has the same degree as its
residue class field extension. An element a E G (L I K) therefore induces the
identity on X,s, i.e., on X, if and only if it belongs to G(LIT). Consequently,
G

If in particular K is a henselian field and K,s I K its separable closure, then
the inertia field of this extension is the maximal unramified extension T (K
and has the separable closure K,s IK as its residue class field. The isomorphism

G(TIK) = G(KsIK)

shows that the unramified extensions of K correspond 1-1 to the separable
extensions of K.

Like the inertia group, the ramification group Rw is the kernel of a
canonical homomorphism

1w -+ X (L I K),

where
X(LIK) = Hom(AIr,X*),
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where A = w(L*), and I' = v(K*). If a E Iw, then the associated
homomorphism

Xa:d/F---> s*
is given as follows: for 3 mod I' E a/I', choose an x E L* such that
w(x) = 3 and put

Xe(3) =
ax

mod f.
x

This definition is independent of the choice of the representative S E S and of
x E L*. For if x' E L* is an element such that w(x') - w(x) mod T,
then w(x') = w(xa), a E K*. Then x' = xau, u E O*, and since
au/u 1 mod q3 (because or c Ip), one gets ax'/x' - ax/x mod q3.

One sees immediately that mapping or r-- XQ is a homomorphism
Iw -* X (L I K) with kernel R.

(9.12) Proposition. Rw is the unique p-Sylow subgroup of I.

Remark : If L I K is a finite extension, then it is clear what this means. In the
infinite case it has to be understood in the sense of profinite groups, i.e., all
finite quotient groups of R,,,, resp. Iw/R,,,, by closed normal subgroups have
p-power order, resp. an order prime to p. In order to understand this better,
we refer the reader to chap. IV, § 2, exercise 3-5.

Proof of (9.12): By (9.6), we may assume that K is henselian. We restrict to
the case where L I K is a finite extension. The infinite case of the proposition
follows formally from this.

If R. were not a p-group, then we would find an element or E Rw of
prime order I p. Let K' be the fixed field of or and K' its residue class
field. We show that K' = s. Since Rw C Iw, we have that T C K. Thus
s,. _c K', so that .XJK' is purely inseparable and of p-power degree. On the
other hand, the degree has to be a power of f, for if a E s and if a E L is
a lifting of a, and f (X) E K'[x] is the minimal polynomial of a over K',
then f(x) = g(x)n,, where g(x) E K'[x] is the minimal polynomial of a
over K', which has degree either 1 or I, as this is so for f (x). Thus we
have indeed K' = a,, so that LI K' is tamely ramified, and by (7.7) is of the
form L = K'(a) with a Va-, a E K. It follows that as = a, with a
primitive 2-th root of unity E K'. Since or E Rw, we have on the other hand
as/a = = 1 mod 3, a contradiction. This proves that R. is a p-group.

Since p = char(s), the elements in s* have order prime to p, provided
they are of finite order. The group X (L I K) = Hom(a IF, s*) therefore has
order prime to p. This also applies to the group Iw/Rw C X (L IK), so that
Rw is indeed the unique p-Sylow subgroup.
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(9.13) Definition. The fixed field of Rw,

Vw=Vw(LIK)=txELlorx=x forall QERwJ,
is called the ramification field of w over K.

(9.14) Proposition. Vw I Zw is the maximal tamely ramified subextension
ofLIZw.

Proof : By (9.6) and the fact that the value group and residue class field do
not change, we may assume that K = Zw is henselian. Let Vw be the fixed
field of Rw. Since Rw is the p-Sylow subgroup of 1w, Vw is the union of
all finite Galois subextensions of LIT of degree prime to p. Therefore Vw
contains the maximal tamely ramified extension V of T (and thus of Z).
Since the degree of each finite subextension MI V of V w I V is not divisible
by p, the residue field extension of MI V is separable (see the argument in
the proof of (9.12)). Therefore Vw IV is tamely ramified, and Vw = V.

(9.15) Corollary. We have the exact sequence

1 ) Rw--) Iw-) X(LIK)--1.

Proof: By (9.6) we may assume, as we have already done several times
before, that K is henselian. We restrict to considering the case of a finite
extension LIK. In the infinite case the proof follows as in (9.9). We have
already seen that Rw is the kernel of the arrow on the right. It therefore
suffices to show that

(Iw:Rw)=[Vw:T.]=#X(LIK)
As Tw I K is the maximal unramified subextension of Vw I K, Vw I Tw has
inertia degree 1. Thus, by (7.7),

[Vw : TwI = #(w(Vw)lw(Tw*))
Furthermore, by (7.5), we have w(Tw) = v(K*) =: F, and putting
d = w(L*), we see that is the subgroup d(P)/1' of a/1'
consisting of all elements of order prime to p, where p = char(K). Thus

[Vw : T.] = #(d(P)l r)
Since A* has no elements of order divisible by p, we have on the other hand
that

X(LIK) = Hom(A/P, X*) = Hom(A(P)/ f X*)
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But (7.7) implies that X contains the m-th roots of unity whenever 6(P)/T
contains an element of order m, because then there is a Galois extension
generated by radicals T,,, (V a-) IT,y of degree m. This shows that X (L I K) is
the Pontryagin dual of the group d (P) IF so that indeed

[Vm : Tw] = #(A (P) /F) = #X (L I K).

Exercise 1. Let K be a henselian field, L K a tamely ramified Galois extension,
G = G(LIK), I = I (LI K) and F = G/I = G(AI K). Then 1 is abelian and becomes
a F-module by letting v = al E F operate on 1 via r H ara-1.

Show that there is a canonical isomorphism 1 = x(LIK) of F-modules. Show
furthermore that every tamely ramified extension can be embedded into a tamely
ramified extension L I K , such that G is the semi-direct product of x (L I K) with
G(Ak): G - x(LIK) >1 G(XIK).
Hint: Use (7.7).
Exercise 2. The maximal tamely ramified abelian extension V of QP is finite over
the maximal unramified abelian extension T of Q,

Exercise 3. Show that the maximal unramified extension of the power series field
K = 1Fp((t)) is given by T = F, ((t)), where IF,, is the algebraic closure of lFp, and
the maximal tamely ramified extension by T I M E N, (m, p) = 1)).

Exercise 4. Let v be a nonarchimedean valuation of the field K and let v be an
extension to the separable closure K of K. Then the decomposition field Zr of v
over K is isomorphic to the henselization of K with respect to v, in the sense of § 6,
p. 143.

§ 10. Higher Ramification Groups

The inertia group and the ramification group inside the Galois group of
valued fields are only the first terms in a whole series of subgroups that we
are now going to study. We assume that L I K is a finite Galois extension
and that vK is a discrete normalized valuation of K, with positive residue
field characteristic p, which admits a unique extension w to L. We denote
by vL = ew the associated normalized valuation of L.

(10.1) Definition. For every real number s > -1 we define the s-th
ramification group of L I K by

G,s=Gs(LIK)=IaEGI
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Clearly, G_1 = G, Go is the inertia group 1 = I(LK), and G1 the
ramification group R = R (L I K) which have already been defined in (9.3).
As

VL(r-laza - a) = VL(r-1(Qra - ra)) = VL(a(ra) - ra)
and rO = 0, the ramification groups form a chain

G=G_12Go_DG1 DG212 ...
of normal subgroups of G. The quotients of this chain satisfy the

(10.2) Proposition. Let 7CL E 0 be a prime element of L. For every integer
s > 0, the mapping

GslGs+1 -- U)/U+1) 011 ->
U7rLLL

7rL

is an injective homomorphism which is independent of the prime element 7rL.
Here UL(S) denotes the s -th group of principal units of L, i.e., U(o) = 0*
and UL) = l+7rLO,fors> 1.

We leave the elementary proof to the reader. Observe that one has
UL)/U(1) = X* and UL)/ULS+1) = X, for s > 1. The factors GS/G,s+1 are
therefore abelian groups of exponent p, for s > 1, and of order prime to p,
for s = 0. In particular, we find again that the ramification group R = G1 is
the unique p-Sylow subgroup in the inertia group I = Go.

We now study the behaviour of the higher ramification groups under
change of fields. If only the base field K is changed, then we get directly
from the definition of the ramification groups the following generalization
of (9.5).

(10.3) Proposition. If K' is an intermediate field of L I K, then one has, for
alls>-1, that

GS(LIK') = GS(LIK) nG(LIK').

Matters become much more complicated when we pass from L I K to a
Galois subextension L'IK. It is true that the ramification groups of L I K are
mapped under G (L I K) --) G (L' I K) into the ramification groups of L' I K,
but the indexing changes. For the precise description of the situation we
need some preparation. We will assume for the sequel that the residue field
extension I K of L 1K is separable.
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(10.4) Lemma. The ring extension 0 of o is monogenous, i.e., there exists
an x E 0 such that 0 = o[x].

Proof : As the residue field extension X J K is separable by assumption, it
admits a primitive element Y. Let f (X) E o[X] be a lifting of the minimal
polynomial j (X) of 5F. Then there is a representative x E 0 of x such that
7r = f (x) is a prime element of 0. Indeed, if x is an arbitrary representative,
then we certainly have vL (f (x)) > 1 because f (X) = 0. If x itself is not as
required, i.e., if vL (f (x)) > 2, the representative x + 7rL will do. In fact,
from Taylor's formula

f (x + 70 _ .f (x) + f ' (x) nL + b7r 2 , b E D ,
we obtain vL(f (x + 7rL)) = 1 since f'(x) E 0*, because 1'(Y) =A 0. In the
proof of (6.8), we saw that the

xfnr=xJf(x)`, j=0,.. , f - 1, i=0,.. ,e-1,
form an integral basis of 0 over o. Hence indeed 0 = o[x].

For every a e G we now put
iLIK(a) = VL(vx -x),

where 0 = o[x]. This definition does not depend on the choice of the
generator x and we may write

G,(LIK)={cr E G I iLIK(a)>s+1}.
Passing to a Galois subextension L' I K of L I K , the numbers iL IK (a) obey
the following rule.

(10.5) Proposition. If e' = eLIL' is the ramification index of L I L', then

iL'IK(a') = 1 F- iLIK(a).
e aIL,-v'

Proof: For a' = 1 both sides are infinite. Let a' 0 1, and let 0 = o[x] and
0' = o[y], with 0' the valuation ring of L'. By definition, we have

e iL'IK(a') = vL(a'Y - Y), iLIK(a) =VL(ax -x).
We choose a fixed a E G = G (L I K) such that Or I L' = a'. The other
elements of G with image a' in G' = G (L' I K) are then given by a r ,

r E H = G(L I L'). It therefore suffices to show that the elements
a=ay-y and b= fl(arx - x)

r EH
generate the same ideal in 0.
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Let f (X) E O'[X] be the minimal polynomial of x over L'. Then
f (X) _ IJVEH (X - ix). Letting u act on the coefficients of f , we get the
polynomial (Q f) (X) _ fl 1(X - v rx). The coefficients of ov f - f are all
divisible by a = cry - y. Hence a divides (6 f)(x) - f (x) = ±b.

To show that conversely b is a divisor of a, we write y as a polynomial
in x with coefficients in o, y = g(x). As x is a zero of the polynomial
g(X) - y c= 0'[X], we have

g(X)-y=f(X)h(X), h(X)EO'[X]
Letting or operate on the coefficients of both sides and then substituting
X = x yields y - cry = (o-f)(x)(Qh)(x) = ±b(uh)(x), i.e., b divides a.

We now want to show that the ramification group G, (L I K) is mapped
onto the ramification group Gt (L' I K) by the projection

G(LIK) -} G(L'IK),
where t is given by the function 71LIK : [-1, oo) -+ 1-1, cc),

t=r1LIK(s)=
s dx

Jo (Go : Gx)

Here (Go : Gx) is meant to denote the inverse (Gx : Go)-1 when
-1 <x <O,i.e.,simply l,if-1 <x <O.ForO<m <s <m+l,m EN,
we have explicitly

71LIK(s)= 1 gi =#Gi.

The function 71LIK can be expressed in terms of the numbers iLIK(a) as
follows :

(10.6) Proposition. 77LIK (s) = go EoEG min{ iLJK (Q), s + 1 } - 1.

Proof: Let 9(s) be the function on the right-hand side. It is continuous and
piecewise linear. One has 0 (0) = 77L I K (0) = 0, and if m > -1 is an integer
and m <s <m+1,then

9'(s) = 1 #{Q E G I i L I K(9) > m+2} = 1 = 17LIK(s)
go (Go : G, +1)

Hence 0 = 71 L I K
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(10.7) Theorem (HERBRAND). Let L' I K be a Galois subextension of L I K
and H = G (L I L'). Then one has

GS(LIK)H/H =G,(L'IK) where t = IILIL'(S).

Proof : Let G = G (L I K), G' = G (L' I K). For every v' E G', we choose an
preimage g E G of maximal value iLIK (a) and show that

(*) iL'IK(Or') - 1 = 1ILIL'(iLIK(a) - 1) .
Let m = iLIK (Q). If r E H belongs to Hm_t = Gm-i (L I L'), then
iLIK(t) m, and iLIK(Or) > m, so that iLIK(0r) = m. If t 0 Hm-i,
then iLIK(t) < m and iLIK(ur) = iLIK(r). In both cases we therefore
find that iLIK (o t) = min{iLIK (r), m}. Applying (10.5), this gives

iL'IK(Or') =
11 F min{iLIK(r),m} .

e reH
Since iLIK (r) = iLIL'(r) and e' = eLIL' = #Ho, (10.6) gives the formula (*),
which in turn yields

U' E GSH/H iLIK(Q) - I > S r)LIL'(1LIK(Q) - 1) > 17LIL'(S)

iL'IK(6') - 1 > 71LIL'(S)

a-' E G:(L'IK), t = 77LIL'(S).

The function 11 L I K is by definition strictly increasing. Let the inverse
function be 1LIK : [-1, co) -+ [-1, oo). One defines the upper numbering
of the ramification groups by

G`(LIK) := GS(LIK) where s = 7(lLIK(t).

The functions 11LIK and LIK satisfy the following transitivity condition:

(10.8) Proposition. If L' IK is a Galois subextension of L I K, then

t1LIK = 1IL'IK o 1ILIL' and 1/ILIK = lkLIL' 0 ,bL'IK

Proof: For the ramification indices of the extensions L I K, L' I K , LL'
we have eLIK = eL'IKeLIL'. From (10.7), we obtain GS/HS = (G/H)r,
t ='ILIL'(S); thus

#GS = #(G/H)i 1 #HS .

eLIK eL'IK eLIL'
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This equation is equivalent to

71LIK(s) = 77 L'IK(t)nLIL'(s) = (nL'IK o 71LIL')'(s).

As I1LIK(0) = (nL'IK c 71LIL')(0), it follows that r)LIK = 77L'IK o 71LIL' and
the formula for i(r follows.

The advantage of the upper numbering of the ramification groups is that
it is invariant when passing from L I K to a Galois subextension.

(10.9) Proposition. Let L' I K be a Galois subextension of L I K and
H = G (L I L'). Then one has

Gt (LIK)H/H = Gt (L'IK).

Proof: We put s = 1IIL'IK(t), G' = G(L'IK), apply (10.7) and (10.8), and
get

GrH/H = G*LIK(t)H/H = GnLIL'(>kLlx(t)) = LIL'(s))

=G's=G'`.

Exercise 1. Let K = Qp and K" = where is a primitive p"-th root of unity.
Show that the ramification groups of K,, IK are given as follows:

G,, = G(K"IK) for s = 0,
Gi=G(K,,IK1) for I <s <p-1,
Gs=G(K"IK2) fore <s <p2-1,

GS = 1 for p"-1 < s.

Exercise 2. Let K' be an intermediate field of LIK. Describe the relation between
the ramification groups of L I K and of L I K' in the upper numbering.
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Chapter III

Riemann-Roch Theory

§ 1. Primes

Having set up the general theory of valued fields, we now return to
algebraic number fields. We want to develop their basic theory from
the valuation-theoretic point of view. This approach has two prominent
advantages compared to the ideal-theoretic treatment given in the first
chapter. The first one results from the possibility of passing to completions,
thereby enacting the important "local-to-global principle". This will be done
in chapter VI. The other advantage lies in the fact that the archimedean
valuations bring into the picture the points at infinity, which were hitherto
lacking, as the "primes at infinity". In this way a perfect analogy with the
function fields is achieved. This is the task to which we now turn.

(1.1) Definition. A prime (or place) p of an algebraic number field K is a
class of equivalent valuations of K. The nonarchimedean equivalence classes
are called finite primes and the archimedean ones infinite primes.

The infinite primes p are obtained, according to chap. II, (8.1), from the
embeddings r : K -a C. There are two sorts of these: the real primes,
which are given by embeddings r : K -+ R, and the complex primes,
which are induced by the pairs of complex conjugate non-real embeddings
K -* C. p is real or complex depending whether the completion Kp is
isomorphic to R or to C. The infinite primes will be referred to by the formal
notation p I oo, the finite ones by p t oo.

In the case of a finite prime, the letter p has a multiple meaning: it also
stands for the prime ideal of the ring o of integers of K, or for the maximal
ideal of the associated valuation ring, or even for the maximal ideal of
the completion. However, this will nowhere create any risk of confusion.
We write p I p if p is the characteristic of the residue field K(p) of the finite
prime p. For an infinite prime we adopt the convention -that the completion Kp
also serves as its own "residue field, " i.e., we put

K(p) := Kp, when ploo.
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To each prime p of K we now associate a canonical homomorphism

vp:K*--*R
from the multiplicative group K* of K. If p is finite, then vp is the p-adic
exponential valuation which is normalized by the condition vp(K*) = Z. If p
is infinite, then vp is given by

vp(a)=-log Iral,
where r : K C is an embedding which defines p.

For an arbitrary prime p I p (p prime number or p = oo) we put
furthermore

fp=[K(p):K(p)],
so that fp = [Kp : RI if p I oo, and

pfpgy(p) = { efp
if p{co,
ifp 100.

This convention suggests that we consider e as being an infinite prime
number, and the extension C IR as being unramifced with inertia degree 2.
We define the absolute value I Ip K -+ R by

lalp = 9Z(p)-v1(a)
for a 0 0 and 101 0. If p is the infinite prime associated to the embedding
r : K -+ C, then one finds

lalp = Iral, resp. Ialp = lral
if p is real, resp. complex.

If L I K is a finite extension of K, then we denote the primes of L by 93
and write TI p to signify that the valuations in the class 93, when restricted
to K, give those of p. In the case of an infinite prime 93, we define the
inertia degree, resp. the ramification index, by

fpp=[LT:Kp], resp.eglp=1.
For arbitrary primes 931p we then have the

(1.2) Proposition. (i) F pjp eTjp fqijp = ETIp [LT : Kp] = [L : K],
(ii) M(93) = (p)fq3lp,

(iii) v,,p(a) = e,,p,pvp(a) fora E K
(iv) vp(NLIKp(a)) = fpjpvp(a) fora e L*,
(v) IaIT = INL,IKp(a)lp fora E L.
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The normalized valuations I I p satisfy the following product formula,
which demonstrates how important it is to include the infinite primes.

(1.3) Proposition. Given any a E K*, one has Ialp = 1 for almost all p,
and

fi lalp = 1.
p

Proof : We have vp (a) = 0 and therefore J a l p = 1 for all p { oo which do not
occur in the prime decomposition of the principal ideal (a) (see chap. I, § 11,
p. 69). This therefore holds for almost all p. From (1.2) and formula (8.4)
of chap. II,

NKIQ(a) = fl NK,IQ,(a)
PIP

(which includes the case p = oo, Qp = R), we obtain the product formula
for K from the product formula for Q, which was proved already in
chap.. II, (2.1):

1 lI NKIQ(a)I p = 1.f j Ialp = II FT Ialp = r1 jTT11I NKvlQp(a)I p =T i
P P PIP P PIP P

We denote by J(o) the group of fractional ideals of K, by P(o) the
subgroup of fractional principal ideals, and by

Pic(o) = J(o)/P(n)
the ideal class group C1K of K.

Let us now extend the notion of fractional ideal of K by taking into
account also the infinite primes.

(1.4) Definition. A replete ideal of K is an element of the group

JO) := J (o) x r[ 1R+ ,
Pl-

where 118+ denotes the multiplicative group of positive real numbers.

In order to unify notation, we put, for any infinite prime p and any real
number v E R,

p°:=e°E1R+.
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Given a system of real numbers vp, pIoo, let flp,, pvp always denote the
vector

ip°p = .... evp,...)E flR ,
PI- pica

and not the product of the quantities eVp in R. Then every replete ideal
a E J(o) admits the unique product representation

a = fl pvp x fl pv. =: F1 pvp
pica pica P

where vp E Z for p fi oo, and vp E R for p I oo. Put

of = r[ pvp and a. fl p°p ,
pfca PI-

so that a = of x a,. of is a fractional ideal of K, and a00 is an element of
r[pl,, R. At the same time, we view a1, resp. ate, as replete ideals

of x fl 1, resp. (1) x ate.
pl-

Thus for all elements of J (5) the decomposition

a E K* we associate the replete principal ideal
[a] = 1 1 pvp(a) = (a) x fl

1
pv,(a).

p plop

These replete ideals form a subgroup P (5) of J (5). The factor group
Pic(a) = J(o)/P(o)

is called the replete ideal class group, or replete Picard group.

(1.5) Definition. The absolute norm of a replete ideal a = fp p"p is defined
to be the positive real number

m(a) `n(p)vp
p

The absolute norm is multiplicative and induces a surjective homomor-
phism

91 : J(o) --> R.
The absolute norm of a replete principal ideal [a] is equal to 1 in view of the
product formula (1.3),

9q([a]) = i l(p)vp(a) = 17
1 Ja I p i= 1.

p p

We therefore obtain a surjective homomorphism
0 : Pic(a) ---> R+

on the replete Picard group.



la
.

§ 1. Primes 187

The relations between the replete ideals of a number field K and those of
an extension field L are afforded by the two homomorphisms

ILIKJ(5K) '- J(5L),
NLIK

which are defined by

iLIK(l 11 - q3e3IPva
pm p7 7Tip

NLIK(H'I3 ) = 1 1 1 1 Pfd' .

' . p PT I P

Here the various product signs have to be read according to our convention.
These homomorphisms satisfy the

(1.6) Proposition.
(i) For a chain of fields K C L C M, one has NMIK = NLIK o NMIL and

iMIK = iMIL o iLIK.

(ii) NLIK(1LIKa) = a[L:K1 for a E J(OK).
(iii) (NLIK()) = R(t)- for 2t E J(OL).

(iv) If L I K is Galois with Galois group G, then for every prime ideal 43
of OL, one has NLIK(g3)OL = i LaCG 0'93'

(v) For any replete principal ideal [a] of K, resp. L, one has

iLIK([a]) = [a], resp. NLIK([a]) = [NLIK(a)]
(vi) NLIK(2l) = NLIK(L)f is the ideal of K generated by the norms
NLIK(a) of all a E 2[f.

Proof: (i) is based on the transitivity of inertia degree and ramification
index. (ii) follows from (1.2) in view of the fundamental identity
ETIm fplpeT,p = [L : K]. (iii) holds for any replete "prime ideal" 43
of L,by(1.2):

9Z(NLIK(3)) = Ot(pfq'I°) =(p)fTIp = MP),
and therefore for all replete ideals of L.
(iv) The prime ideal p lying below 3 decomposes in the ring 0 of integers
of L as p = (31 . . . 93r)e, with prime ideals' 3i = QiT, Qi E G/Gp, which
are conjugates of 3 and thus have the same inertia degree f. Therefore

NLIK (q3)d = pf 0 = F1 Tif = fl II o-i z3 = rI 6T.
i=1 i=1 rEGqj or EG
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188 Chapter III. Riemann-Roch Theory

(v) For any element K*, (1.2) implies that vp(a) =eq3lpvp(a). Hence

iLIK ([a]) = iLIK ( 1
pva(a)) = Fj

1 1
93eTj,v,(a) = 17

1 ?'mvrp(a) = [a]
p PT I P

If, on the other hand, a E L*, then (1.2) and chap. II, (8.4) imply that
v (NLIK(a)) = F_s,111p fTIpv1}(a). Hence

NLIK([a]) = NLIK(Hg3uP(a)) = fl pvP(NLIK(a)) = [NLIK(a)1.
T p

(vi) Let of be the ideal of K which is generated by all NLIK (a), with a E 21f.
If 2.tf is a principal ideal (a), then of = (NLIK(a)) = NLIK(2if), by (v).
But the argument which yielded (v) applies equally well to the localizations
Cep I o, of the extension 0 1 o of maximal orders of L I K. 0, has only a finite
number of prime ideals, and is therefore a principal ideal domain (see chap. I,
§ 3, exercise 4). We thus get

(af) p = NLIK ((2Lf)p) = NLIK(2tf)p
for all prime ideals p of o, and consequently of = NLIK(2tf)

Since the homomorphisms i L I K and NLIK map replete principal ideals to
replete principal ideals, they induce homomorphisms of the replete Picard
groups of K and L, and we obtain the

(1.7) Proposition. For every finite extension L I K, the following two
diagrams are commutative:

Pic(15L) T >
I[8+

'LIK ft NLIK [L:K]
I

id

1
Pic(oK) I[8+.

Let us now translate the notions we have introduced into the function-
theoretic language of divisors. In chap. I, § 12, we defined the divisor group
Div(o) to consist of all formal sums

Dvpp,
pf-

where vp E Z, and vp = 0 for almost all p. Contained in this group is the
group P(o) of principal divisors div(f) = rpf,,. vp(f )p, which allowed us
to define the divisor class group

CH' (o) = Div(o)/P(o).
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It follows from the main theorem of ideal theory, chap. I, (3.9), that this
group is isomorphic to the ideal class group CIK, which is a finite group (see
chap. I, (12.14)). We now extend these concepts as follows.

(1.8) Definition. A replete divisor (or Arakelov divisor) of K is a formal
sum

D=Evpp,
P

where v, E Z for p { 00, vp E for p I oo, and vp = 0 for almost all p.F

The replete divisors form a group, which is denoted by Div(o). It admits
a decomposition

Div(5) - Div(o) x ® lRp.
pica

On the right-hand side, the second factor is endowed with the canonical
topology, the first one with the discrete topology. On the product we have the
product topology, which makes Div(5) into a locally compact topological
group.

We now study the canonical homomorphism

div : K* Div(o), div(f) _ vp (f)p.
p

The elements of the form div(f) are called replete principal divisors.

Remark: The composite of the mapping div : K* -> Div(as) with the
mapping

Div(5) -* jl R, F vpp h--3 (vpfp)ploo ,

plc p

is equal, up to sign, to the logarithm map

A:K*) 11 R, )(f)_(...,logIfIp,...),
pica

of Minkowski theory (see chap. I, §7, p. 39, and chap. III, §3, p. 211). By
chap. I, (7.3), it maps the unit group o* onto a complete lattice T = ,l(o*)
in trace-zero space H = {(xp) E j-jpl,,. R I Ipl. Xp = 0}.

(1.9) Proposition. The kernel of div : K* -> Div(a) is the group µ(K) of
roots of unity in K, and its image P(o) is a discrete subgroup ofDiv(?).
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Proof: By the above remark, the composite of div with the map Div(o) -*
fpI00R, Epvpp
A: K* flploo

r-* (vp fp)pl,, yields, up to sign, the homomorphism
. By chap. I, (7.1), the latter fits into the exact sequenceN

1 (K) 0,

where P is a complete lattice in trace-zero space H _c 1 lploo R.
Therefore µ(K) is the kernel of div. Since P is a lattice, there
exists a neighbourhood U of 0 in l lploo R which contains no element
of P except 0. Considering the isomorphism a : Fjploo R --> ®ploo Rp,
(vp)plco f--> EplO, f" p, the set (0) x a U C Div(o) x ®ploo ll p = Div(o)
is a neighbourhood of 0 in Div(a) which contains no replete principal divisor
except 0. This shows that P(o) = div(K*) lies discretely in Div(o. ).

(1.10) Definition. The factor group

CH' (o) = Div(o)/P(o)
is called the replete divisor class group (or Arakelov class group) of K.

As P(o) is discrete in Div((5), and is therefore in particular closed,
CHI (o) becomes a locally compact Hausdorff topological group with respect
to the quotient topology. It is the correct analogue of the divisor class group
of a function field (see chap. I, § 14). For the latter we introduced the* degree
map onto the group Z ; for CHI (o) we obtain a degree map onto the
group R. It is induced by the continuous homomorphism

deg : Div(o) --) R
which sends a replete divisor D = E. vpp to the real number

deg(D) = T_ vp log gy(p) = log(j-j'7t(p)1P).
p p

From the product formula (1.3), we find for any replete principal divisor
div(f) E P(o) that

deg(div(f)) _ rlog'l(p)vl(f) = log(rj If Ip I) = 0.
p p

Thus we obtain a well-defined continuous homomorphism

deg : CH' (o) --> R.
The kernel CH' (o)° of this map is made up from the unit group o* and the
ideal class group CIK = CH' (o) of K as follows.



O
il

§ 1. Primes 191

(1.11) Proposition. Let T = X(o*) denote the complete lattice of units in
trace-zero space H = {(xp) E [1p,OOR I rpl xp = 0}. There is an exact
sequence

0-fHIP -kCH'(n)°-) CH1(o)-- 0.

Proof: Let Div(o)° be the kernel of deg : Div(o) -* R. Consider the exact
sequence

0 -- fl Div(o) - Div(o) - 0,
p l-

where a((vp)) fp p. Restricting to Div(o)° yields the exact
commutative diagram

0 -) ;.(o*) a
> 'P (5) > P(o) - -) 0

1 1 1
0 -f H a ) Div(o)° > Div(o) -* 0.

Via the snake lemma (see [23], chap. III, §3, (3.3)), this gives rise to the
exact sequence

0 --) H/J,.(o*) -- CH1(5)° --a CH1(o) --p 0.

The two fundamental facts of algebraic number theory, the finiteness of
the class number and Dirichlet's unit theorem, now merge into (and are
in fact equivalent to) the simple statement that the kernel CH' (n)° of the
degree map deg : CH1(o) -* R is compact.

(1.12) Theorem. The group CH' (5)0 is compact.

Proof: This follows immediately from the exact sequence

0 -) H/P --) CH'(o)° -- p CH1(o) -- 0.

As T is a complete lattice in the R-vector space H, the quotient H/P is a
compact torus. In view of the finiteness of CH1(o), we obtain CH 1 (6)0 as
the union of the finitely many compact cosets of HIP in CH1(5)°. Thus
CH1(oo)° itself is compact.
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The correspondence between replete ideals and replete divisors is given
by the two mutually inverse mappings

div : J(o) -) Div(d), div(fl p"P) F -vpp,
p P

Div(5) -- J(o), vPp 1-- fl p-",
P P

These are topological isomorphisms once we equip

J(a)=J(o)X r1 R+
PI-

with the product topology of the discrete topology on J (o) and the canonical
topology on fPI,,,, R. The image of a divisor D = P vpp is also written
as

o(D) = fj p-",.
p

The minus sign here is motivated by classical usage in function theory.
Replete principal ideals correspond to replete principal divisors in such
a way that P(a) becomes a discrete subgroup of J(o) by (1.9), and
Pic(5) = J((5)/P(n) is a locally compact Hausdorff topological group.
We obtain the following extension of chap. 1, (12.14).

(1.13) Proposition. The mapping div : J(o) -* Div(o) induces a
topological isomorphism

div : Pic(o) + CHl (o).

On the group J(o) we have the homomorphism 91 : J(n) -> R*, and
on the group Div((5) there is the degree map deg : Div(o) -+ R. They are
obviously related by the formula

deg(div(a)) = -log97(a),

and we get a commutative diagram

0 Picl (o)° > Picl(o) R* ) 0

divl = -logl

0 - CH1(5)° CH,,,lll1(5)

deg ;JJJ][8

> 0

with exact rows. (1.12) now yields the
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(1.14) Corollary. The group
Pic(o)° = { [a] E Pic(o) 101(a) = 1}

is compact.

The preceding isomorphism result (1.13) invites a philosophical reflection.
Throughout the historical development of algebraic number theory, a
controversy persisted between the followers of Dedekind's ideal-theoretic
approach, and the divisor-theoretic method of building up the theory from
the valuation-theoretic notion of primes. Both theories are equivalent in the
sense of the above isomorphism result, but they are also fundamentally
different in nature. The controversy has finally given way to the realization
that neither approach is dominant, that each one instead emanates from its
own proper world, and that the relation between these worlds is expressed by
an important mathematical principle. However, all this becomes evident only
in higher dimensional arithmetic algebraic geometry. There, on an algebraic
Z-scheme X, one studies on the one hand the totality of all vector bundles,
and on the other, that of all irreducible subschemes of X. From the first, one
constructs a series of groups Ki (X) which constitute the subject of algebraic
K-theory. From the second is constructed a series of groups CH'(X),
the subject of Chow theory. Vector bundles are by definition locally free
ox-modules. In the special case X = Spec(o) this includes the fractional
ideals. The irreducible subschemes and their formal linear combinations,
i.e., the cycles of X, are to be considered as generalizations of the primes
and divisors. The isomorphism between divisor class group and ideal class
group extends to the general setting as a homomorphic relation between the
groups CH` (X) and Ki (X). Thus the initial controversy has been resolved
into a seminal mathematical theory (for further reading, see [13]).

Exercise 1 (Strong Approximation Theorem). Let S be a finite set of primes and
let po be another prime of K which does not belong to S. Let ap E K be given
numbers, for p E S. Then for every e > 0, there exists an x E K such that

fix - app<e forpES,and JxIp<1for p0SU(pal.
Exercise 2. Let K be totally real, i.e., K. = IR for all plop. Let T be a proper
nonempty subset of Hom(K,R). Then there exists a unit s of K satisfying re > 1
fort S and0< te <I fort S.

Exercise 3. Show that the absolute norm 07 : Pic(7L) - R+ is an isomorphism.
Exercise 4. Let K and L be number fields, and let r : K -> L be a homomorphism.

Given any replete divisor D = v T of L, define a replete divisor of K by
the rule

t,(D) = 1(F vxt.f sip) p,
P TIP
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where fTlp is the inertia degree of q3 over rK and g3Ip signifies rp = g3JLK. Show
that r induces a homomorphism

r.: CH'(oL) - CH1(oK)-
Exercise 5. Given any replete divisor D = Y_p vpp of K, define a replete divisor of
L by the rule

r*(D) _ E Y' vpep T,
p Tip

where e q, denotes the ramification index of T over K. Show that r* induces a
homomorphism

r* : CH'(oK) --> CH'(oL).
Exercise 6. Show that r. o r* = [L : K] and that

deg(r*D) = deg(D), deg(r*D) = [L : K] deg(D).

§ 2. Different and Discriminant

It is our intention to develop a framework for the theory of algebraic
number fields which shows the complete analogy with the theory of function
fields. This goal leads us naturally to the notions of different and discriminant,
as we shall explain in § 3 and § 7. They control the ramification behaviour of
an extension of valued fields.

Let L I K be a finite separable field extension, o c K a Dedekind domain
with field of fractions K, and let 0 c_ L be its integral closure in L.
Throughout this section we assume systematically that the residue field
extensions of 01o are separable. The theory of the different originates
from the fact that we are given a canonical nondegenerate symmetric bilinear
form on the K-vector space L, viz., the trace form

T (x, y) = Tr(xy)

(see chap. I, §2). It allows us to associate to every fractional ideal 2l of L
the dual 0-module

*2[ _ { x E L Tr(x 9[) Col.
It is again a fractional ideal. For if a1, ... , a, e 0 is a basis of L IK
and d = det(Tr(a;aj)) its discriminant, then ad*9t c_ 0 for every nonzero
a e gin o. Indeed, if x = x1a1 +- -I- xna E *91, with xt E K, then the axi
satisfy the system of linear equations Y'j=1 axe Tr(ajaj) = Tr(xaaj) E o.
This implies dax1 E o and thus dax E 0.
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The notion of duality is justified by the isomorphism

*21 -* Homo(2(, o), x H (y H Tr(xy)) .

Indeed, since every o-homomorphism f : 21 -a o extends uniquely to a
K-homomorphism f : L -- K in view of 2(K = L, we may consider
Homo (2t, o) as a submodule of HomK (L, K), namely, the image of *2( with
respect to L HomK (L, K), x (y Tr(xy)). The module dual to 0,

*O = Horn, (0,o),
will obviously occupy a distinguished place in this theory.

(2.1) Definition. The fractional ideal

olo=*O={x ELI Tr(xO)Co}
is called Dedekind's complementary module, or the inverse different. Its
inverse,

Jolo = 1

I Olo'

is called the different of 010.

As Col, D 0, the ideal Oolo C 0 is actually an integral ideal of L. We
will frequently denote it by 3'7. LIK, provided the intended subrings o, 0 'are
evident from the context. In the same way, we write CLIK instead of Lrolo.
The different behaves in the following mariner under change of rings o
and O.

(2.2) Proposition.
(i) For a tower of fields K C L C M, one has OMIK = OMILT)LIK
(ii) For any multiplicative subset S of o, one has 3JS-iols-io = S-132, olo.
(iii) If 3I p are prime ideals of 0, resp. o, and OT I o, are the associated
completions, then

Proof : (i) Let A = o C K, and let B C L, C CM be the integral closure
of o in L, resp. M. It then suffices to show that

CCIA = C-CIBCB IA



...
CD

T

LO
O

°'i

m
ss

,

qt
r

..,

°o'

°.o

196 Chapter III. Riemann-Roch Theory

The inclusion D follows from

TrM I B C A.

In view of BC = C, the inclusion C is derived as follows:

TrMIK(('-CIAC) = TrLIK(B TrMIL((-CIAC)) C A,

so that Tr jL( CIAC) C (EBIA, and thus

Q'-B11ATrMIL(1rCIAC) C B.

This does indeed imply LEBI 1 ATCIA c TCIB, and so CIA C T-CIBCBIA

(ii) is trivial.

(iii) By (ii) we may assume that o is a discrete valuation ring. We show that
(tolo is dense in (to,4,Iop. In order to do this, we use the formula

TrLIK = E TrL,IK,
Tip

(see chap. II, (8.4)). Let X E L"olo and y E Op. The approximation theorem
allows us to find an rl in L which is close to y with respect to vj, and close
to 0 with respect to vip', for 93'1p, q3' #', T. The left-hand side of the equation

TrLIK(xr7) = TrL,,IKp(xil) + F_ TrL. IKp(x>))

then belongs to op, since TrLIK(xr7) E o C op, but the same is true of the
elements TrLIKp(xrj) because they are close to zero with respect to vp.
Therefore TrLIK, (xy) E op. This shows that (Eolo C Cos,iop.

If on the other hand x E Co,4,iop, and if E L is sufficiently close
to x with respect to vip, and sufficiently close to 0 with respect to vqy,
for q3' ,--L T, then E Colo. In fact, if y E 0, then TrLS,IKp(y) E op,
since TrL,,IKp(xy) E op. Likewise TrLIKp(y) E op for 93'193, because
these elements are close to 0. Therefore TrLIK(y) E op n K = o, i.e.,

E (tolo. This shows that Coio is dense in CO.,(,,, in other words,toloOsp = (EopIop, and so 37, ol0O' =
If we put 2 = OLIK and OT = and consider DT at the same

time as an ideal of 0 (i.e., as the ideal on 2T), then (2.2), (iii) gives us the

(2.3) Corollary. 0 = FIT OT.
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The name "different" is explained by the following explicit description,
which was Dedekind's original way to define it. Let a E 0 and let
f (X) E o[X] be the minimal polynomial of a. We define the different
of the element a by

SLIK(a) =
f(a) ifL = K(a),

jl0 ifL#K(a).
In the special case where 0 = o[a] we then obtain:

(2.4) Proposition. If 0 = o[a], then the different is the principal ideal
3JLIK = (SLIK(a)) .

Proof : Let f (X) = ao +- al X + + a X n be the minimal polynomial of a
and

f(X)
bo+b1X+...+bn-1Xn-1

X -a
The dual basis of 1, a, ... , 0-1 with respect to Tr(xy) is then given by

bo bn-1
.f'(a)

P(a)

For if a1, -an an are the roots of f , then one has
f(X) air

=Xr, 0<r<n-1,
i-t X - at .f'(ai)

as the difference of the two sides is a polynomial of degree < n - 1 with
roots al, ..., an, so is identically zero. We may write this equation in the
form

Tr r f (X) ar Xr.LX -a f'(a)J
Considering now the coefficient of each of the powers of X, we obtain

Tr (al f(a) / SIB

and the claim follows.
As 0 = o + ca + + oan-1, we get

(rojo = f'(a)-1(obo + ... + obn-1)

From the recursive formulas
bn_1 = 1,

bn_2 - abn-1 = an-1,



ag
o

o.
,

Q
.
,

.
4
:

-fl

198 Chapter III. Riemann-Roch Theory

it follows that
bn-i = ai-1 + an_ ai-2 + .. + an-i+t,

so that oho + + obn_1 = o[a] = 0; then Col. = f'(a)-10, and
thus OLIK = (.f'(a)).

The proof shows that the module *o[a] = (x E L I TrLIK(xo[aJ) C 0),
which is the dual of the o-module o[a], always admits the o-basis a` If , (a),
i = 0, ... , n - 1. We exploit this for the following characterization of the
different in the general case where 0 need not be monogenous.

(2.5) Theorem. The different OLIK is the ideal generated by all differents
of elements SL I K (a) for a E 0.

Proof: Let a E 0 such that L = K(a), and let f(X) be the minimal
polynomial of a. In order to show that f'(a) E OLIK, we consider the
"conductor" f = (x E L I xO c_ o[a]} of o[a] (see chap. I, § 12,
p. 79). On putting b = f'(a), we have for x E L:

x E f 4 x0 c o[a] 4 b-lx0 C b-to[a] =*o[a]
z Tr(b-'xO) C o 4== b-1x E OL11K x E bOLI'K.

Therefore (f'(a)) = fo[a12LIK, so in particular, f'(a) E DLIK
OLIK thus divides all the differents of elements SLIK(a). In order to prove

that 2LIK is in fact the greatest common divisor of all SLIK(a), it suffices
to show that, for every prime ideal 93, there exists an a E 0 such that
L = K(a) and v3(OLIK) = vg1(f'(a)).

We think of L as embedded into the separable closure k 7p of Kp in such
a way that the absolute value I I of Kp defines the prime 93.

By chap. II, (10.4), we find an element fi in the valuation ring OT of the
completion L1 satisfying 0T = op[,B], and the proof loc. cit. shows that,
for every element a E OT which is sufficiently close to 0, one also has
OT = op[a]. From (2.2), (iii) and (2.4), it follows that

v 1(OLIK) = vT(JL,IK,) = v`p(SL,IKr(a))
It therefore suffices to show that we can find an element a in 0 such that
L = K (a) and

vp(8LT IKP(a)) = VT(SLIK(a)) .

For this, let a2, ... , o, : L -* f p be K -embeddings giving the primes q3i I p
different from q3. Let a c= op be an element such that
(*) 1r,8 - aI = 1 for all r E Gp = G(KplKp).
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(Choose a = 1, resp. a = 0, according as the residue classes rf mod' j3
which are conjugate over op/p are zero or not.) Using the Chinese remainder
theorem, we now pick an a E 0 such that I a - , I and I ui a - a 1, for
i = 2, ..., r, are very small. We may even assume that L = K(a) (if not,
modify by a +ir °y , Jr E p, for v big, y E 0, L = K (y) ; for suitable v 0
one then finds K(a+r°y) = K(a+iri`y) = K(y)). Since a is close to
we have Op = o,[a]. Now

SLVIKp(a) _ fl (a - ra),
r361

where r runs through the Kp-embeddings LT - Kp different from 1.
Furthermore,

SLIK(a) = fl (a - va) = f (a - ra) fl fI(a - tijaia),
0#1 r561 i=2 j

where v runs over the K -embeddings different from 1, and the rij are certain
elements in Gp. But now

Ia -rijvial = Irij'a-vial=Irijla-a+a-vial =1,
since Ia - vi a I is very small, and rj j 1 a is very close to ri-j1 fl (see (*)).
Therefore vT(SLI K(a)) = vT(]Jr#1(a-ra)) = vcp(SL1, 1 K, (a)), as required.

0

The different characterizes the ramification behaviour of the extension
L I K as follows.

(2.6) Theorem. A prime ideal ',3 of L is ramified over K if and only if
TIOLIK

Let 9,33 be the maximal power of 9,3 dividing OLIK, and let e be the
ramification index of 9,3 over K. Then one has

s = e - 1, if q3 is tamely ramified,

e < s < e - 1 + vp(e), if 9,3 is wildly ramified.

Proof: By (2.2), (iii), we may assume that o is a complete discrete valuation
ring with maximal ideal p. Then, by chap. II, (10.4), we have 0 = o[a] for
a suitable a E O. Let f (X) be the minimal polynomial of a. (2.4) says that
s = vp(f'(a)). Assume L IK is unramified. Then a = a mod 9,3 is a simple
zero of 1M = f (X) mod p, so that f'(a) E O* and thus s = 0 = e - 1.
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By (2.2), (i) and chap. II, (7.5), we may now pass to the maximal
unramified extension and assume that L I K is totally ramified. Then a may
be chosen to be a prime element of 0. In this case the minimal polynomial

.f (X) =aoXe+a1Xe-I +...+ae, ao = 1,
is an Eisenstein polynomial. Let us look at the derivative

f(a) = eaoae-l + (e - l)alae-2 + ... + ae-I .
Fori =0, ...,e- 1, we find
vp((e - i)aiae-`-I) = evp(e - i) + evp(ai) + e - i - 1 = -i - 1 mod e,
so that the individual terms of f(a) have distinct valuations. Therefore

s = vu(f'(a)) = min { vp((e - i)aiae-i-I)}
0<i <e

If now L I K is tamely ramified, i.e., if vp (e) = 0, then the minimum
is obviously equal to e - 1, and for vp(e) > 1, we deduce that
e <s <vp(e)+e-1.

The geometric significance of the different, and thus also the way it fits
into higher dimensional algebraic geometry, is brought out by the following
characterization, which is due to E. KAHLER. For an arbitrary extension B I A
of commutative rings, consider the homomorphism

µ:BOAB-+B, x®yHxy,
whose kernel we denote by I. Then

I/12 = I ®B®B B
is a B ® B -module, and hence in particular also a B -module, via the
embedding B -± B ® B, b E-a b ® 1. It is called the module of differentials
of B I A, and its elements are called Kahler differentials. If we put

dx=x®1-1(& x mod 12,
then we obtain a mapping

d:B-) SBBIA
satisfying

d(xy) = xdy + ydx,
da=0 for aEA.

Such a map is called a derivation of B IA. One can show that d is universal
among all derivations of B I A with values in B -modules. SBBI A consists of
the linear combinations yi dxi. The link with the different is now this.
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(2.7) Proposition. The different 001o is the annihilator of the 0-
module S2nlr,, i.e.,

0olo={xE0Ixdy=0 forall yc0}.

Proof: For greater notational clarity, let us put 0 = B and o = A. If A'
is any commutative A-algebra and B' = B ®A A', then it is easy to see
that SlB,IA' = S2BIA ®A A. Thus the module of differentials is preserved
under localization and completion, and we may therefore assume that A is
a complete discrete valuation ring. Then we find by chap. II, (10.4), that
B = A[x], and if f (X) E A[X] is the minimal polynomial of x, then S2BtA
is generated by dx (exercise 3). The annihilator of dx is f'(x). On the other
hand, by (2.4) we have OBIA = (f'(x)). This proves the claim.

A most intimate connection holds between the different and the
discriminant of O I o. The latter is defined as follows.

(2.8) Definition. The discriminant c0olr, is the ideal of 0 which is generated
by the discriminants d (a 1 , ... , a,) of all the bases a , ... , an of L I K which
are contained in 0.

We will frequently write ZLIK instead of aolo. If al, ._a, a is an
integral basis of 01o, then tLIK is the principal ideal generated by
d(a1, ... , an) = dLIK, because all other bases contained in 0 are transforms
of the given one by matrices with entries in o. The discriminant is obtained
from the different by taking the norm NL I K (see § 1).

(2.9) Theorem. The following relation exists between the discriminant and
the different:

DLIK = NLIK (ILIK)

Proof: If S is a multiplicative subset of o, then clearly Ds-iols-'o =
S-1Zol0 and 2s-,ols-io = S-'bolo. We may therefore assume that o is
a discrete valuation ring. Then, since o is a principal ideal domain, so is 0
(see chap. I, § 3, exercise 4), and it admits an integral basis al, ...,an
(see chap. I, (2.10)). So we have ZLIK = (d(al, ... , an)). Dedekind's
complementary module bolo is generated by the dual basis a', ... , an
which is characterized by TrL I K (ai S,i. On the other hand, (fol, is a
principal ideal (P) and admits the o-basis Pat, ..., Pan of discriminant

d(pai, -,Pan) =NLIK(,8)2d(al, ...,a,,).
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But (NLIK(B)) = NLIK(Qoly) = NLIK(DLI'K) = NLIK(DLIK)-1, and
(d(al, ...,a,:)) = cZLIK. One hasd(al, ...,a,) =det((ataj))2, .

d(a...... an) = det((a,aj' ))2, for 0,; E HomK(L,K), and Tr(a;ai') = 3jj.
Then d(a1, ... , d(a', ... , an) = 1. Combining these yields

LIIK = (d(a1, (d(ai, ...,a')) = (d(fiai, ...,Pan))
= NLIKPLIK)_2OLIK

and hence NLIK(OLIK) ='OLIK

(2.10) Corollary. For a tower of fields K C L C M, one has

DMIK = 0
K

1NLIK

Proof: Applying to 3ZMIK = JMILDLIK the norm N,MIK = NLIK 0 NMIL,
(1.6) gives

'0MIK = NLIK((MIL)NLIK(T MK
i) = NLIK(OMIL)tJLIKI.

Putting 0 = 1LIK and DT _ -OLIK, and viewing Zp also as the ideal
D fl o of K, the product formula (2.3) for the different, together with
theorem (2.9), yields:

(2.11) Corollary. -0 = fp ZDp.

The extension L I K is called unramified if all prime ideals p of K are
unramified. This amounts to requiring that all primes of K be unramified.
In fact, the infinite primes are always to be regarded as unramified
because ep1p = 1.

(2.12) Corollary. A prime ideal p of K is ramified in L if and only if p 10.
In particular, the extension L IK is unraniified if the discriminan t 0 = (1).

Combining this result with Minkowski theory leads to two important
theorems on unramified extensions of number fields which belong to the
classical body of algebraic number theory. The first of these results is the
following.
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(2.13) Theorem. Let K be an algebraic number field and let S be a finite
set of primes of K. Then there exist only finitely many extensions L I K of
given degree n which are unramified outside of S.

Proof: If L I K is an extension of degree n which is unramified outside of S,
then, by (2.12) and (2.6), its discriminant c1LIK is one of the finite number
of divisors of the ideal a - f vEs p"(t+'=). It therefore suffices to show

PfW
that there are only finitely many extensions L I K of degree n with given
discriminant. We may assume without loss of generality that K = Q. For
if L I K is an extension of degree n with discriminant 0, then L IQ is an
extension of degree m = n[K : Q] with discriminant (d) = DKIQNKIQ(-O).
Finally, the discriminant of L ( ) I Q differs from the discriminant of L I Q
only by a constant factor. So we are reduced to proving that there exist
only finitely many fields K IQ of degree n containing /--I with a given
discriminant d. Such a field K has only complex embeddings r : K --> C.
Choose one of them: ro. In the Minkowski space

KR=[fc]+
r

(see chap. I, § 5) consider the convex, centrally symmetric subset

X ={ (zr) E KR I IIm(zro)I < CV/'I dl,
IRe(zro)I < 1, Izrl < 1 for r ro,To} ,

where C is an arbitrarily big constant which depends only on n. For a
convenient choice of C, the volume will satisfy

vol(X) > 2" Idl = 2' vol(OK),
where vol(OK) is the volume of a fundamental mesh of the lattice j0K
in KR - see chap. I, (5.2). By Minkowski's lattice point theorem (chap. I,
(4.4)), we thus find a E OK, a 0 0, such that ja = (ra) E X, that is,

(*) IIm(roa)I < C Idl, IRe(roa)I < 1, Iral < 1 for r ro,io.
This a is a primitive element of K, i.e., one has K = Q(a). Indeed,
INKIQ(a)I = Hr Iral ? 1 implies Iroal > 1; thus Im(roa) 0 so that
the conjugates r0a and b oa of a have to be distinct. Since Ira I < 1 for
r tA ro, io, one has roa ra for all r ro. This implies K = Q(a),
because if Q(a) C K then the restriction roIQ(a) would admit an extension
r different from ro, contradicting roa ra.

Since the conjugates -ice of a are subject to the conditions (*), which
only depend on d and n, the coefficients of the minimal polynomial of a
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are bounded once d and n are fixed. Thus every field K IQ of degree n with
discriminant d is generated by one of the finitely many lattice points a in the
bounded region X. Therefore there are only finitely many fields with given
degree and discriminant.

The second theorem alluded to above is in fact a strengthening of the first.
It follows from the following bound on the discriminant.

(2.14) Proposition. The discriminant of an algebraic number field K of
degree n satisfies

I dK I1l2 >
n" (.7r =lz

n!4)
Proof: In Minkowski space KR = [ ]lr C] +, r E Hom(K, C), consider the
convex, centrally symmetric subset

.Xt =I (Zr) E KR I z i t } .

Its volume is t"
vol(Xt) = 2r s -n!

Leaving aside the proof of this formula for the moment (which incidentally
was exercise 2 of chap. I, § 5), we deduce the proposition from Minkowski's
lattice point theorem (chap. I, (4.4)) as follows. Consider in KR the lattice
r = jo defined by o. By chap. I, (5.2), the volume of a fundamental mesh
is vol(f') =. The inequality

vol(Xt) > 2" vol(F)
rt

therefore holds if and only if 2'"ns ni > 2" I dK 1, or equivalently if

t"=n 4 !(4)sIdKI+s,
n

for some s > 0. If this is the case, there exists an a E o, a # 0, such
that ja E Xt. As this holds for all s > 0, and since Xt contains only
finitely many lattice points, it continues to hold for s = 0. Applying now the
inequality between arithmetic and geometric means,

E IZr I > (11IZr I) t/"n ,

we obtain the desired result:

I < I NKI(Q(a)I = fl IZaI < Ira,)" < to = n"
(4 )s IdKIr((

4 l
n nn n' 7r

< n"
\n)"/z

IdKI -

Given this, it remains to prove the following lemma. 0
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(2.15) Lemma. In Minkowski space KR = { f, C ] +, the domain

Xr = {(zr) E KRI IzrI <t}

has volume
r

n
vol(X1) = 2r7rs

t
n!

Proof: vol(Xt) is 2s times the Lebesgue volume Vol(f(Xt)) of the
image f (Xt) under the mapping chap. I, (5.1),

.f : Ka -> FIR, (zr) ! } (xr),
r

where x,, = zp, x( = Re(z -), xa =-Im(za). Substituting x;, i = 1, ...,r,
instead of xp , and yj, zj, j = 1, ... , s, instead of x,, x&, we see that f (X t )
is described by the inequality

IxtI+...+Ix,.l+2 y12+z1+...+2 ys+zs <t.
The factor 2 occurs because Iz&r I = Iza I = Iza I. Passing to polar coordinates
yj = uj cos9j, zj = uj sin Oj, where 0 < 8j < 27r, 0 < 1sj, one sees that
Vol(f (Xt)) is computed by the integral

I(t)=Jut...USdxt--.dxrdut...dusdOl...dgs
extended over the domain

IxiI+---+Ix,-I +2ut+...+2us <t.

Restricting this domain of integration to x; 0, the integral gets divided
by 2'-. Substituting 2u! = wf gives

1(t) = 2'r4-s(2rr)s1r,s(t),
where the integral

f
I,,s(t)=J wt...Wsdxt...dxrdwt...dws

has to be taken over the domain x, > 0, wj > 0 and
(*) xt+...+xr+wt+...+Ws <t.
Clearly Ir,s(t) = tr+ jr,., (1) = tn1,-,s(1). Writing x2+...+x,-+w1+ - -+ws
< t - xt instead of (*), Fubini's theorem yields

ft f(1Ir,s(1) =
J

Ir_t,s(1 -xt)dxt = -xt)dx1 Ir-i,s(1)
0

= -Ir-t,s(1)n
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By induction, this implies that

n(n - 1) 1(n - r -F- 1) I0's(1)
In the same way, one gets

Io,s(1) wt(1 - wt)2s-2dw1Io.s-1(1),
0

and, doing the integration, induction shows that
1 1

Io,s(1) _ (2s) ! 10,0(1) = ( ) l -

Together, this gives lr,s(1) = 1 and therefore indeedn.
2rn.s

vol(X1) = 2SVol(f (X,)) = 2s2r4-s(2Z)st"Ir,s(1) =
n !

tn.

If we combine Stirling's formula,
n n en!= /27rn(-) elzn, 0<0<1,
e

with the inequality (2.14), we obtain the inequality

JdKI >
(7r ) 1 e2n- 6n
4 2zrn

This shows that the absolute value of the discriminant of an algebraic
number field tends to infinity with the degree. In the proof of (2.13) we saw
that there are only finitely many number fields with bounded degree and
discriminant. So now, since the degree is bounded if the discriminant is, we
may strengthen (2.13), obtaining

(2.16) Hermite's Theorem. There exist only finitely many number fields
with bounded discriminant.

n" 7r

! ( 4)
n/2 satisfiesThe expression an =

n

>1,an+1
()1/2(1+n)n4

i.e., an+1 > an. Since a2 = 2 > 1, (2.14) yields
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(2.17) Minkowski's Theorem. The discriminant of a number field K
different from Q is 0 A- 1.

I

Combining this result with corollary (2.12), we obtain the

(2.18) Theorem. The field Q does not admit any unramified extensions.

These last theorems are of fundamental importance for number theory.
Their significance is seen especially clearly in the light of higher dimensional
analogues. For instance, let us replace the finite field extensions L I K of a
number field K by all smooth complete (i.e., proper) algebraic curves defined
over K of a fixed genus g. If p is a prime ideal of K, then for any such
curve X, one may define the "reduction mod p". This is a curve defined
over the residue class field of p. One says that X has good reduction at the
prime p if its reduction mod p is again a smooth curve. This corresponds
to an extension L I K being unramified. In analogy to Hermite's theorem,
the Russian mathematician I.S. JrtFAREvI( formulated the conjecture that there
exist only finitely many smooth complete curves of genus g over K with
good reduction outside a fixed finite set of primes S. This conjecture was
proved in 1983 by the mathematician GERD FALTINGS (see [35]). The impact
of this result can be gauged by the non-expert from the fact that it was the
basis for FALTINGS's proof of the famous Mordell Conjecture:

Every algebraic equation

f(x,y)=0
of genus g > 1 with coefficients in K admits only finitely many solutions
in K.

A 1-dimensional analogue of Minkowski's theorem (2.18) was proved
in 1985 by the French mathematician J.-M. FONTAINE: over the field Q, there
are no smooth proper curves with good reduction mod p for all prime
numbers p (see [39]).

Exercise 1. Let d(a) = d (1, a, ... for an element a E 0 such that L = K (a).
Show that 0LIK is generated by all discriminants of elements d(a) if o is a complete
discrete valuation ring and the residue field extension .ti.MK is separable. In other
words, (7LIK equals the gcd of all discriminants of individual elements. This fails
to hold in general. Counterexample: K = Q, L = Q(a), a3 - a2 - 2a - 8 = 0.
(See [60], chap. III, §25, p. 443. The untranslatable German catch phrase for this
phenomenon is: there are "auf3erwesentliche Diskriminantenteiler".)



iii

!C
D y~

,

.N
.

ca'

r.7

208 Chapter M. Riemann-Roch Theory

Exercise 2. Let L I K be a Galois extension of henselian fields with separable residue
field extension Xlx, and let G;, i > 0, be the i-th ramification group. Then, if
OLIK = `y, one has

00
s = E(#G; - 1).

=o

Hint: If 0 = o[x] (see chap. II, (10.4)), then s = VL (SLIK (x)) _ E
QE

VL (x - vx).

Exercise 3. The module of differentials Slolo is generated by a single element dx,
x E 0, and there is an exact sequence of O-modules

0-rDole) -'O--), Sl1In--* O.
Exercise 4. For a tower M 2 L 2 K of algebraic number fields there is an exact
sequence of oM-modules

0 S2LIK (9 OM -+ S'MIK "''MIL -+ 0.
Exercise 5. If is a primitive p "-th root of unity, then

v r

§ 3. Riemann-Roch

The notion of replete divisor introduced into our development of number
theory in § 1 is a terminology reminiscent of the function-theoretic model.
We now have to ask the question to what extent this point of view does
justice to our goal to also couch the number-theoretic results in a geometric
function-theoretic fashion, and conversely to give arithmetic significance to
the classical theorems of function theory. Among the latter, the Riemann-
Roch theorem stands out as the most important representative. If number
theory is to proceed in a geometric manner, it must work towards finding an
adequate way to incorporate this result as well. This is the task we are now
going to tackle.

First recall the classical situation in function theory. There the basic data is
a compact Riemann surface X with the sheaf ox of holomorphic functions.
To each divisor D = EpEX vpP on X corresponds a line bundle o(D),
i.e., an ox-module which is locally free of rank 1. If U is an open subset
of X and K(U) is the ring of meromorphic functions on U, then the vector
space o(D)(U) of sections of the sheaf o(D) over U is given as

o(D)(U) _ { f E K(U) ordp(f) > -vp for all P E U}.
The Riemann-Roch problem is to calculate the dimension

£(D) = dim H°(X, o(D))
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of the vector space of global sections

H°(X, o(D)) = o(D)(X).
In its first version the Riemann-Roch theorem does not provide a formula for
H°(X, o(D)) itself, but for the Euler-Poincare characteristic

X(o(D)) =dimH°(X,o(D)) - dim H 1 (X, o(D)) .

The formula reads

X(o(D)) =deg(D)+1-g,
where g is the genus of X. For the divisor D = 0, one has o(D5'= OX
and deg(D) = 0, so that X(ox) = 1 - g; then this equation may also be
replaced by

X (o (D)) = deg(D) + X(ox).
The classical Riemann-Roch formula

£(D)-f()C-D)=deg(D)+1-g
is then obtained by using SERRE duality, which states that H 1(X , o(D)) is
dual to H° (X, w (9 o f -D)), where w = Q1 is the so-called canonical
module of X, and IC = div(w) is the associated divisor (see for instance
[51], chap. III, 7.12.1 and chap. IV, 1.1.3).

In order to mimic this state of affairs in number theory, let us recall the
explanations of chap. I, § 14 and chap. III, § 1. We endow the places p of
an algebraic number field K with the role of points of a space X which
should be conceived of as the analogue of a compact Riemann surface. The
elements f E K* will be given the role of "meromorphic functions" on
this space X. The order of the pole, resp. zero of f at the point p E X,
for p { oo, is defined to be the integer vp (f) , and for p loo it is the real
number vp (f) log I r f I. In this way we associate to each f E K* the
replete divisor

div(f) _ F_ vp(f )p E Div(n).
p

More precisely, for a given divisor D = p vpp, we are interested in the
replete ideal

o(D) = LI p-»p

p

and the set
H°(o(D)) f E K* I div(f) > -D}

_ { f E o(D)f 10 If lp -< m(p) for plop1,
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where the relation D' > D between divisors D' = Yp vp and D = 57p vpp
is simply defined to mean vp > vp for all p. Note that H°(o(D)) is no longer
a vector space. An analogue of Hl (X, o(D)) is completely missing. Instead
of attacking directly the problem of measuring the size of HO(O(D)), we
proceed as in the function-theoretic model by looking at the "Euler-Poincare
characteristic" of the replete ideal o(D). Before defining this, we want
to establish the relation between the Minkowski space KR = [ 11.1 +,

t E Hom(K, C), and the product jZplo. K. The reader will allow us to
explain this simple situation in the following sketch.

We have the correspondences

p: K --> IR p real prime, p = pp : Kp -i-*

a, v : K C i p complex prime, a = up : Kp -- (C.

There are the following isomorphisms

K ®, R KR, a ®x l ((ra)x)
K ®Q R -- fl Kp, a ®x F-- ((tpa)x) plc.,

ply
tp being the canonical embedding K -> Kp (see chap. II, (8.3)). They fit
into the commutative diagram

K®R = KR = 1 R x fj[CxIC]+

Z tilllpp 2T11 Io'pX FP]

K®R = j-jKp = flKp x fjKp,
plop p real p complex

where the arrow on the right is given by a I-± (or a, va). Via this isomorphism,
we identify KR with rjpl... Kp:

KR = j-j K.
plo

The scalar product (x, y) xzyT on KR is then transformed into

(x, Y) _ xpyp + E (xpyp +xpyp).
p real p complex

The Haar measure u on KR which is determined by (x, y) becomes the
product measure

µ = H !rp ,
pl-
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where
µp = Lebesgue measure on K. =R, if p real,
AP = 2 Lebesgue measure on Kp = C, if p complex.

Indeed, the system 1/,/2-, i// is an orthonormal basis with respect to the
scalar product xy + l y on K. = C. Hence the square Q = {z = x + iy
0 < x, y < 1/,v/'2-) has volume A, (Q) = 1, but Lebesgue volume 1/2.

Finally, the logarithm map

.£ : [ j l (C' ] + [ II R] +, x i__* (log I x r I)
r r

studied in Minkowski theory is transformed into the mapping

£: flKp -* FIR, xF-> logIxPIp),
PIE PI-

for one has the commutative diagram

K* [ H, R ] +

lIplooKp FjPlooR,

where the arrow on the right,

[FIR]+ = fjR x f[R x R1+ -- II R,
r p o plop

is defined by x H x for p p, and by (x, x) H 2x for a H p.
This isomorphism takes the trace map x H El x, on [fl r R] + into
the trace map x H Epl,,.xp on fploo R, and hence the trace-zero space
H = { x E [ TIr R] + I Fr xr = 0} into the trace-zero space

H={xE IIRI E xp=01.
Ploo plo

In this way we have translated all necessary invariants of the Minkowski
space KR to the product jlPloo Kp.

To a given replete ideal

a = of - a., = IZ pUP x lI pUP

Ply plo0

we now associate the following complete lattice ja in KR. The fractional
ideal of 9 K is mapped by the embedding j : K -- KR onto a
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complete lattice jaf of KR = j-jpl,, Kp. By componentwise multiplication,
aoo =1 Ipl p°P = (..., evP, ...)pl. yields an isomorphism

a. : KR -> KR, (xp)pl00 H (evPxp)ploo,
with determinant
(*) det(a0) = fl e°PfP = f `y (p)vP = 91(ac,).

pl00 PI-
The image of the lattice jaf under this map is a complete lattice

ja := a00 jaf.
Let vol(a) denote the volume of a fundamental mesh of ja with respect to
the canonical measure. By (*), we then have

vol(a) = 0t(a00) vol(af).

(3.1) Definition. If a is a replete ideal of K, then the real number
X (a) = - log vol(a)

will be called the Euler-Minkowski characteristic of a.

The reason for this terminology will become clear in § 8.

(3.2) Proposition. The Euler-Minkowski characteristic X (a) only depends
on the class of a in Pic(a) = J(n)/P(5).

Proof: Let [a] _ [a]f - [a]te _ (a) x [a],, be a replete principal ideal. Then
one has

[a]a = aaf x [a]ooaoo.
The lattice j (aaf) is the image of the lattice jaf under the linear map
ja : KR --> KR, (xp)pl00 E-> (axp)pl00. The absolute value of the determinant
of this mapping is obviously given by

Idet(ja)l = fl Jalp = fJ 01(p)-Up(°)

PI- PI-
For the canonical measure, we therefore have

vol(aaf) = ([a]o.)-1 vol(af).
Taken together with (*), this yields

vol([ala) ='1([a]00a00)vol(aaf) ='1(a00)vol(af) = vol(a),
so that X([a]a) = X(a).

The explicit evaluation of the Euler-Minkowski characteristic results from
a result of Minkowski theory, viz., proposition (5.2) of chap. I.
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(3.3) Proposition. For every replete ideal a of K one has

vol(a) = I dK 19't(a) .

Proof: Multiplying by a replete principal ideal [a] we may assume, as
vol([a]a) = vol(a) and 97([a]a) = 97(a), that of is an integral ideal of K. By
chap. 1, (5.2) the volume of a fundamental mesh of of is given by

VOl(af) = IdK I(o : af).

Hence

vol(a) = Xt(a,) vol(af) = fl(a)\/ I dK I m(af) = IdK 192(a) .

In view of the commutative diagram in § 1, p. 192, we will now introduce
the degree of the replete ideal a to be the real number

deg(a) = - log 9l(a) = deg(div(a)) .

Observing that
X(o) = -log IdKI,

we deduce from proposition (3.3) the first version of the Riemann-Roch
theorem:

(3.4) Proposition. For every replete ideal of K we have the formula

x (a) ( c ? ) .

In function theory there is the following relationship between the Euler-
Poincare characteristic and the genus g of the Riemann surface X in question:

X (o) = dim H°(X, ox) - dim H 1(X, ox) = 1 - g.
There is no immediate analogue of H' (X, ox) in arithmetic. However, there
is an analogue of H°(X, ox). For each replete ideal a = r{p pvp of the
number field K, we define

H°(a)={f EK*Ivp(f)>v,for all p).
This is a finite set because j H°(a) lies in the part of the lattice jaf c KR
which is bounded by the conditions I f I V e-vpfp , p I oo. As the analogue of
the dimension, we put 2(a) = 0 if H°(a) = 0, and in all other cases

t?(a) := log
#H°(a)
vol(W)
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where the normalizing factor vol(W) is the volume of the set

W=I(zz)EKR=[fc]+I Izrl <1}.
r

This volume is given explicitly by
vol(W) = 2r(27r)S,

where r, resp. s, is the number of real, resp. complex, primes of K (see the
proof of chap. I, (5.3)). In particular, one has

H°(o) = µ(K), so that f(o) = log 2r(271)S

because If ip _< 1 for all p, and jlp I f Ip = 1 implies If Ip = 1 for all p, so
that H°(o) is a finite subgroup of K* and thus must consist of all roots of
unity. This normalization leads us necessarily to the following definition of
the genus of a number field, which had already been proposed ad hoc by the
French mathematician ANDRE WELL in 1939 (see [138]).

(3.5) Definition. The genus of a number field K is defined to be the real
number

g = 40) - X (o) -log #u (K) I dKI
21' (27r)s

Observe that the genus of the field of rational numbers Q is 0. Using this
definition, the Riemann-Roch formula (3.4) takes the following shape:

(3.6) Proposition. For every replete ideal a of K one has
X (a) = deg(a) + E(o) - g.

The analogue of the strong Riemann-Roch formula
E(D)=deg(D)+1-g+E(1C-D),

hinges on the following deep theorem of Minkowski theory, which is due
to SERGE LANG and which reflects an arithmetic analogue of Sen-e duality.
As usual, let r, resp. s, denote the number of real, resp. complex, primes,
and n = [K : Q].

(3.7) Theorem (S. LANG). For replete ideals a = Flp p"o E J(o ), one has
s

#H°(at) = 2 (2n)
I dK I

9q(a) + 0 (9t(a)1)

if T(a) --> oo. Here, as usual, 0(t) denotes a function such that O(t)/t
remains bounded as t -+ oo.
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For the proof of the theorem we need the following

(3.8) Lemma. Let a1, ... , ah be fractional ideals representing the classes of
the finite ideal class group Pic((D). Let c be a positive constant and

a = 11 p"P I of = at, iJ2(p)"P < c0"t(a)fPl" for PI oo} .
p

Then the constant c can be chosen in such a way that
hJ(5)

= U %P(5).
i=1

Proof: Let f73i = (a E J(5)1 of = a,). Multiplying by a suitable replete
principal ideal [a], every a E J(o) may be transformed into a replete
ideal a' = a[a] such that of = ai for some i. Consequently, one has
J (o) _ Uh I i P(5). It therefore suffices to show that Bi c_ 2ti P (5)
for i = 1, ... , h, if the constant c is chosen conveniently. To do this, let
a = ai a00 E 93j, app = fp l00 p"P E Fl o,. R. Then we find for the replete
ideal

app = app(apo) " = j 1 p",
plop

where v' = vv - n Fglpp fqvq, that '7t(a') = 1, and thus Fplpp fpvp = 0.
The vector

.... ,fpV',...)E HR
p l-

therefore lies in the trace-zero space H = {(xp) E [pl00 lib I Eplpp xp = 01.
Inside it we have - see chap. I, (7.3) - the complete unit lattice ;(o*).
there exists a lattice point X(u) _ (... , - fpvp(u), ... )plpp, u e o*, such
that

Ifpvp - fpvp(u)I fpco

with a constant co depending only on the lattice X(o*). This implies

vp-vp(u) = vp+ 1 E fgVq-Vp(u) < 1 log0"t(ap))+cp = 1 log91(a)+cl
n gipp n n

with cl = co - n log'7t(ai). Putting now b = a[u-1] _ fp p"P, we get
bf = ai. This is because [u]f = (u) _ (1) and

fpnp = fp(vp - vp(u)) np log`i(a) + nci,

so that 9t(p)"p < e"c1s7t(a)fP/" for ploo; then b E 2ti, so that a = b[u] E
2ti P (o), where c = encl.
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Proof of (3.7): As O(t) = O(t) - 1, we may replace HO(a1) by

H°(a-1)=H°(a-')U{0}={f Eaf1I IfIp<01(p) for ploo}.

We have to show that there are constants C, C' such that

(*) I#H°(a 1) - 21i;K)S
I 01(a)I < C01(a)'_n

for all a E J(a) satisfying 01(a) > C. For a EK*, the set H°(a-') is
mapped bijectively via x H ax onto the set H°([ala 1). The numbers
#H°(a-1) and 01(a) thus depend only on the class a mod P(5). As by the
preceding lemma J(a) = Uh 1 2t1 P(O), it suffices to show (*) for a ranging
over the set %i.

For this, we shall use the identification of Minkowski space

KR= rjKp
pl-

with its canonical measure. Since of = at for a = Fjp p"P E 91j, we have

H°(a')={f Ea,'I IfIp:: 07(p)""forpIoo}.
We therefore have to count the lattice points in r = j a- 1 c KR which fall
into the domain

Pa= jl Dp
Pl-

where Dp = {x E Kp I IxIv < 01(p)"P}. Let F be a fundamental mesh of r.
We consider the sets

X={yErI (F+y)nPa:o o},
OY={yEP F+ycPa},

X N Y = { y E (F+y)n0Pa o}.

As Y c I'nPa = H°(a 1) c X and as UYEY(F+y) C P. c
one has

#Y < #H°(a ') < #X
as well as

This implies

#Y vol(F) < vol(Pa) < #X vol(F).

#H°(a') - yol(Pa)
vol(F) <#X-#Y=#(X NY).
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For the set Pa = fl , Dp, we now have

vol(Pa) = fl 2171(p)"P FT 2,r fl(p)"P = 2r(2n')sO1(aoo)
p real p complex

(observe here that, under the identification Kp = C, one has the equation
lx I p = Ix 12). For the fundamental mesh F, (3.3) yields

vol(F) = I dK I fl(af' )

From this we get

#H0(a 1) - 2r(27r)' IR(a) < #(X N Y).
IdKI

Having obtained this inequality, it suffices to show that there exist
constants C, C' such that

#(XNY)=#{yEFI (F+y)naPa54 O} <C0"t(a)'- ,

for all a E 2t; with 1(a) > C'. We choose C' = 1 and find the constant C
in the remainder of the proof. We parametrize the set Pa = IIploo Dp via the
mapping

rp : In --> Pa,

where I = [0, 1], which is given by

1 - Dp, t i ) 2ap(t - 2),

12-fDp,
if p real,

(p, 0) H ap (p cos 2 rO, p sin 27r6), if p complex,

where up = 91(p)"P. We bound the norm II II of the derivative
dcp(x) : R" -* lR' (x E I"). If dcp(x) = (a,k), then Ildv(x)II < nmax Iatkl.
Every partial derivative of v is now bounded by 2ap, resp. 2n ap. Since
a r= ?t;, we have that up ='31(p)"P < cO1(a)fP/", for all ploo. It follows that

II dcp(x) II < 27rn max aplf' < ci Y1(a)1/" .

The mean value theorem implies that

(**) jI
cp(x) - w(y) II < cl1R(a)'1" IIx - y II ,

where II II is the euclidean norm. The boundary of Pa,

aPo=U[dDpx f Dq],
p q9-`p

is parametrized by a finite number of boundary cubes I"-l of P. We
subdivide every edge of P'-1 into m = [' 1(a)1/"] > C' = 1 segments of
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equal length and obtain for I"-1 a decomposition into m"-' small cubes of
diameter < (n -1)'/2/m. From (**), the image of such a small cube under qO
has adiameter < (,-1)112

c1 Tt(a)'1" < (n-1)1/2ct - 1 < (n-1)'12c12 =: c2.
The number of translates F + y, y E F, meeting a domain of diameter < c2
is bounded by a constant c3 which depends only on c2 and the fundamental
mesh F. The image of a small cube under rp thus meets at most c3
translates F + y. Since there are precisely ma-1 = cubes in
o(I"-'), we see that cp(1"-1) meets at most c3[Ol(a)'/"]"-1 < C39t(a)'
translates, and since the boundary 8PQ is covered by at most 2n such
parts p(In-1), we do indeed find that

#{yErI (F+y)n8PQ00} <C
for all a E 2t; with 01(a) > 1, where C = 2nc3 is a constant which is
independent of a E 2t1, as required.

From the theorem we have just proved, we now obtain the strong version
of the Riemann-Roch theorem. We want to formulate it in the language of
divisors. Let D = Fp vpp be a replete divisor of K,

H°(D) = H°(o(D)) = { f E K* I vp(f) > -v}

1(D) = 2(o(D)) = log andg vol(W)
X (D) = X (o(D))

We call the number
i (D) = 1(D) - X (D)

the index of specialty of D and get the

(3.9) Theorem (Riemann-Roch). For every replete divisor D E Div(o) we
have the formula

1(D)=deg(D)+1(o)-g+i(D).
The index of specialty i (D) satisfies

i(D) = O(e ° deg(D))

in particular, i (D) 0 for deg(D) --+ oc.

Proof: The formula for 1(D) follows from X(D) = deg(D) + 1(o) - g
and x (D) = 1(D) - i(D). Putting a 1 = o(D), we find by (3.7) that

#H°(a ') 01(a)
(1 +m(a) 01(a)-1/")2''(27r)S 1dKI '
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for some function rp(a) which remains bounded as Yl(a) -* oo, so that
deg(D) = - log 57t(a-1) = log 9T(a) -> oo. Taking logarithms and observing
that log(1 + O (t)) = O (t) and T(a)-'/" = exp(-1 deg D), we obtain

$(D) = t(a ') = -log( 1dK I O1(a 1)) + O (9't(a)-1/`)

=X(D)+O(e-1d`g°).
Hence i(D)=£(D)-X(D)=O(e-1d`g°)

To conclude this section, let us study the variation of the Euler-Minkowski
characteristic and of the genus when we change the field K. Let L I K be a
finite extension and o, resp. 0, the ring of integers of K, resp. L. In §2 we
considered Dedekind's complementary module

(LIK = {x ELI Tr(xO) C o} = Homo(O,o).
It is a fractional ideal in L whose inverse is the different',i)LIK. From (2.6),
it is divisible only by the prime ideals of L which are ramified over K.

(3.10) Definition. The fractional ideal
CuK = (EKIQ = Homz(o,7L)

is called the canonical module of the number field K.

By (2.2) we have the

(3.11) Proposition. The canonical modules of L and K satisfy the relation
COL = (ELIKWK .

The canonical module WK is related to the Euler-Minkowski character-
istic X (o) and the genus g of K in the following way, by formula (3.3):

vol(o) = IdK 1-

(3.12) Proposition. deg (OK = -2X (o) = 2g - 2Q (o).

Proof: By (2.9) we know that NKIQ(ZKI(Q) is the discriminant ideal
DKIQ = (dK), and therefore by (1.6), (iii):

Yt(wK) _ (DKIQ)-1 = IdK I-1 ,

so that, as vol(o) = IdK 1, we have indeed
deg (OK = -109M(a)K) = log I dK I = 2 log vol(o) _ -2x(o)=2g-2(o).
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As for the genus, we now obtain the following analogue of the Riemann-
Hurwitz formula of function theory.

(3.13) Proposition. Let L I K be a finite extension and 9L, resp. 9K, the
genus of L, resp. K. Then one has

gL - f (oL) = [L : K](gK - f(oK)) + deg (ELIK .

In particular, in the case of an unramified extension L I K :

X (°L) _ [L : K] X (OK)

Proof: Since o)L = (tLIK1K, one has

t((OL) _(iLIK(DK)((tLIK) = O(WK)IL:K] tN(ELIK),

so that
deg wL = [L : K] deg coK + deg (EL I K .

Thus the proposition follows from (3.12).

The Riemann-Hurwitz formula tells us in particular that, in the decision
we took in § 1, we really had no choice but to consider the extension C LR
as unramified. In fact, in function theory the module corresponding by
analogy to the ideal (EL I K takes account of precisely the branch points of
the covering of Riemann surfaces in question. In order to obtain the same
phenomenon in number theory we are forced to declare all the infinite
primes T of L unramified, since they do not occur in the ideal QL IK

Thus the fact that C I IR is unramified appears to be forced by nature itself.
Investigating the matter a little more closely, however, this turns out not to
be the case. It is rather a consequence of a well-hidden initial choice that we
made. In fact, in chap. I, § 5, we equipped the Minkowski space

KR = [111c]+

with the "canonical metric"
T

(x,Y) _ ExY,
T

Replacing it, for instance, by the "Minkowski metric"

(x, Y) _ aTXTYT,
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ar = 1 if r = T, a t = z if r T, changes the whole picture. The Haar
measures on Ku belonging to (, ) and (,) are related as follows:

VOlcanonical (X) = 2s VOlMinkowski (X)

Distinguishing the invariants of Riemann-Roch theory with respect to the
Minkowski measure by a tilde, we get the relations

k (a) = X (a) + log 2S, !(a) = 2 (a) + log 2'

(the latter in case that H°(a) 0 0), whereas the genus remains unchanged.
Substituting this into the Riemann-Hurwitz formula (3.13) preserves its shape
only if one enriches 'tL I K into a replete ideal in which all infinite primes j3
such that LT K. occur. This forces us to consider the extension C R as
ramified, to put e"p1p = [Lp : Kp], fsl3jp = 1, and in particular

ep = [Kp : R], fp = 1.
The following modifications ensue from this. For an infinite prime p one has
to define

vp(a) = -eplog Ital, p'=e'14, `n(p) = e.
The absolute norm as well as the degree of a replete ideal a remain unaltered:

T(a) = IR(a), deg(a) log 91(a) = deg(a).

The canonical module wK however has to be changed:

COK = WK 1 1
p2log2

p complex

in order for the equation

deg&K = -2y(o) = 2g - 21(o)
to hold. By the same token, the ideal cLIK has to be replaced by the replete
ideal

LIK = 1 LIK F1 g321og2

3Ioo
e p#1

so that
WL = iLIK(WK).

In the same way as in (3.13), this yields the Riemann-Hurwitz formula

gL - f(cL) = [L : K](gK - 1?(OK)) + 2 deg LIK .

In view of this sensitivity to the chosen metric on Minkowski space Ku,
the mathematician UwE JANNSEN proposes as analogues of the function fields
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not just number fields K by themselves but number fields equipped with a
metric of the type

(X,Y)K (yrXryr,

ar > 0, a7 = az, on KR. Let these new objects be called metrized number
fields. This idea does indeed do justice to the situation in question in a very
precise manner, and it is of fundamental importance for algebraic number
theory. We denote metrized number fields (K, (, ) K) as K and attach to
them the following invariants. Let

(X,Y)K = >atXryr.
r

Let p = pr be the infinite prime corresponding to r : K -+ C. We then put
up = ar. At the same time, we also use the letter p for the positive real
number

p = e°`P E R* ,

which we interpret as the replete ideal (1) x (1, , 1, eaP, 1, - , 1) E
J(o) x r[ R. We put

pl-
ep = l/ap and fp = ap[Kp : R],

and we define the valuation vp of K* associated to p by

vp(a) = -ep log Irai.

Further, we put

Y(p) = efP and lalp = fl(p)-up(a),

so that again l a l p= I ra l if p is real, and Ja l p= I r a I2 if p is complex. For
every replete ideal a of K, there is a unique representation a = fl PIP, which
gives the absolute norm fl(a) _ f 57t(p)°P, and the degree p

p

degK (a) _ -log 'Y (a) .

The canonical module of k is defined to be the replete ideal

fl R ,

pl-
where coK is the inverse of the different 2K IQ of K IQ, and

moo = (ap )p E R+.
pica
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The Riemann-Roch theory may be transferred without any problem,
using the definitions given above, to metrizednumber fields k = (K, (, ) K).
Distinguishing their invariants by the suffix k yields the relations

vo1K(X) _ f ar vol(X),
r

because Ta : (KR, (, )K) --+ (K1ei ( , )), (xr) H ( ar xr), is an isometry
with determinant fr ar, and therefore

Xg(°K) = -logvolk(OK)

Qf(oK) =

= X (OK) - log /a-T,

#H°(OK)
log = £(OK) - log f ar .

vo1K(W) r
The genus

gg = tk(°K) - XK(°K) = Q(oK) - X (OK) = log
#/k (K) IdK

2r (2,r),'
does not depend on the choice of metric.

Just as in function theory, there is then no longer one smallest field, but Q
is replaced by the continuous family of metrized fields (Q, axy), a E R+,
all of which have genus g = 0. One even has the

(3.14) Proposition. The metrized fields (Q, axy) are the only metrized
number fields of genus 0.

Proof. We have
#/L(K) IdK Ig = log =

2 (27r)
0 #A (K) I dK 2r (2n)S

Since Jr is transcendental, one has s = 0, i.e., K is totally real. Thus
#µ(K) = 2 so that IdKI = 4r-1, where n = r = [K : Q]. In view of the
bound (2.14) on the discriminant

IdK
I1/2 >

nn (yr
ln/2,n!4/

this can only happen if n < 6. But for this case one has sharper bounds, due
to ODLYZKO (see [111], table 2):

n = 3 4 5 6

IdK I l/n > 3,09 4,21 5,30 6,35

This is not compatible with I dK 1/1: = 4 nn , so we may conclude that n < 2.
But there is no real quadratic field with discriminant IdK I = 4 (see chap. I,
§2, exercise 4). Hence n = 1, so that K = Q.
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An extension of metrized number fields is a pair k = (K, (, )K),
L = (L, )L), such that K C L and the metrics

(x,Y)K = arxrYT, (x,Y)L Naxoya
T Q

satisfy the relation aT > fia whenever r = Cr I K K. If 93 1 p are infinite primes
of L I K, q3 belonging to a and p to r = a I K, we define the ramification
index and inertia degree by

epIp = aT/fo and .fTIp = fiolaT[LT : Kp].
Thus the fundamental identity

EeTIpf`ii =[L:K]
TIP

is preserved. Also 93 is unramified if and only if aT For "replete prime
ideals" p = e1r, 93 = A, we put

iLIK(p) _ f lePIP, NLIK(93) _ pfMlc.
TIP

Finally we define the different of L ( K to be the replete ideal

OLIK = DLIK 2, E J(5L) = J(nL) X fJ R+,
TI-

where OL I K is the different of L I K and

0. = (f'p/ap)`p10o E 11 1+,
T1-

where /3 p = ,8 and ap = at (93 belongs to or and p to r = a I K)- With this
convention, we obtain the general Riemann-Hurwitz formula

gL - PL(oL) = [L : K](gk -ik(OK)) - 1

2
degDLlK.

If we consider only number fields endowed with the Minkowski metric,
then LET ; Kp is always ramified. In this way the convention found in
many textbooks is no longer incompatible with the customs introduced in the
present book.

§ 4. Metrized 0-Modules

The Riemann-Roch theory which was presented in the preceding section
in the case of replete ideals is embedded in a much more far-reaching
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theory which treats finitely generated c-modules. It is only in this setting
that the theory displays its true nature, and becomes susceptible to the most
comprehensive generalization. This theory is subject to a formalism which
has been constructed by AL.EXAI'IDER GROTHENDIECK for higher dimensional
algebraic varieties, and which we will now develop for number fields. In
doing so, our principal attention will be focused as before on the kind of
compactification which is accomplished by taking into account the infinite
places. The effect is that a leading role is claimed by linear algebra - for
which we refer to [151. Our treatment is based on a course on "Arakelov
Theory and Grothendieck-Riemann-Roch" taught by GÜNTER TAMME. There,
however, proofs were not given directly, as we will do here, but usually
deduced as special cases from the general abstract theory.

Let K be an algebraic number field and 0 the ring of integers of K. For
the passage from K to R and C, we start by considering the ring

(1) KC=K®QC.
It admits the following two further interpretations, between which we will
freely go back and forth in the sequel without further explanation. The set

X(C) =Hom(K,C)

induces a canonical decomposition of rings

(2) K C, atzI- zaa.
OEX(C) oX(C)

Alternatively, the right-hand side may be viewed as the set CA' =
Hom(X(C),C) of all functions x : X(C) - C, i.e.,

(3) Kc Hom(X(C),C).

The field K is embedded in K via

K-K®QC, a-+a®1,
and we identify it with its image. In the interpretation (2), the image of a e K
appears as the tuple aa of conjugates of a, and in the interpretation (3)
as the function x(o) = aa.

We denote the generator of the Galois group G(C IR) by F, or simply
by F. This underlines the fact that it has a position analogous to the Frobenius
automorphism F E G(FIlF), in accordance with our decision of § 1 to
view the extension CR as unramified. F induces an involution F on K
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which, in the representation Kr = Hom(X ((C), (C) for x : X (C) -+ C, is
given by

(Fx) (a) = x(o).
F is an automorphism of the R-algebra Kc. It is called the Frobenius
correspondence. Sometimes we also consider, besides F, the involution
z i-+ z on KC which is given by

z(a) = z(a).

We call it the conjugation. Finally, we call an element x E KC, that is, a
function x : X (C) -} C, positive (written x > 0) if it takes real values, and
ifx(a)> 0for all a EX(C).

By convention every o-module considered in the sequel will be supposed
to be finitely generated. For every such o-module M, we put

Mc=M®z C.
This is a module over the ring Kr = o ®z C, and viewing o as a subring of
Kr - as we agreed above - we may also write

MC=M®oKc
as M ®Z C = M ®o (o ®z P. The involution x i-* Fx on Kr induces the
involution

F(a(9 x)=a®Fx
on Mc. In the representation MC = M ®z C, one clearly has

F(a(9 z)=a®z.

(4.1) Definition. A hermitian metric on the Kc -module Mn is a sesqui-
linear mapping

(,)M:M(c xMe --) Kc,
i.e., a K(C -linear form (x, y)M in the first variable satisfying

(x,Y)M = (Y,x)M,

such that one has (x, x) M > 0 for x 0.

The metric ( , ) M is called F-invariant if we have furthermore

F(x,Y)M = (Fx, FY)M
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This notion may be immediately reduced to the usual notion of a hermitian
metric if we view the Kc -module MC, by means of the decomposition
Kc = ®a C, as a direct sum

Mc=M(&oKc= ® Ma
aEX(C)

of cC -vector spaces
Ma = M ®o.Q C.

The hermitian metric (, )M then splits into the direct sum

(X,Y)M = ® (XO.,ya)MQ
aEX(C)

of hermitian scalar products (, )Mv on the C-vector spaces Ma. In this
interpretation, the F -invariance of (x, y) M amounts to the commutativity of
the diagrams

Ma X Ma (') u
(C

FxF I F

Ma xMQ- .(C.
(?mQ

(4.2) Definition. A metrized o-module is a finitely generated o-module M
with an F -invariant hermitian metric on MC.

Example 1: Every fractional ideal a C K of o, in particular o itself, may
be equipped with the trivial metric

(x, y) = xY = ® XaYa
aEX (C)

on a ®z C = K ®Q C = Kc. All the F -invariant hermitian metrics on a are
obtained as

a(x, Y) = axY = ®a(o,)xaYa ,
a

where a E K(c varies over the functions a : X (C) R+ such that
a(a) = a(v).

Example 2: Let L 1 K be a finite extension and 21 a fractional ideal of L,
which we view as an o-module M. If Y(C) = Hom(L, C), we have the
restriction map Y (C) -* X (C), t H t I K, and we write t l or if o= t I K
For the complexification MC _ 2t ®z C = Lc, we obtain the decomposition

Mc= ® CC= ® Ma,
rEY(C) aEX(C)
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where Ma = ®rIa C. M is turned into a metrized o-module by fixing the
standard metrics

(x,Y)MQ = L xrYt
rIa

on the [L : K] -dimensional C -vector spaces Ma .

If M and M' are metrized o-modules, then so is their direct sum M ® M',
the tensor product M ® M', the dual M = Homo (M, o) and the n-th exterior
power ARM. In fact, we have that

(M (D M')c=McED (M(DoM')c=Mc®KcM,c,
Mc = HomK,, (Mc, Kc) , (nnM)c = nnKCMc,

and the metrics on these Kc -modules are given by
(x ®x',Y (D Y')mom, = (x,Y)M + (x',Y')M', resp.

(x ®x',Y ®Y')Mom, = (x,Y)M (x',Y')M', resp.

(x,Y)M = (x,Y)M, resp.
(x1 A... Axn,Yt A ... AYn)AnM = det((xi,Yi)M).

Here .x, in the case of the module Mc, denotes the homomorphism
x=(,x)M:Mc--* Kc.

Among all o-modules M the projective ones play a special role. They
are defined by the condition that for every exact sequence of o-modules
F' -+ F -a F" the sequence

Homo (M, F') --k Homo (M, F) - Homo (M, F")
is also exact. This is equivalent to any of the following conditions (the last
two, because o is a Dedekind domain). For the proof, we refer the reader to
standard textbooks of commutative algebra (see for instance [90], chap. IV,
§3, or [16], chap. 7, §4).

(4.3) Proposition. For any finitely generated o-module M the following
conditions are equivalent:
(i) M is projective,
(ii) M is a direct summand of a finitely generated free o -module,
(iii) M is locally free, i.e., M ®o op is a free or-module for any prime
ideal p,
(iv) M is torsion free, i.e., the map M -+ M, x H ax, is injective for all
nonzero a E 0,
(v) M = a ® on for some ideal a of o and some integer n > 0.
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In order to distinguish them from projective o-modules, we will henceforth
call arbitrary finitely generated c-modules coherent. The rank of a coherent
o-module M is defined to be the dimension

rk(M) = dimK(M (&o K).
The projective o-modules L of rank 1 are called invertible o-modules,
because for them L ®o L -> a, a ®a i--* a(a), is an isomorphism. The
invertible o-modules are either fractional ideals of K, or isomorphic to a
fractional ideal as o-modules. Indeed, if L is projective of rank 1 and a E L,
a 0 0, then, by (4.3), (iv), mapping

L-*L®oK=K(a®1), xH f(x)(a(9 1),
gives an injective o-module homomorphism L -)- K, x H f (x), onto a
fractional ideal a c K.

To see the connection with the Riemann-Roch theory of the last section,
which we are about to generalize, we observe that every replete ideal

a = 171 pv" 11 p" = afa.
ptoo plco

of K defines an invertible, metrized o-module. In fact, the identity
a,, = flpi,,. p"p yields the function

a : X (C) R+, a(or) = e2upo

where pa denotes as before the infinite place defined by a : K -* C. Since
pQ = p, , one has a (Q) = a (o-), and we obtain on the complexification

afc =of®zC=KC
the F -invariant hermitian metric

(x,y)a=axy= ® e2vp°xvyv
QEX(C)

(see example 1, p. 227). We denote the metrized o-module thus obtained
by L (a).

The ordinary fractional ideals, i.e., the replete ideals a such that
a,,, = 1, and in particular o itself, are thus equipped with the trivial
metric (x, y)Q = (x, y) = xy.

(4.4) Definition. Two metrized o-modules M and M' are called isometric
if there exists an isomorphism

f:M-3M'
of a-modules which induces an isometry fc : Mc -+ MC'.
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(4.5) Proposition.
(i) Two replete ideals a and b define isometric metrized o-modules L(a)
and L(b) if and only if they differ by a replete principal ideal [a]: a = b[a].
(ii) Every invertible metrized o-module is isometric to an o-module L (a).
(iii) L(ab) = L(a) ®, L(b), L(at) = L(a).

Proof: (i) Let a = fl, pvp, b = Hp p/`p, [a] = rjp pup(a), and let

a(a) = e2 , P(a) = e2upo , Y(a) = e2UVo(a)

If a = b[a], then vp = µp + vp(a); thus a = /3y, and of = bf(a) The
o-module isomorphism bf af, x H ax, takes the form (, )b to the form
(, )a. Indeed, viewing a as embedded in KE, we find a = ®, as and

as = ® e-2vpa (a) = Y-i
or

because up, (a) log Iaa I, so that

(ax, ay),, =a(ax,ay) =ay_1(x,y) (x, y) = (x,y)b-
Therefore bf -k af, x H ax, gives an isometry L (a) - L (b).

Conversely, let g : L(b) -* L(a) be an isometry. Then the o-module
homomorphism

g:bf*af
is given as multiplication by some element a E bf 1 af = Homo(bf, af). The
identity

,3(x, y) = (x, y)b = (g(x), g(y))a = a(ax,ay) = ay-1(x, y)
then implies that a = ,By, so that vp = µp + vp(a) for all pkoo. In view
of of = b f(a), this yields a = b[a].
(ii) Let L be an invertible metrized o-module. As mentioned before, we have
an isomorphism

g:L -oaf
for the underlying o-module onto a fractional ideal af. The isomorphism
gE : Lc -* afc = KE gives us the F -invariant hermitian metric
h(x, y) = (gc' (x), g(l(y))L on Kc. It is of the form

h(x, y) = axy
for some function a : X (C) - R+ such that a (Q) = a (a). Putting now
a(a) = e2vpa , with vp, E R, makes of with the metric h into the metrized
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o-module L(a) associated to the replete ideal a = of fl p°P, and L is
isometric to L(a).
(iii) Let a = l , pUP, b = fp pAP, a(v) = e2"Pa, (a) = e2µpa . The
isomorphism

of ®, bf._ afbf, a(& bi ) ab,
between the o-modules underlying L (a) ®,, L (b) and L (ab) then yields, as
(ab,a'b')ab = aPaba'b' = a(a,a'),B(b,b') = (a, a')a(b,b')b, an isometry
L(a) ®a L(b) = L(ab).

The o-module Homy, (af, o) underlying L(a) is isomorphic, via the
isomorphism

ai ) ax),
to the fractional ideal of 1. For the induced KC -isomorphism

gC : KC HomKc (KC, Kc)
we have

gC (X) (Y) = xY = a-laxY = a-1(Y, x)L(a) ,
so that gC(x) = a-1X, and thus

(gc(x),gC(Y))L (a) = a-2X ,Y)L(a) = a-2 (x,Y)L(a)
= aIxY = (x,Y)L(a I)

Thus g gives an isometry L(a) - L(a 1).

(4.6) Definition. A short exact sequence

0-) M'
of metrized o-modules is by definition a short exact sequence of the
underlying o-modules which splits isometrically, i.e., in the sequence

0-) M" -MC - M" -) 0,
M is mapped isometrically onto and the orthogonal complement
(aCM,)-L is mapped isometrically onto M,'C'.

The homomorphisms a, ,B in a short exact sequence of metrized o-modules
are called an admissible monomorphism, resp. epimorphism.

To each projective metrized o-module M is associated its determinant
detM, an invertible metrized o-module. The determinant is the highest
exterior power of M, i.e.,

det M = ARM, n = rk(M).
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(4.7) Proposition. If 0 -+ M' M 4 M" --> 0 is a short exact
sequence of projective metrized o-modules, we have a canonical isometry

det M' ®o det M" - det M.

Proof: Let n' = rk(M') and n" = rk(M"). We obtain an isomorphism

K : det M' ®o det M" --f det M

of projective o-modules of rank 1 by mapping

A...Aam',nmin...mmn,,
where m i , ..., mn are preimages of m i , ... , m",, under f M -+ W.
This mapping does not depend on the choice of the preimages, for if, say,
m + am' ,+t , where M',+1 E M', is another preimage of m i , then

am' A ... A am',A(mi + am/n/+0 A m'''' A ... mm
=am' A...Aam',nini A...Ain11

since am i A ... A amn, A am',+, = 0. We show that the o-module iso-
morphism K is an isometry. According to the rules of multilinear algebra it
induces an isomorphism

K : det Mc ®Kc det M,c' -> det Mc

of Kc-modules. Let x , y, E Mc, i = 1, .. . , n' , and xi, y; E a2 '
j = 1, ..., n", and furthermore

x'=AX', y'=Ay; x = Ajxj, Y = Ajyj .
Then we have

(K (X' (9 ,8x), K(y' 0 $y))detM = (ax' Ax, ay' A y)detM

Yk)M'
= det

0 (fixi,Yyt)M"

= det((xi, yk)M,) det((,8xj, fyt)M")

= (x', Y')detM' (fix, ,Y)detM"

(9 fix, Y' 0 $Y)detM'®detM"

Thus K is an isometry.
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Exercise 1. If M, N, L are metrized o-modules, then one has canonical isometrics
M®oN - N®o M, (M (Do N)®oL = M®o(N(Do L),

M®o(N(D L) = (M ®o N)®(M (go L).
Exercise 2. For any two projective metrized o-modules M, N, one has

s IA(M (DN) =SAMOAN.
I+j=n

Exercise 3. For any two projective metrized o-modules M, N, one has
det(M ®o N) - (detM)®rk(N) ®o (detN)®`" .

Exercise 4. If M is a projective metrized o-module of rank n, and p > 0, then there
is a canonical isometry

det(A M) (det M)®(P-!) .

§ S. Grothendieck Groups

We will now manufacture two abelian groups from the collection of
all metrized o-modules, resp. the collection of all projective metrized o-
modules. We denote by (M) the isometry class of a metrized n-module M
and form the free abelian group

Fo(o) = ® Z{M), resp. F°(o) = ® Z[M),
(M) (M)

on the isometry classes of projective, resp. coherent, metrized o-modules. In
this group, we consider the subgroup

Ro(o) c Fo(n), resp. R°(o) S; F°(5),
generated by all elements (M') - {M} + {M"} which arise from a short exact
sequence

0-) M' -aM -) M"-3.0
of projective, resp. coherent, metrized o-modules.

(5.1) Definition. The quotient groups

Ko(o) = Fo(o)/Ro(o), resp. K°(n) = F°(5)/R°(o)
are called the replete (or compactified) Grothendieck groups of o. If M
is a metrized o-module, then [M] denotes the class it defines in Ko(o),
resp. K°(n).
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The construction of the Grothendieck groups is such that a short exact
sequence

0 ) M' -k M --) M"-+0
of metrized o-modules becomes an additive decomposition in the group:

[M] = [MI] + [M"].
In particular, one has

[M' ® M"] = [M'J + [M"] .

The tensor product even induces a ring structure on K°(5), and K°(o) then
becomes a K°(o)-module: extending the product

(m)[0) := IM 011 M')
by linearity, and observing that N ®M M ®N and (M (D N) ®L
M® (N ®L), we find right away that F°(o) is a commutative ring and F°(o)
is a subring. Furthermore the subgroups R°(o) c F°(n) and R°(o) S F°(5)
turn out to be F°(o)-submodules. For if

0 --a M' - ) M ---f M" 0

is a short exact sequence of coherent metrized o-modules, and N is a
projective metrized o-module, then it is clear that

0-;N®M'- ) NOM
is a short exact sequence of metrized o-modules as well, so that, along with
a generator {M'} - {M) + (M"}, the element

(N)((M'}-{M}+(M")) ={N®M'}-{N®M}+{N(9 M")
will also belong to R°(5), resp. R°(5). This is why K°(o) = F°(5)IR°(a)
is a ring and KO (5) = F°(o)/R°(n) is a KO (5) -module.

Associating to the class [M] of a projective o-module M in K°(o) its
class in K°(o) (which again is denoted by [M]), defines a homomorphism

K°(o) -a K°(5).
It is called the Poincare homomorphism. We will show next that the
Poincard homomorphism is an isomorphism. The proof is based on the
following two lemmas.

(5.2) Lemma. All coherent metrized o-modules M admit a "metrized
projective resolution", i.e., a short exact sequence

0-fE-->F--) M-) 0
of metrized o-modules in which E and F are projective.
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Proof: If a t , ..., a, is a system of generators of M, and F is the free
o-module F = o", then

F-->M, (xi, ..., x,,) i ) Ext(xt,
i=l

is a surjective o-module homomorphism. Its kernel E is torsion free, and
hence a projective o-module by (4.3). In the exact sequence

0 ) Er ) Fc 1 Mo ) 0,

we choose a sections : MC --> Fo of f , so that Fc = Ec ® sMc. We obtain
a metric on Fc by transferring the metric of Mo to sMc, and by choosing
any metric on EC. This makes 0 -* E F - M -± 0 into a short exact
sequence of metrized o-modules in which E and F are projective.

In a diagram of metrized projective resolutions of M

0 -a E -k F -) M -- 0

0--) E' -k F' -* M -+0
the resolution in the top line will be called dominant if the vertical arrows
are admissible epimorphisms.

(5.3) Lemma. Let

0 ) E' ) F' M -- 0, 0 -- E" F" f M 0

be two metrized projective resolutions of the metrized o-module M. Then,
taking the o-module

F = F'XMF"{(x',x")EF'xF"I f'(x')=f"(x")}
and the mapping f : F -- M, (x',x") H f'(x') = f"(x"), one obtains a
third metrized projective resolution

0 )

E = E' x E" which dominates both given ones.
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Proof: Since F' ® F" is projective, so is F, being the kernel of the
homomorphism F' (D F" ff M. Thus E is also projective, being the
kernel of F -+ M. We consider the commutative diagram

0 - E' - F(C' f MC - 0

0-) Ec
I

0 -+ E"

T
s

1

- FF f _ Mc --a 0

I
S

1f
FF = _ MC 0,

,.,,

where the vertical arrows are induced by the surjective projections

F'T) F', F - F".
The canonical isometries

s':M(C ) s'Mc, s":M(C -) s"M(C
give a section

s:MC-) FF, sx=(s'x,s"x),
of F which transfers the metric on Me to a metric on sM(C. EC = E' x E"C (C

carries the sum of the metrics of E', E", so that F(c = Ec ® sMc also
receives a metric, and

0) E-) F - M -) 0
becomes a metrized projective resolution of M. It is trivial that the projections
E E', and E --> E" are admissible epimorphisms, and it remains to show
this for the projections 7r' : F -* F', ir" : F -+ F". But we clearly have the
exact sequence of o-modules

0,E" `)F=F'xMF" F' 0,

where ix" = (0,x"). As the restriction of the metric of F to E = E' x E"
is the sum of the metrics on E' and E", we see that i : E" -* M' is anC (C

isometry. The orthogonal complement of i E" in FF is the space

F' x s"M r` s"a E F' x s"M '(x') = a
Indeed, on the one hand it is clearly mapped bijectively onto FF, and on the
other hand it is orthogonal to iE" E. For if we write x' = s'a+e', with e' E Ec,
then

(x', s"a) = sa + (e', 0),
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where (e', 0) E EC and we find that, for all x" E EC",

(ix", (x', s"a)) F =((0,x"),sa)F+((0,x"),(e',0))E =0
Finally, the projection F. x Mc s"Mc -i- FC' is an isometry, for if (x', s"a),
(y', s"b) E FC' x Mc s"MM and x' = s'a + e', y' = s'b + d', with e', d' E Ec,
then we get

(x', s"a) = sa + (e', 0), (y', s"b) = sb + (d', 0)

and

((x', s"a), (y' s"b)) F = (sa, sb) F + (sa, (d', 0)) F + ((e', 0), sb) F
+ ( (e', 0), (d', 0)) E

= (a, b)M + (e, d') El = (s'a, s'b)F' + (e'; d') E,

= (s'a + e', s'b + d')F' = (x', Y') F1 .

(5.4) Theorem. The Poincare homomorphism

Ko(o) --f K°(n)
is an isomorphism.

Proof: We define a mapping

7r : FO(45) KO (5)

by choosing, for every coherent metrized o-module M, a metrized projective
resolution 0-) E-aF->M--) 0
and associating to the class {M} in F°(o) the difference [F] - [E] of the
classes [F] and [E] in Ko(o). To see that this mapping is well-defined let us
first consider a commutative diagram

0 -a E -) F M --* 0

0-+ E' -* F' -*M - ) 0

of two metrized projective resolutions of M, with the top one dominating the
bottom one. Then E -* F induces an isometry ker(a)-Z ker($), so that we
have the following identity in Ko (n) :

[F] - [E] = [F'] + [ker(l)] - [E'] - [ker(a)] = [F'] - [E'].
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If now0--* E'-> F'-+ M__> 0,and0, E"-* F"-* M-+0are two
arbitrary metrized projective resolutions of M, then by (5.3) we find a third
one, 0 E --> F -+ M -> 0, dominating both, such that

[F'] - [E'] = [F] - [E] = [F"] - [E"].
This shows that the map,-r : F°(o) -+ Ko(o) is well-defined. We now show
that it factorizes via KO (0) = F°(o)/R°(o). Let 0 -* M' -* M--*M" -* 0
be a short exact sequence of metrized coherent o-modules. By (5.2), we can
pick a metrized projective resolution 0 -+ E -+ F f) M -> 0. Then clearly
0 -+ E" -* F M" -+ 0 is a short exact sequence of metrized o-modules
as well, where we write f" = a o f and E" = ker(f"). We thus get the
commutative diagram

0. E , F f) M ' 0
lid 1-.....LLLLL n

> E" > F f M" ) 00

and the snake lemma gives the exact sequence of o-modules

0) E) E"-f-> M') 0.
It is actually a short exact sequence of metrized o-modules, for E is mapped
isometrically by f onto M, so that E"L C E' is mapped isometrically by f
onto Mc". We therefore obtain in K0(5) the identity

rr(M') - ir(M) +n{M"} = [E"] - [E] - ([F] - [E]) + [F] - [E"] = 0.
It shows that r : F° (5) --* K° (o) does indeed factorize via a homomorphism

K°(o) -+ Ko(5).
It is the inverse of the Poincare homomorphism because the composed maps

Ko(o) -) K°(o) -) Ko(o) and K°(o) -) KO (5) -> K°(o)
are the identity homomorphisms. Indeed, if 0 -> E --* F -* M -3 0 is
a projective resolution of M, and M is projective, resp. coherent, then in
K°((5), resp. K°(5), one has the identity [M] = [F] - [E]. 0

I

The preceding theorem shows that the Grothendieck group K0(5) does not
just accommodate all projective metrized o-modules, but in fact all coherent
metrized o-modules. This fact has fundamental significance. For when
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dealing with projective modules, one is led very quickly to non-projective
modules, for instance, to the residue class rings o/a. The corresponding
classes in K°(5), however, can act out their important roles only inside the
ring K0(5), because only this ring can be immediately subjected to a more
advanced theory.

The following relationship holds between the Grothendieck ring K°(o)
and the replete Picard group Pic(o), which was introduced in § 1.

(5.5) Proposition. Associating to a replete ideal a of K the metrized o-
module L (a) yields a homomorphism

Pic(a) --) Ko(d)*, [a] E--) [L(a)],
into the unit group of the ring Ko(o).

Proof : The correspondence [a] r- [L (a)] is independent of the choice of
a replete ideal a inside the class [a] E Pic(o). Indeed, if b is another
representative, then we have a = b[a], for some replete principal ideal [a],
and the metrized o-modules L(a) and L(b) are isometric by (4.5), (i), so that
[L(a)] _ [L(b)]. The correspondence is a multiplicative homomorphism as

[L(ab)] = [L(a) ®o L(b)] = [L(a)][L(b)].

In the sequel, we simply denote the class of a metrized invertible o-
module L(a) in K°(o) by [a]. In particular, to the replete ideal o = fl p°
corresponds the class 1 = [o] of the o-module o equipped with the trivial
metric.

(5.6) Proposition. K°(o) is generated as an additive group by the ele-
ments [a].

Proof: Let M be a projective metrized o-module. By (4.3), the underlying
o-module admits as quotient a fractional ideal af, i.e., we have an exact
sequence

0-) N-) M ) af+0
of o-modules. This.becomes an exact sequence of metrized o-modules once
we restrict the metric from M to N and choose on of the metric which is
transferred via the isomorphism N,-CL = afo. Thus of becomes the metrized
o-module L (a) corresponding to the replete ideal a of K, so that we get the
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identity [M] = [N] + [a] in Ko(o). Induction on the rank shows that for
every projective metrized o-module M, there is a decomposition

[Ml = [at ] + ... + [a,.] .

The elements [a] in K0(o) satisfy the following remarkable relation.

(5.7) Proposition. For any two replete ideals a and 6 of K we have in
K0(5) the equation

([a] - 1)([b] - 1) = 0.

Proof (TAMME): For every function a : X (C) -+ C let us consider on the
Kc-module Kc = ®,,X(C) C the form

axy = ®a(cr)x,Ya
Q

For every matrix A = \ 8 Y / of such functions, we consider on the
KC -module Kc ® Ko the form

(x ®Y,x'(D y')A =axx'+yxy'+Syx'+,BYY.
ax, resp. ()A, is an F -invariant metric on Kc, resp. on Kc ® Kc, if
and only if a is F-invariant (i.e., a(a) = a(5)) and a(a) E R+, resp. if all
the functions a,y,S are F-invariant, a(o), 8(a) E R+ and S = y, and if
moreover det A = a,8 - y j7 > 0. We now assume this in what follows.

Let a and b be fractional ideals of K. We have to prove the formula

[a] + [6] _ [a6] + 1.
We may assume that of and b f are integral ideals relatively prime to one
another, because if necessary we may pass to replete ideals a' = a[a],
6' = b[b] with corresponding ideals a' = afa, bf = bfb without changing thef
classes [a], [6], [a6] in Ko(o). We denote the o-module af, when metrized

, forby ax/y`, by (af,a), and the o-module of ®6f, metrized by (, )A)an
A = i y Y )bY(afbfA).GivenanYtwomatricesA= (cl57

Y d

a'
Y'

'A'= Y we write
1 j61

A A',
if [(af (D 6f), A] = [(af ® bf), A] in Ko(o). We now consider the canonical
exact sequence

0--) af-+ afED 6f-) 6f- 0.
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Once we equip of®b f with the metric(, ) A which is given by A= (Y-

we

a Yobtain

the following exact sequence of metrized o-modules:

(*) 0 (af, a) (af ® b f, A) - - (b f, fl - YY)
, 0.

Indeed, in the exact sequence

0 - Kc Kc (D Kc - ± KC -f 0,
the restriction of )A to K(C ® {0} yields the metric axy on Kc,
and the orthogonal complement V of Kc ® {0} consists of all elements
a + b E Kr_ ® KC such that

(xED 0,aED b) =axa+yxb =0,
for all x E K(c, so that

V -* KC, (-y /a)b ®b F--) b, transfers the metric (, )A

on V into the metric 8x, where 3 is determined by the rule
S = {7r -t(1) n-1(1))A = ((-y/a)1 ® 1, (-y/a)1 (P 1)A

YY Y Y YY=aaZ -Y- -ya +fl_fl - a
This shows that (*) is a short exact sequence of metrized o-modules, i.e.,

CY

P by ,B + Y7, we get

CY fj+Ya I C0
Applying the same procedure to the exact sequence 0 bf -+ of ® bf -
a f -* 0 and the metric ( Y ,) on of ®b f, we obtain

CaYfit

;')-(O ).
Choosing

/3'=P+YY, a'=
01

a,8

Ya
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makes the matrices on the left equal, and yields
a8(a 0) (fi+vv0 OCL

or, if we put 8 = ,B + Ya ,

(0 S) ti (0 8

which is valid for any F-invariant function 8 : X (C) -+ R such that 8 >
This implies furthermore

, 0) 0)
for any two F-invariant functions 8, s : X (C) -* I1 . For if K : X (C) -* R
is an F-invariant function such that K > 8, x > E, then (**) gives

(0 8)x(0 K) - (0 C

Now putting 8 = and s = 1 in (* * *), we find

[(af, a)] + [(bf, fi)] = [(af, ak)] + [bf].

For the replete ideals a = Hp PIP, b = rjp PIP, this means

(1) [a] + [b] _ [abj + [bf],
for if we put a(a) = e2DPa , P(or) = e2uPQ 'then we have

(af,a) =L(a), L(b), (af,ap) = L(ab.)
On the other hand, we obtain the formula

(2) [a] + [bf] = [abf] + 1
in the following manner. We have two exact sequences of coherent metrized
o-modules:

0 -* (afbf,a) (af,a) af/afbf -+ 0,
0 -± (bf, 1) -* (o, l) -* o/bf * 0.

As a f and bf are relatively prime, i.e., a f + bf = o, it follows that

of/afbf -) o/bf
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is an isomorphism, so that in the group K°(o) one has the identity
[af/afbf] _ [o/bf], and therefore

[(af, a)] - [(afbf, a)] = [(0,1)] - [(bf, 1)],
and so

[a]-[abf]=1-[bf].
From (1) and (2) it now follows that

[a] + [b] = [ab.] + [bf] = [abocbf] + 1 = [ab] + 1.
In view of the isomorphism K°(o) - K°(5), this is indeed an identity
in K° (o).

§ 6. The Chern Character

The Grothendieck ring K°(o) is equipped with a canonical surjective
homomorphism

rk:K°(5)-f Z.
Indeed, the rule which associates to every isometry class (M} of projective
metrized o-modules the rank

rk(M} = dimK (M (9o K)

extends by linearity to a ring homomorphism F°(o) -* Z. For a short exact
sequence 0 M' --? M -* M" -+ 0 of metrized o-modules one has
rk(M) = rk(M') + rk(M"), and so rk((M'} - (M) + {M"}) = 0. Thus rk is
zero on the ideal R° (o) and induces therefore a homomorphism KO (5) -+ Z.
It is called the augmentation of K°(o) and its kernel I = ker(rk) is called
the augmentation ideal.

(6.1) Proposition. The ideal I, resp. I2, is generated as an additive group
by the elements [a] - 1, resp. ([a] - 1)([b] - 1), where a, b vary over the
replete ideals of K.

Proof: By (5.6), every element E K°(o) is of the form

i=1
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If E I, then ni = 0, and thus

ni[ai]-ni =>ni([ai]-1).
The ideal 12 is therefore generated by the elements ([a] - 1)([b] - 1). As

[c]([a] - 1)([b] - 1) = (([ca] - 1) - ([c] - 1)) ([b] - 1),
these elements already form a system of generators of the abelian group 12.

By (5.7), this gives us the

(6.2) Corollary. 12 = 0.

We now define
grKo(n)=Z®1

and turn this additive group into a ring by putting xy = 0 for x, y E I.

(6.3) Definition. The additive homomorphism

c1 : Ko(o) -) I, c1(.) = - rk(4)
is called the first Chern class. The mapping

ch : Ko(o) -> grKo(o), ch(i) =
is called the Chern character of Ko(o).

(6.4) Proposition. The Chern character
ch : KO (5) -k grKo(n)

is an isomorphism of rings.

Proof: The mappings rk and c1 are homomorphisms of additive groups, and
both are also multiplicative. For rk this is clear, and for cl it is enough to
check it on the generators x = [a], y = [b]. This works because

c1(xY)=xy-1 =(x-1)+(y-1)+(x-1)(Y-1)=c1(x)+c1(Y),
because (x - 1) (y - 1) = 0 by (5.7). Therefore ch is a ring homomorphism.
The mapping

Zee -+ Ko(o), n® I--> E+ n,
is obviously an inverse mapping, so that ch is even an isomorphism.
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We obtain a complete and explicit description of the Chem character by
taking into account another homomorphism, as well as the homomorphism
rk : K0(5) -+ 7L, namely

det : Ko(o) -) Pic(as)
which is induced by taking determinants det M of projective o-modules M
as follows (see § 4). det M is an invertible metrized o-module, and therefore
of the form L (a) for some replete ideal a, which is well determined up
to isomorphism. Denoting by [det M] the class of a in Pic(o), the linear
extension of the map (M) ra [detM] gives a homomorphism

det : FO (5) ---) Pic(o).
It maps the subgroup Ro(o) to 1, because it is generated by the elements
{M') - (M) + {M"} which arise from short exact sequences

0-) M'---M-aM"-±0
of projective metrized o-modules and which, by (4.7), satisfy

det(M) = [detM] = [detM' ® detM"]
= [det M'][det M"] = det{M'} det{M"} .

Thus we get an induced homomorphism det : Ko(o) -+ Pic(a). It satisfies
the following proposition.

(6.5) Proposition. (i) The canonical homomorphism
Pic(a) -) Ko(o)*

is injective.
(ii) The restriction of det to I,

det : I - Pic(o),
is an isomorphism.

Proof: (i) The composite of both mappings

Pic(o) -) Ko(o)* d Pic(o)

is the identity, since for an invertible metrized o-module M, one clearly has
det M = M. This gives (i).
(ii) Next, viewing the elements of Pic(o) as elements of Ko(o),

8: Pic(o) -) I, 8(x) = x - 1,
gives us an inverse mapping to det : I -+ Pic(as). In fact, one has
det o 8 = id since det([a] - 1) = det[a] = [a], and 8 o det = id since
8(det([a] - 1)) = 8(det[a]) = 6([a]) = [a] - 1 and because of the fact that
I is generated by elements of the form [a] - 1 (see (6.1)).
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From the isomorphism det : I -- f Pic(a), we now obtain an
isomorphism

gr Ko(o) --> Z ®Pic(o)
and the composite

K0(o) `+ grK0(o) `d®a' 7L ®Pic(o)

will again be called the Chem character of Ko(o). Observing that
det( - 1) = this yields the explicit description

of the Grothendieck group Ko (5):

(6.6) Theorem. The Chem character gives an isomorphism

ch : Ko(o) -* Z ® Pic(o), ch(i) =

The expert should note that this homomorphism is a realization map
from K-theory into Chow-theory. Identifying Pic(o) with the divisor
class group CH1(o), we have to view Z ® Pic(o) as the "replete" Chow
ring CH(o).

§ 7. Grothendieck-Riemann-Roch

We now consider a finite extension LIK of algebraic number fields
and study the relations between the Grothendieck groups of L and K.
Let o, resp. 0, be the ring of integers of K, resp. L, and write
X(C) = Hom(K, C), Y(C) = Hom(L, Q. The inclusion i : o 0 and the
surjection Y (C) -> X (C), Or t-> (T I K, give two canonical homomorphisms

i* : K0(5) -) Ko(O) and i* : K0(O) -> Ko(o),
defined as follows.

If M is a projective metrized o-module, then M ®o 0 is a projective
0-module. As

(M®o0)C=M®o0®zC=MC®KcLC,
the hermitian metric on the Kc-module Mr extends canonically to an
F-invariant metric of the Lc-module (M ®o O)n. Therefore M (9o 0 is
automatically a metrized 0-module, which we denote by i*M. If

0-) M' -aM - ) M"-) 0
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is a short exact sequence of projective metrized o-modules, then
0) M'®oO)M®oO ) M"(ga0 ) 0

is a short exact sequence of metrized 0-modules, because 0 is a projective
o-module and the metrics in the sequence

0--fMC) M'C
simply extend Lc-sesquilinearly to metrics in the sequence of Lc-modules

0) M,C ®KcLc -> Me®KcLc +MC" ®KcLc-*0.
This is why mapping, in the usual way (i.e., via the representation
Ko(o) = Fo(o)l Ro(o)),

M [i *Ml = [M ®o Ol
gives a well-defined homomorphism

i*:K0(o)-->K0(O).
The reader may verify for himself that this is in fact a ring homomorphism.

On the other hand, if M is a projective metrized 0-module, then M
is automatically also a projective o-module. For the complexification
Mr = M ®z C we have the decomposition

Mc _ ® Mt = ® ® Mt = ® M,,
VEY(C) oEX(C) rlQ QEX(C)

where M= = M ®o, t C and
Ma=M®o,QC=®Mt.

tJo
The C -vector spaces Mt carry hermitian metrics (, ) Mi , and we define the
metric (, M. on the C-vector space MQ to be the orthogonal sum

(x,Y)MQ = E (xt,Y)MT.
tJo

This gives a hermitian metric on the Kc -module M(C, whose F -invariance
is clearly guaranteed by the F-invariance of the original metric (, )M. We
denote the metrized o-module M thus constructed by i*M.

If 0 -+ M` -* M M" - 0 is a short exact sequence of projective
metrized 0-modules, then

0-)
is clearly an exact sequence of projective metrized o'-modules. As before,
this is why the correspondence

M i [i*M]
gives us a well-defined (additive) homomorphism

i* : K0(O) --* Ko(o).
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(7.1) Proposition (Projection Formula). The diagram
Ko(O) x KO (0) -= KO (0)

t*1
Ko(o) x Ko(n) > Ko(5)

is commutative, where the horizontal arrows are multiplication.

Proof: If M, resp. N, is a projective metrized O-module, resp. o-module,
there is an isometry

i*(M ®o i*N) - i*M ®o N
of projective metrized o-modules. Indeed, we have an isomorphism of the
underlying o-modules

M®o(N0,0) - M®,N, a®(b(9 c)Hca®b.
Tensoring with C, it induces an isomorphism

MC ®Lc (NN ®Kc Lc) = MC OK, Nc.
That this is an isometry of metrized K(C -modules results from the
distributivity

/(,)Mr(, )NQ =(E(, )Mr)(')Na
tic ria

by applying mathematical grammar.

The Riemann-Roch problem in Grothendieck's perspective is the task
of computing the Chern character ch(i*M) for a projective metrized 0-
module M in terms of ch(M). By (6.6), this amounts to computing det(i*M)
in terms of detM. But detM is an invertible metrized 0-module and is
therefore isometric by (4.5) to the metrized 0-module L(%) of a replete
ideal 2L of L. NLI K(2L) is then a replete ideal of K, and we put

NLIK(detM) := L(NLIK(2I)) .

This is an invertible metrized o-module which is well determined by M up
to isometry. With this notation we first establish the following theorem.

(7.2) Theorem. For any projective metrized 0-module M one has:
rk(i*M) = rk(M) rk(O),

det(i*M) = NLIK(detM) (9o (deti*0)x(M)
Here we have rk(O) _ [L : K].
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Proof: One has MK :=M®,K=M®o0®oK=M®oL=: ML and
therefore

rk(i*M) = dirK (MK) = dimK (ML) = dimL (ML) [L : K] = rk(M) rk(O).

In order to prove the second equation, we first reduce to a special case. Let

X(M) = det(i*M) and p(M) = NL1K (det M) ®o (det i*O)rk(M) .

If 0 -+ M' -k M - M" -* 0 is a short exact sequence of projective
metrized 0-modules, one has
(*) A(M) = ?(M') (9o ),(M") and p(M) = p(M) ®o p(M").

The isomorphism on the left follows from the exact sequence 0 --* i*M' -
i*M -+ i*M" -* 0 by (4.7), and the one on the right from (4.7) also, from
the multiplicativity of the norm NLI K and the additivity of the rank rk. As in
the proof of (5.6), we now make use of the fact that every projective metrized
O-module M projects via an admissible epimorphism onto a suitable 0-
module of the form L (21) for some replete ideal 21. Thus (*) allows us to
reduce by induction on rk(M) to the case M = L(2t). Here rk(M) = 1, so
we have to establish the isomorphism

det(i*L(2t)) = L(NL!K(2t)) ®o det, O.

For the underlying o-modules this amounts to the identity

(**) deto Qf = NLIK(2if) det, 0,

which has to be viewed as inside detK L and which is proved as follows.
If 0 and o were principal ideal domains, it would be obvious. In fact, in that
case we could choose a generator a of 2tf and an integral basis w l , ... , wn
of 0 over o. Since NLIK(a) is by definition the determinant det(Ta) of the
transformation Ta : L -3 L, x H ax, we would get the equation

aWl A... AaWn = NLIK(a)(Wi A... AWn),

the left-hand side, resp. right-hand side, of which would, by (1.6), generate
the left-hand side, resp. right-hand side, of (**). But we may always
produce a principal ideal domain as desired by passing from O 1 o to the
localization Op (op for every prime ideal p of o (see chap. I, § 11 and § 3,
exercise 4). The preceding argument then shows that

(deto 2tf) p = detop 2fp = NL I K (21fp) deton Op = (NL JK (2tf) detn (9)p,

and since this identity is valid for all prime ideals p of o, we deduce the
equality (**).
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In order to prove that the metrics agree on both sides of (**), we put
M = L(2t), N = L(O), a = NLIK(2t) and we view M, N, a as metrized
o-modules. One has Mr = NC = LC and ac = Kc, and we consider the
metrics on the components

MQ=®C> NQ=®C, aQ=cC,
rla via

where a E Hom(K, Q and r E Hom(L, C) is such that r I or. We have to
show that, for , it E detc MQ and a, b E C, one has the identity

(a , b17)detMo = (a, b)M rj)detN,,

For this, let 2(. = rj l 93°T, so that one gets

a00 = NLIK(.) = rj pVP

PI-
with vp = E13Ip fT,pvq. Then

(x,Y)N, = E xrYr, (x,Y)M0 = Ee2vtxryv,
via r1a

(a, b) aQ = e2v,, ab vpQ = E fTlpo VT V r .
'I3lpo via

Let = x1 A ... AX,, 17 = yl A ... A y,. We number the embeddings r I c r,
rt, ... , r0, put Vk = VTTk and form the matrices

A = (xirk), B = (Yirk), D =
e°t 0

0 eV7

Then, observing that

det(D) = fl eaTT = fl of pipQ "T = e"-
I `Ipo

we do indeed get

(a , brj)detM, = ab ( , 17)detM,

= ab det((AD)(BD)t) = ab (detD)2det(ABt)
= e2uyo ab

l7)det , r = (a, b ) ( , rj)detNo .

This proves our theorem.

Extending the formulas of (7.2) to the free abelian group

Fo(O) _ ®7G(M}
{M}

0

by linearity, and passing to the quotient group Ko(O) = Fo(O)/Ro(O)
yields the following corollary.
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(7.3) Corollary. For every class

[L

E K0(O), one has the formulas

K]rk(l;),

det(i*I;') = [deti*0]7k(

The square of the metrized o-module det i*O appearing in the second
formula can be computed to be the discriminant DL1K of the extension L I K,
which we view as a metrized o-module with the trivial metric.

(7.4) Proposition. There is a canonical isomorphism

(deti*O)®2 = DLlK

of metrized o-modules.

Proof : Consider on 0 the bilinear trace map

T : O x O --) o, (x, y) --a TrLIK (xY)

It induces an o-module homomorphism

T : det O ® det O - c,
given by

T ((al A ... A an) ®(PI n ... A ,en)) = det(TrLIK

The image of T is the discriminant ideal -OLIK, which, by definition, is
generated by the discriminants

d(wt, ..,w,)=det(TrLIK(wic)i))
of all bases of L I K which are contained in O. This is clear if 0 admits
an integral basis over o, since the ai and fii can be written in terms of
such a basis with coefficients in o. If there is no such integral basis, it will
exist after localizing Op1op at every prime ideal p (see chap. I, (2.10)). The
image of

Tp : (det Op) (9 (det Op) -) op

is therefore the discriminant ideal of Op l op and at the same time the
localization of the image of T. Since two ideals are equal when their
localizations are, we find image(T) = c1LIK. Furthermore, T has to be
injective since (det O)®2 is an invertible o-module. Therefore T is an
o-module isomorphism.
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We now check that

Tc : (det(O)®2)C ) (cDLIK)c

is indeed an isometry. For O(c = 0 ®z C, we obtain the Kc -module
decomposition

where or varies over the set Hom(K, Q, and the direct sum

Oa- ®(O®o,,Q= (DC

is taken over all r E Hom(L, C) such that r I K = or. The mapping Oc -+ Kc
induced by TrL K : O -* o is given, for x = ®a xa , xa E Oa , by

TrLIK(x) _ Tro(xa),

where Tra (x,) xa, r , the xa, r E C being the components of xa . The
metric on (i*O)c = Oc is the orthogonal sum of the standard metrics

(x, Y), = ExrYr =Tra(xY)
r1a

on the C-vector spaces (i*O)a = Oa = ®,I, C. Now let xi, yi r= Oa,
i = 1, ...,n,andwrite x=x1A...Ax,,,y=ylA...Ay, Edet(Oa).The
map TT splits into the direct sum TT = ®a Ta of the maps

Ta : det(Or) (&c det(Or) -3 (Z)LIK)a = C

which are given by

Tr(x 0 y) = det(Tra(xiyj)).

For any two n-tuples x', y! E Oa we form the matrices

A = (Tra(xtyi)), A' = (Tra(xiY1)), B = (Tra(xix')), B' = (Tra(YiYj)).

Then one has AA' = BB', and we obtain

(Ta(x (0 Y),Tc(x' ®Y'))("')Q =Ta(x 0Y)Ta(x' ®Y')
= det(Tra (xi yj)) det(Trr (x yj')) = det(AA') = det(BB')

= det(Tra(xixf)) det(Trr(yiyf)) = det((xi,xj)r) det((yi,y1)a)
_ (x,x')det0,(Y,Y')detOa = (x (9 Y,X' ® Y')(detoa)®2.

This shows that TT is an isometry.
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We now set out to rewrite the results obtained in (7.2) and (7.4) in the
language of GROTHENOIECK's general formalism. For the homomorphism i*
there is the commutative diagram

Ko(O) `k z
i.1 I [L:K]

rk
Ko (o`) 1 Z'

because [L : K] times the rank of an 0-module M is its rank as o-module.
Therefore i* induces a homomorphism

i* : 1(O) - 1(0)
between the kernels of both rank homomorphisms, so that there is a
homomorphism _

i* : gr'Ko(O) gr'Ko(a)
It is called the Gysin map. (7.3) immediately gives the following explicit
description of it.

(7.5) Corollary. The diagram
id®detgrKo(O) ZED Pic(O)

i*

id ®det
t [L:K]®NLIK

grKo(5) ) Z ED Pic(n)

is commutative.

We now consider the following diagram

Ko(O) chi grKo(6)
i.

J- i.

Ko(d) ch ) gr Ko(5)

where the Gysin map i* on the right is explicitly given by (7.5), whereas
the determination of the composite ch o i* is precisely the Riemann-Roch
problem. The difficulty that confronts us here lies in the fact that the diagram
is not commutative. In order to make it commute, we need a correction,
which will be provided via the module of differentials (with trivial metric),
by the Todd class, which is defined as follows.
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The module S21 of differentials is only a coherent, and not a projective
0-module. But its class [S2aio] is viewed as an element of K0(O) via the
Poincare isomorphism

Ko(O) K°(O),

and since rko(S2o,o) = 0, it lies in I (O).

(7.6) Definition. The Todd class of 0 l o is defined to be the element

Td(Olo) = 1 - 2ci([52o0]) = 1 - E gr'Ko(O) ®Z[2]

Because of the factor 2 , the Todd class does not belong to the ring
gr Ko (O) itself, but is only an element of gr Ko (O) ®Z [ 2 ]. The module
of differentials S2o1o is connected with the different 2LIK of the extension-
L l K by the exact sequence

0 ) J L I K )0 S21010 - 0

of 0-modules (with trivial metrics) (see §2, exercise 3). This implies that
[Slo1o] = 1 - [TLIK]. We may therefore describe the Todd class also by the
different:

Td(Olo)=1 +2([JLIK]-1)= 2(1+[OLIK]).
The main result now follows from (7.3) using the Todd class.

(7.7) Theorem (Grothendieck-Riemann-Roch). The diagram

Ko(0)
Td(o1o)ch)

grKo(0)

i* J- li*
Ko(n) ch grKo(5)

is commutative.

Proof : For E Ko (O) , we have to show the identity

i*(Td(OIo) ch(i)) .
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Decomposing and ch(i) = and
observing that

Td(O I o) ch(i) = (1 + z 1)) (rk() + c1 ())

= [c1() + i 1)],

it suffices to check the equations

(a) rk(i ) = rk(i*[O]) ,

(b) i*(c1()) +rk()ct(i*[O])
and

(c) rk(i*[O]) = i.(1),

(d) 2c1(i*[O]) = ix([DLIK] - 1)

in grK0(o). The equations (a) and (c) are clear because of rk(i*[O]) _
rk(i,O) _ [L : K]. To show (b) and (d), we apply det to both sides and are
reduced by the commutative diagram (7.5) to the equations

(e) det(i.) = NLIK [det i*Oyk(g)

(f) (deti*O)®2 = NLIK(det`DLIK).

But (e) is the second identity of (7.3), and (f) follows from (7.4) and (2.9).

With this final theorem, the theory of algebraic integers can be integrated
completely into a general programme of algebraic geometry as a special case.
What is needed is the use of the geometric language for the objects considered.
Thus the ring o is interpreted as the scheme X = Spec(o), the projective
metrized o-modules as metrized vector bundles, the invertible o-modules as
line bundles, the inclusion i : o -+ 0 as morphism f : Y = Spec(O) -+ X
of schemes, the class Slob as the cotangent element, etc. In this way one
realizes in the present context the old idea of viewing number theory as part
of geometry.

§ 8. The Euler-Minkowski Characteristic

Considering the theorem of Grothendieck-Riemann-Roch in the special
case of an extension K IQ, amounts to revisiting the Riemann-Roch theory
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of § 3 from our new point of view. At the center of that theory was the
Euler-Minkowski characteristic

X (a) = -log vol(a)
of replete ideals a of K. Here, vol(a) was the canonical measure of a
fundamental mesh of the lattice in Minkowski space KR = a®z JR defined by
a. This definition is properly explained in the theory of metrized modules of
higher rank. More precisely, instead of considering a as a metrized o-module
of rank 1, it should be viewed as a metrized 7G-module of rank [K : Q].
This point of view leads us necessarily to the following definition of the
Euler-Minkowski characteristic.

(8.1) Proposition. The degree map
degK : Pic(o) -* 1R, degK ([a]) _ -log N(a),

extends uniquely to a homomorphism

XK:Ko(o)-SIR
on K0(5), and thereby on K°(5). It is given by

XK = deg o det
and called the Euler-Minkowski characteristic over K.

Proof: Since, by (5.6), K0(5) is generated as an additive group by the
elements [a] E Pic(o), the map degK on Pic(o) determines a unique
homomorphism Ko(a) IIR which extends degK. But such a homomorphism
is given by the composite of the homomorphisms

Ko(o) d- Pic(o) --e-g, R,

as the composite Pic(o) v K0(5) a- Pic(a) is the identity.

Via the Poincare isomorphism Ko(o) K°(5), we transfer the maps
det and XK to the Grothendieck group K°(o) of coherent metrized o-
modules. Then proposition (8.1) is equally valid for K°(O) as for K0(5).
We define in what follows XK (M) = XK ([M]) for a metrized o-module M.
If LIK is an extension of algebraic number fields and i : o -± 0 the
inclusion of the maximal orders of K, resp. L, then applying degK to the
formula (7.2) and using

deft NA) = -log'7t(?t) _ -logOt(NLIK(2L)) = degK(NLIK(2))
(see (1.6), (iii)) gives the
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(8.2) Theorem. For every coherent 0-module M, the Riemann-Roch
formula

XK(i*M) = degL(detM) +rk(M) XK(i*O)

is valid, and in particular, for an invertible metrized O-module M, we have

XK(i*M) = degt(M) + XK(i*O).

We now specialize to the case of the base field K = Q, that is, we
consider metrized 7L-modules. Such a module is simply a finitely generated
abelian group M together with a euclidean metric on the real vector space

MR = M ®z R.

Indeed, since Q has only a single embedding into C, i.e., Qc = C, a
metric on M is simply given by a hermitian scalar product on the C-vector
space MC = MR ® C. Restricting this to MR gives a euclidean metric the
sesquilinear extension of which reproduces the original metric.

If M is a projective metrized Z -module, then the underlying 7L-module
is a finitely generated free abelian group. The canonical map M M (9 R,
a 1-± a (9 1 , identifies M with a complete lattice in MR. If a 1, ... , a,t is a
Z-basis of M, then the set

0={xlal+...+xa,I x, EI[8, 0<x1 <1}
is a fundamental mesh of the lattice M. The euclidean metric (, ),yt
defines a Haar measure on MR. Once we choose an orthonormal basis
e1, ... , e,t of MR, this Haar measure can be expressed, via the isomorphism
MR - IR", x1e1 + - +x,te" I (x1, ... , x"), by the Lebesgue measure
on I[8". With respect to this measure, the volume of the fundamental mesh
is given by

vol((P) = det((ai,aj))I1/2
It will be denoted by vol(M) for short. It does not depend on the choice of
7L-basis al, ... , a, because a different choice is linked to the original one
by a matrix with integer coefficients which also has an inverse with integer
coefficients, hence has determinant of absolute value 1.

A more elegant definition of vol(M) can be given in terms of the invertible
metrized 7L-module det M. det MR is a one-dimensional R-vector space with
metric ( , ) det M, and with the lattice det M isomorphic to Z. If x E det M is
a generator (for instance, x = al A ... A a"), then

Vol(M) = IIXIIdetM = (x,x)detM
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In the present case, where the base field is Q, the degree map

deg : Pic(Z) I8

is an isomorphism (see § 1, exercise 3), and we call the unique homomorphism
arising from this,

x=degodet:K°(76) R,

the Euler-Minkowski characteristic. It is computed explicitly as follows.

(8.3) Proposition. For a coherent metrized Z -module M, one has

X (M) = log #Mtor - log

In this formula Mtor denotes the torsion subgroup of M and M/Mtor
the projective metrized Z-module which receives its metric from M via
M ®R M/Mtor ®R.

Proof of (8.3): If M is a finite Z-module, then the determinant of the class
[M] E K°(Z) is computed from a free resolution

0-*E-->F-M-*0,
where F = Z and E = ker(a) Z'. If we equip F ® JR = E ® J = IE8"
with the standard metric, the sequence becomes a short exact sequence of
metrized Z -modules, because M ® JR = 0. We therefore have in K ° (2):

[M] = [F] - [E].
Let A be the matrix corresponding to the change of basis from the standard
basis e1, ..., e of F to a Z-basis e1..... e;, of E. Then x = el A ... A en,
resp. x' = e' A ... A e;,, is a generator of det F, resp. det E, and

The metric II II on det E is the same as that on det F, so that

x(E) = deg(det E) -log IIx'II = -log(#MIIx II) _ log #M + x (F),

and then
x (M) = x ([F] - [E]) = X (F) - x (E) = log #M.

For an arbitrary coherent metrized Z-module M we have the direct sum
decomposition

M = Mtor ® M/Mtor
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into metrized Z-modules. If at, ..., a,, is a basis of the lattice M/Mtor,
then x = at A ... A a,, is a generator of detM/Mtor; then X(M/Mtor)
= deg(det M/Mtor) = -109114 = - log vol(M/Mtor). We therefore
conclude that

X (M) = X (Mtor) + X (M/Mtor) = log #Mtor - log vol(M/Mtor) . O

The Euler-Minkowski characteristic of a replete ideal a,

X (a) = - log vol(a),
which we defined ad hoc in §3 via the Minkowski measure vol(a)' now
appears as a simple special case of the Euler-Minkowski characteristic for
metrized Z -modules to which the detailed development of the theory has led
us. Indeed, viewing the metrized o-module L (a) of rank 1 associated to a as
the metrized Z-module i,L(a) of rank [K : Q], we get the

(8.4) Proposition. X (a) = X (i,L (a)).

Proof: Let a = afaoo = afFIpI,,c, p'p. The metric (,)i,L(a) on the C-vector
space Kc = fltEx(C) C is then given by

(X,Y)i*L(a) = Fe2vp`xryT,
r

where pt is the infinite place of K corresponding to the embedding
r : K C. It results from the standard metric (,) via the F-invariant
transformation

T :KC -) KC,
Equivalently,

(XT)TEX(C) F ± (euPTxr)TEX(C)

(x,Y)i*L(a) = (Tx,Ty).
The volume vol(i,L(a)) of a fundamental mesh of the lattice of in KR with
respect to the Haar measure defined by the euclidean metric on KR is then
the volume of a fundamental mesh of the lattice T a f with respect to the
canonical measure defined by ( , ). Thus

vol(i,L(a)) = vol(Taf).
In the representation KR = fps. Kp, the canonical embedding

KR=K®QR-*KC=K®QC
maps an element (xp)pjoo to the element (xt)TEX(C) with xt = rxpt. Here we
extend r to Kpt. The restriction of the transformation T : (xi) -* (e'p=x,)
to KR = 1ploo K. is therefore given by (xp) r- (e°pxp). The lattice T of is
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then the same lattice which was denoted a in § 3. So we obtain

vol(i*L(a)) = vol(a),

i.e., X (i*L (a)) = X (a).

Given this identification, the Riemann-Roch theorem (3.4) proven in § 3
for replete ideals a,

X (a) = deg(a) + X (o),
now appears as a special case of theorem (8.2), which says that

X(i.L(a)) = deg(L(a)) + X(i.o).
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Chapter IV

Abstract Class Field Theory

§ 1. Infinite Galois Theory

Every field k is equipped with a distinguished Galois extension: the
separable closure k I k. Its Galois group Gk = G(Elk) is called the absolute
Galois group of k. As a rule, this extension will have infinite degree. It
does, however, have the advantage of collecting all finite Galois extensions
of k. This is why it is reasonable to try to give it a prominent place in Galois
theory. But such an attempt faces the difficulty that the main theorem of
Galois theory does not remain true for infinite extensions. Let us explain this
in the following

Example : The absolute Galois group GrP ( G (Fp I IFp) of the field F p with
p elements contains the Frobenius automorphism cp which is given by

x E ]FP.

The subgroup (cp) = {cp" I n E Z) has the same fixed field IFp as the whole
of GrP. But contrary to what we are used to in finite Galois theory, we
find ((p) 0 GFP . In order to check this, let us construct an element i/r E GrP
which does not belong to (pp). We choose a sequence {a"}FEN of integers
satisfying

an - am mod m

whenever m In, but such that there is no integer a satisfying a" - a mod n
for all n e N. An example of such a sequence is given by a" = n'x,,, where
we write n = n'pVPi'l , (n', p) = 1, and 1 = n'x,, + pP(")y,,. Now put

*n = s p a n I F ,, E G (F pn I IFp) .

If Fpm c ]Fpn , then

'm

In, so that a" = am mod m, and therefore

/n IFPm = Vale IFPm = (P am I.Pm = Y'm

Observe that o IIFP,, has order m. Therefore the i/rn define an automorphism
of FP = Un_1 Fpn. Now ,lr cannot belong to ((p) because 1/r = qpa, for

a E Z, would imply *I r'Pn = Pan If, Pn = ,a IF
P
. and hence a" - a mod n

for all n, which is what we ruled out by construction.
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The example does not mean, however, that we have to chuck the main
theorem of Galois theory altogether in the case of infinite extensions. We just
have to amend it using the observation that the Galois group G = G(S21k)
of any Galois extension S2 I k carries a canonical topology. This topology is
called the Krull topology and is obtained as follows. For every or E G we
take the cosets

aG(S2I K)

as a basis of neighbourhoods of or, with K I k ranging over finite Galois
subextensions of S2 1k. The multiplication and the inverse map

GxG -)G, (a,r)l >as, and ar-*o'-1,
are continuous maps, since the preimage of a fundamental open neigh-
bourhood a rG (S2 I K), resp. or 1 G (S21 K), contains the open neighbourhood
aG(S2IK) x rG(S2I K), resp. aG(S21 K). Thus G is a topological group
which satisfies the following

(1.1) Proposition. For every (finite or infinite) Galois extension SZIk the
Galois group G = G(S2Ik) is compact Hausdorff with respect to the Krull
topology.

Proof: If a, z E G and a # r, then there exists a finite Galois subextension
Klk of SQIk such that aIK 0 xIK, so that aG(S21K) : rG(S21K) and
thus aG(S2I K) n tG(S2I K) = 0. This shows that G is Hausdorff. In order
to prove compactness, consider the mapping

h:G--) fG(Klk),
K K

where K I k varies over the finite Galois subextensions. We view the finite
groups G(K 1 k) as discrete compact topological groups. Their product is
therefore a compact topological space, by Tykhonov's theorem (see [98]).
The homomorphism h is injective, because Cr I K = 1 for all K is equivalent
to or = 1. The sets U = HK#Ko G (K I k) x (F) form a subbasis of
open sets of the product UK G (K I k), where Ko I k varies over the finite
subextensions of Q 1 k and ii E G (Ko 1 k). If or E G is a preimage
of v, then h-'(U) = aG(QIK0). Thus h is continuous. Moreover
h(cr G(S2IKo)) = h(G) n u, so h : G r-a h(G) is open, and thus a
homeomorphism. It therefore suffices to show that h (G) is closed in the
compact set i tK G(K I k). To see this we consider, for each pair L' Q L of
finite Galois subextensions of 91k, the set

ML'IL= F1UK E TTG(Klk)I aL'IL =aL}.
K K
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One clearly has h(G) = I IL'2L ML'IL So it suffices to show that ML'IL
is closed. But if G (L 1 k) = (o,..., Qn } , and Si c_ G (L' 1 k) is the set of
extensions of of to L', then

ML'IL = U( II G(KIk) x Si x fail)
i=1 KOL,L'

i.e., ML'IL is indeed closed.

The main theorem of Galois theory for infinite extensions can now be
formulated as follows.

(1.2) Theorem. Let 121 k be a (finite or infinite) Galois extension. Then the
assignment

K H G(S21K)
is a 1-1-correspondence between the subextensions K 1 k of 01k and the
closed subgroups of G(121k). The open subgroups of G(S21k) correspond
precisely to the finite subextensions of S21 k.

Proof : Every open subgroup of G(S21 k) is also closed, because it is the
complement of the union of its open cosets. If K Ik is a finite subextension,
then G(171K) is open, because each v E G(17 1 K) admits the open
neighbourhood cmG(S2IN) C G(S21K), where N1k is the normal closure
of K I k. If K I k is an arbitrary subextension, then

G (S2 I K)=nG(S2 1Ki),
i

where Ki Ik varies over the finite subextensions of K I k. Therefore G(S21 K)
is closed.

The assignment K Fa G(S2IK) is injective, since K is the fixed field of
G(S2 I K). To prove surjectivity, we have to show that, given an arbitrary
closed subgroup H of G (S2 I k), we always have

H=G(S21K),
where K is the fixed field of H. The inclusion H C G(S21K) is trivial.
Conversely, let or E G (S2 I K). If L I K is a finite Galois subextension of S2 I K,
then aG(S2IL) is a fundamental open neighbourhood of 6 in G(S2I K). The
map H -± G(L I K) is certainly surjective, because the image H has fixed
field K and is therefore equal to G(LIK), by the main theorem of Galois
theory for finite extensions. Thus we may choose a r E H such that



11
2

3'G

III
lad

fir'

aw
l

...

f3"

'+-
°a)

211

..C

264 Chapter IV. Abstract Class Field Theory

rIL = OIL, i.e., r E H fl crG(S2IL). This shows that or belongs to the
closure of H in G(S2I K), and thus to H itself, so that H = G(S2IK).

If H is an open subgroup of G(S2 I k), then it is also closed, and therefore
of the form H = G(S2IK). But G(S21k) is the disjoint union of the open
cosets of H. Since G(S2Ik) is compact, a finite number of cosets suffices to
cover the group. Thus there is only a finite number of them; H = G (S? I K)
has finite index in G(S2Ik), and this implies that K Ik has finite degree.

The topological Galois groups G = G (S2 I k) have the special property
that there is a fundamental system of neighbourhoods of the neutral element
1 E G which consists of normal subgroups. This property leads us to the
abstract, purely group-theoretical notion of a profinite group.

(1.3) Definition. A profinite group is a topological group G which is
Hausdorff and compact, and which admits a basis of neighbourhoods of
1 E G consisting of normal subgroups.

It can be shown that the last condition is tantamount to G being totally
disconnected, i.e., to the condition that each element of G is equal to its own
connected component. Every closed subgroup H of G is obviously again a
profinite group. The disjoint coset decomposition

G=UajH

shows immediately that H is open if and only if the index (G : H) is finite.

Profinite groups are fairly close relatives of finite groups. They can
be reconstituted rather easily from their finite quotients. For the precise
description of this we need the notion of projective limit, which naturally
occurs in various places in number theory and which we will introduce next.

Exercise 1. Let L I k be a Galois extension and K I k an arbitrary extension, both
contained in a common extension S2Ik. If L fl K = k, then the mapping

G(LKIK) -+ G(LIk), yr-- QIL,
is a topological isomorphism, that is, an isomorphism of groups and a
homeomorphism of topological spaces.

Exercise 2. Given a family of Galois extensions K, l k in S2 I k, let K Ik be the
composite of all K11k, and K,'Ik the composite of the extensions Kjlk such that
j 0 i. If K; fl K = k for all i, then one has a topological isomorphism

G(KJk) = HG(K;1k).
i
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Exercise 3. A compact Hausdorff group is totally disconnected if and only if
its neutral element admits a basis of neighbourhoods consisting only of normal
subgroups.

Exercise 4. Every quotient G/H of a profinite group G by a closed normal subgroup
H is a profinite group.
Exercise 5. Let G' be the closure of the commutator subgroup of a profinite group,
and Gab = GIG'. Show that every continuous homomorphism G -* A into an
abelian profinite group factorizes through G°b.

§ 2. Projective acid Inductive Limits

The notions of projective, resp. inductive limit generalize the operations
of intersection, resp. union. If (Xi)iE1 is a family of subsets of a topological
space X which for any two sets Xi, Xj also contains the set X; fl Xj
(resp. Xi U X j), then the projective (resp. inductive) limit of this family is
simply dmed by

1 m_ Xi = n Xi (resp. Xi = U Xi).
iEI iEI iEI iEI

Writing i < j if X j c Xi (resp. Xi S; X j) makes the indexing set I into a
directed system, i.e., an ordered set in which, for every pair i, j, there exists
a k such that i < k and j < k. In the case at hand, such a k is given by
Xk = Xi fl Xj (resp. Xk = Xi U Xj). For i < j we denote the inclusion
X j Xi (resp. Xi X j) by fij and obtain a system (Xi, fij ) of sets
and maps. The operations of intersection and union are now generalized by
replacing the inclusions fij with arbitrary maps.

(2.1) Definition. Let I be a directed system. A projective, resp. inductive
system over I is a family (X i , fij I i, j E I, i < j) of topological spaces Xi
and continuous maps

fij:Xj - Xi, resp.

such that one has fii = idxi and

fik = fij o fjk, resp- fik = fjk 0 fij,
when i <j <k.

In order to define the projective, resp. inductive limit of a projective,
resp. inductive system (Xi, fij }, we make use of the direct product IIi EI Xi,
resp. the disjoint union U 1 X.
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(2.2) Definition. The projective limit
X = rn Xi

iEI

of the projective system {Xi , fij } is defined to be the subset
X = {(xi)iEl E flXi I fij(xj) =xi for i < j}

i

l the product topology. If the Xi are
Hausdorff, then so is the product, and it contains in this case X as a closed
subspace. Indeed, one has X=nXij,

i<j
where Xij = { (xk)kEJ E Ilk Xk I fij (xj) = xi } , so that it suffices to show
the closedness of the sets X. Writing pi : fl k,1 Xk -- Xi for the i -th
projection, the two maps g = pi, f = fij o pj : 1 tkE1 Xk -k Xi are
continuous, and we may write Xij = {X E l lkXk I g(x) = f(x)}. But in
the Hausdorff case the equation g(x) = f (x) defines a closed subset. This
representation X= ni<j Xij also gives the following

(2.3) Proposition. The projective limit X = Xi of nonempty compact
spaces Xi is itself nonempty and compact. i

Proof: If all the Xi are compact, then so is the product 11i,21 Xi, by
Tykhonov's theorem, and thus also the closed subset X. Furthermore,
X = ni <j Xij cannot be the empty set if the X i are nonempty. In fact,
as the product fi Xi is compact, there would have to be an intersection
of finitely many Xij which is empty. But this is impossible: if all indices
entering into this finite intersection satisfy i, j < n, and if x, E X,,, then the
element (xi)iEl belongs to this intersection, where we choose xi = fin
for i < n, and arbitrarily for all other i.

(2.4) Definition. The inductive limit
X = lirt Xi

iEl
of an inductive system {Xi, fij} is defined to be the quotient

X = (111EIXi) / "
of the disjoint union 11E] Xi, where we consider two elements xi E Xi and
X j E X j equivalent if there exists a k> i, j such that

fik(xi) = ffk(Xi).
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In the applications, the projective and inductive systems {Xi, fi j) that
occur will not just be systems of topological spaces and continuous maps,
but the Xi will usually be topological groups, rings or modules, etc., and
the fi j will be continuous homomorphisms. In what follows, we will deal
explicitly only with projective and inductive systems {Gi , gij } of topological
groups. But since everything works exactly the same way for systems of
rings or modules, these cases may be thought of tacitly as being treated
as well.

Let {Gi, gij} be a projective, resp. inductive system of topological groups.
Then the projective, resp. inductive limit

G = l'm Gi, resp. G = ltw Gi
idd iEI

is a topological group as well. The multiplication in the projective
limit is induced by the componentwise multiplication in the product
fl Gi. In the case of the inductive limit, given two equivalence classes
x, y E G = liter t Gi, one has to choose representatives xk and yk in the

iEI
same Gk in order to define

xy = equivalence class of xkYk

We leave it to the reader to check that this definition is independent of the
choice of representatives, and that the operation thus defined makes G into
a group.

The projections pi : HiEI Gi Gi, resp. the inclusions ti : Gi -
11i EI Gi, induce a family of continuous homomorphisms

gi : G --j Gi, resp. gi : Gi --) G
such that gi = gij o g j , resp. gi = g j o gij, for i < j. This family has the
following universal property.

(2.5) Proposition. If H is a topological group and
hi:H -) Gi, resp. hi:Gi

is a family of continuous homomorphisms such that
hi = gi j o hj, resp. hi = hj o 9i j

for i < j, then there exists a unique continuous homomorphism
m Gi, resp. h:G= liter Gi-+H
i

satisfying hi = gi o h, resp. hi = h o gi, for all i E I.
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The easy proof is left to the reader. A morphism between two projective,
resp. inductive systems {Gi, gi.i } and (G, of topological groups is a
family of continuous homomorphisms fi : Gi -> G', i E 1, such that the
diagrams

G! f G

gji g,,, resp.

Gi

Gj fG'.
giI lsi

Gi f' G;

commute for i < j . Such a family (fi )i EI defines a mapping

f : fl Gi -* rj G; , resp. f : jI Gi --> LI G'i ,
iEI iEl iGI iE1

which induces a homomorphism

f : 1m Gi -) 1tn G;, resp. f : 1 Gi - lira G.
iEI iEI iEI iEI

In this way l,im , resp. LT , becomes a functor. A particularly important
property of this functor is its so-called "exactness". For the inductive
limit litt , exactness holds without restrictions. In other words, one has the

(2.6) Proposition. Let a : {G; , g;j } -a (Gi, gif } and 0 : {Gi, gii } -3
(Gt , g",} be morphisms between inductive systems of topological groups
such that the sequence

G; Gi 14 Gi'

is exact for every i E I. Then the induced sequence

G' lim Gi lim Gz
iEI iEl iEI

is also exact.

Proof: Let G' = lira G = lin-t Gi, G" = liter r G". We consider the

commutative diagram

G'am` G G'
fg; t gi gill

G' G G".
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Let X E G be such that ,b(x) = 1. Then there exists an i and an xi E Gi such
that gi (xi-) = x. As

g' fl (xi) =,3gi(xi) = P(x) = 1,

there exists j ? i such that Pi (xi) equals-'l in G . Changing notation, we
may therefore assume that Pi(xi) = 1, so that there exists yi E Gi such that
ai (yi) = xi. Putting y = g'(yi), we have a(y) = x.

The projective limit is not exact in complete generality, but only for
compact groups, so that we have the

(2.7) Proposition. Let a : (G' , g'i } -* (Gi,gii } and P : (Gi,gii } -
be morphisms between projective systems of compact topological

groups such that the sequence

G' -* Gi -L'>. Gt

is exact for every i E I. Then

Gl «) Gi -!+ l rn G,'

is again an exact sequence of compact topological groups.

Proof: Let x = (xi)i it E m Gi and t4(x) = 1, so that Pi(xi) = 1 for

all i E I. The preimages Yi i a-' (xi) c_ Gi then form a projective system
of nonempty closed, and hence compact subsets of the By (2.3), this
means that the projective limit Y = m Yi c G is nonempty, and
a maps every element y E Y to X. ` `

Now that we have at our disposal the notion of projective limit, we
return to our starting point, the profinite groups. Recall that these are the
topological groups which are Hausdorff, compact and totally disconnected,
i.e., they admit a basis of neighbourhoods of the neutral element consisting
of normal subgroups. The next proposition shows that they are precisely the
projective limits of finite groups (which we view as compact topological
groups with respect to the discrete topology).
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(2.8) Proposition. If G is a profinite group, and if N varies over the open
normal subgroups of G, then one has, algebraically as well as topologically,
that

G - 1 to GIN.
N

If conversely {G1, gij} is a projective system of finite (or even profinite)
groups, then

G=1}m Gi
is a profinite group.

Proof: Let G be a profinite group and let {Ni I i E I} be the family of its
open normal subgroups. We make I into a directed system by defining i < j
if Ni 2 Nj. The groups Gi = G/Ni are finite since the cosets of Ni in
G form a disjoint open covering of G, which must be finite because G is
compact. For i < j we have the projections gi j : G j --* Gi and obtain a
projective system {Gi, gi j } of finite, and hence discrete, compact groups. We
show that the homomorphism

f : G -) Gi, a i- fJ ai, ai = or mod Ni,
iel iEl

is an isomorphism and a homeomorphism. f is injective because its kernel
is the intersection f 1i Ei Ni, which equals { 1 } because G is Hausdorff and
the Ni form a basis of neighbourhoods of 1. The groups

Us = fl Gix1111Gi},
igs iES

with S varying over the finite subsets of I, form a basis of neighbourhoods
of the neutral element in RE, Gi. As f -I (US n Gi) = liEs Ni, we see
that f is continuous. Moreover, as G is compact, the image f (G) is closed
in m G1. On the other hand it is also dense. For if x = (xi) i E J E G,
and x(US n Gi) is a fundamental neighbourhood of x, then we may
choose a y E G which is mapped to xk under the projection G -- G/Nk,
where we put Nk = ni Es Ni. Then y mod Ni = xi for all i E S, so that
f (y) belongs to the neighbourhood x(Us n m Gi). Therefore the closed
set f (G) is indeed dense in Gi, and so f (G) = Gi. Since G
is compact, f maps closed sets into closed sets, and thus also open sets
into open sets. This shows that f : G - Gi is an isomorphism and a
homeomorphism.

Conversely, let {G1,gij} be a projective system of profinite groups. As
the Gi are Hausdorff and compact, so is the projective limit G = m G!,
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by (2.3). If Ni varies over a basis of neighbourhoods of the neutral element
in Gi which consists of normal subgroups, then the groups

Us=r[GixfJN,
igs iEs

with S varying over the finite subsets of I, make up a basis of neighbourhoods
of the neutral element in III El Gt consisting of normal subgroups. The normal
subgroups us n 1tn Gi therefore form a basis of neighbourhoods of the
neutral element in 1 to Gi ; thus 1tn G, is a profinite group.

Let us now illustrate the notions of profinite group and projective limit by
a few concrete examples.

Example 1: The Galois group G = G(S2Ik) of a Galois extension S2Ik
is a profinite group with respect to the Krull topology. This was already
stated in § 1. If K I k varies over the finite Galois subextensions of S2 I k, then,
by definition of the Krull topology, G(S2IK) varies over the open normal
subgroups of G. In view of the identity G(KJk) = G(QIk)/G(S2IK) and
of (2.8), we therefore obtain the Galois group G(S2 Ik) as the projective limit

G(S2Ik) = lfirn G(KJk)
of the finite Galois groups G (K 1 k).

Example 2: If p is a prime number, then the rings Z/p'2Z, n e N, form
a projective system with respect to the projections Z/p'2Z Z/pmZ,
for n > m. The projective limit

7Lp = Z/p'2Z
n

is the ring of p-adic integers (see chap. II, § 1).

Example 3: Let a be the valuation ring in a p-adic number field K and p its
maximal ideal. The ideals pn, n E N, make up a basis of neighbourhoods of
the zero element 0 in o. o is Hausdorff and compact, and so is a profinite ring.
The rings o/pn, n E N, are finite and we have a topological isomorphism

o = o/pn , a fl (a mod pn) .

n nEN

The group of units U = o* is closed in o, hence Hausdorff and compact,
and the subgroups U(n) = 1 + pn form a basis of neighbourhoods of 1 E U.
Thus U = U/U(n)

is also a profinite group. In fact, we have seen all this already in chap. II, § 4.
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Example 4: The rings 7L/n7L, n E N, form a projective system with respect
to the projections Z/nZ -* Z/mZ, n I'm, where the ordering on N is now
given by divisibility, nIm. The projective limit

Z= l4m Z/n7L
n

was originally called the Priifer ring, whereas nowadays it has become
customary to refer to it by the somewhat curt abbreviation "zed-hat"
(or "zee-hat"). This ring is going to occupy quite an important position
in what follows. It contains Z as a dense subring. The groups nZ, n E N, are
precisely the open subgroups of 7L, and it is easy to verify that

7L/n7L = 7L/n7L.

Taking, for each natural number n, the prime factorization n = flP puP, the
Chinese remainder theorem implies the decomposition

7L/n7L = flZ/pPZ,
P

and passing to the projective limit,

7L = r[ z p .
P

This takes the natural embedding of Z into Z to the diagonal embedding
Z -+ fp 7LP, a H (a, a, a, ...).

Example 5: For the field lFq with q elements, we get isomorphisms

G(FgnllFq) = 7L/n7L,

one for every n E N, by mapping the Frobenius automorphism rpn to
1 mod nZ. Passing to the projective limit gives an isomorphism

G(FgllFq) = 7L

which sends the Frobenius automorphism rp E G(Fq IIFq) to 1 E Z, and the
subgroup (rp) _ {rpn I n E 7L} onto the dense (but not closed) subgroup Z
of Z. Given this, it is now clear, in the example at the beginning of this
chapter, how we were able to construct an element i/r E G(lFq IlFq) which did
not belong to (rp). In fact, looking at it via the isomorphism G (lFq IlFq) = 7G,
what we did amounted to writing down the element

(...,0,0,1p,0,0, ...) E r[Zt =2,
e

which does not belong to Z.
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Example 6: Let QIQ be the extension obtained by adjoining all roots
of unity. Its Galois group G(QIQ) is then canonically isomorphic (as a
topological group) to the group of units G* = fln Zp of Z,

G(QIQ) = Z

This isomorphism is obtained by passing to the projective limit from the
canonical isomorphisms

G(Q(l-tn)IQ) _ (Z/nZ)*,
where Ac" denotes the group of n-th roots of unity.

Example 7: The groups 7Z and Z are (additive) special cases of the class
of procyclic groups. These are profinite groups G which are topologically
generated by a single element a ; i.e., G is the closure (a) of the subgroup
(a) = {a" I n E 7L). The open subgroups of a procyclic group G = (a) are
all of the form G'. Indeed, G" is closed, being the image of the continuous
map G - G, x i-+ x", and the quotient group GIG" is finite, because it
contains the finite group for' mod G" I 0 < v < n) as a dense subgroup,
and is therefore equal to it. Conversely, if H is a subgroup of G of index n,
then G"CHCGand n=(G:H)<(G:G")<n,so that H=G".

Every procyclic group G is a quotient of the group 2. In fact, if G = (a)
then we have for every n the surjective homomorphism

76/nZ-+ G/G", modG",
and in view of (2.7), passing to the projective limit yields a continuous
surjection Z -* G.

Example 8: Let A be an abelian torsion group. Then the Pontryagin dual

X (A) = Hom(A, Q/Z)

is a profinite group. For one has

A = U Ai,
i

where A, varies over the finite subgroups of A, and thus

X(A) X(Ai)

with finite groups X (A1). If for instance,

A = Q/7 = U -Z/Z,
nEN
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then X (n 7L/7L) = 7L/n7L, so that

X (Q/7L) - 1 rn 7L/n7L = 7L.
n

Example 9: If G is any group and N varies over all normal subgroups of
finite index, then the profinite group

G = GIN
N

is called the profinite completion of G. The profinite completion of Z, for
example, is the group Z = m 7L/n7L.

n

Exercise 1. Show that, for a profinite group G, the power map G x 7L -* G,
(a, n) i-- a", extends to a continuous map

GxZ-aG, (a,a)Ha",
and that one has (a°)b = a°b and a°}b = aaab if G is abelian.
Exercise 2. If a E G and a = lim a, E Z with a, E Z, then as = lim a'i is in'G.

1 00 i-
Exercise 3. A pro -p-group is a profinite group G whose quotients GIN, modulo all
open normal subgroups N, are finite p-groups. Imitating exercise 1, make sense of
the powers a" , for all a E G and a E ZP1

Exercise 4. A closed subgroup H of a profinite group G is called a p-Sylow
subgroup of G if, for every open normal subgroup N of G, the group HN/N is a
p-Sylow subgroup of GIN. Show:
(i) For every prime number p, there exists a p-Sylow subgroup of G.
(ii) Every pro-p-subgroup of G is contained in a p-Sylow subgroup.
(iii) Every two p-Sylow subgroups of G are conjugate.

Exercise 5. What is the p-Sylow subgroup of Z and of 7La?

Exercise 6. If [G;) is a projective system of profinite groups and G = G; ,

then Gab = G°b (see § 1, exercise 5).
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§ 3. Abstract Galois Theory

Class field theory is the final outcome of a long development of algebraic
number theory the beginning of which was Gauss's reciprocity law

b)(a - (-1)n21 2

The endeavours to generalize this law finally produced a theory of the abelian
extensions of algebraic and p -adic number fields. These extensions L I K are
classified by certain subgroups NL = NLIKAL of a group AK attached to
the base field. In the local case, AK is the multiplicative group K* and in
the global case it is a modification of the ideal class group. At the heart of
this theory there is a mysterious canonical isomorphism

G(LIK) = AKINLIKAL,

which - if we view things in the right way - encapsulates the reciprocity
law in its most general form. Now, this map can be abstracted completely
from the field-theoretic situation and treated on a purely group theoretical
basis. In this way, class field theory can be given an abstract, but elementary
foundation, to which we will now turn.

We begin our considerations by giving ourselves a profinite group G.
The theory we are about to develop is purely group theoretical in nature.
However, the only applications we have in mind are field theoretical, and the
language of field theory allows immediate insights into the group theoretical
relations. We will therefore formally interpret the profinite group G as a
Galois group in the following way. (Let us remark in passing that every
profinite group is indeed the Galois group G = G (k 1 k) of a Galois field
extension k Ik; this will allow the reader to rely on his standard knowledge
of Galois theory whenever the formal development in terms of group theory
alone would seem odd.)

We denote the closed subgroups of G by GK, and call these indices K
"fields"; K will be called the fixed field of GK. The field k such that Gk = G
is called the base field, and k denotes the field satisfying Gk = (1}. The
field belonging to the closure (a) of the cyclic group (a) = {ak k c Z)
generated by an element o, E G is simply called the fixed field of or.

We write formally K CL or L I K if GL c GK, and we call the pair
L I K a field extension. L I K is called a finite extension, if GL is open, i.e.,
of finite index in GK, and this index

[L : K] (GK : GL)
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will be called the degree of L I K. L I K is said to be normal or Galois if GL
is a normal subgroup of GK. If this is the case, we define the Galois group
of L I K by

G(LIK) = GK/GL
If N D L D K are Galois extensions of K, we define the restriction of an
element a E G (N I K) to L by

aIL = a mod G(NIL) E G(LIK).
This gives a homomorphism

G (NIL). The extension L I K is called cyclic, abelian, solvable,
etc., if the Galois group G (L I K) has these properties. We put

K = n Ki ("intersection")
i

if GK is topologically generated by the subgroups GK,, and

K = fl Ki ("composite")

if GK =niGK;.IfGK'=a-1GKCrfor or EG,wewrite K'=K°.

Now let A be a continuous multiplicative G-module. By this we mean
a multiplicative abelian group A on which the elements Cr E G operate as
automorphisms on the right, or : A -* A, a a°. This action must satisfy
(i) al = a,
(ii) (ab)° = a°b°,
(iii) a°Z = (a°)T
(iv) A= U[K:k]<oo AK,

where AK in the last condition denotes the fixed module AGK under GK,
so that

AK ={aEAIaa forallaEGK},
and where K varies over all extensions that are finite over k. The
condition (iv) says that G operates continuously on A, i.e., the map

GxA --) A, (a,a)i ) a°,
is continuous, where A is equipped with the discrete topology. Indeed, this
continuity is equivalent to the fact that, for every element (a, a) E G x A,
there exists an open subgroup U = GK of G such that the neighbourhood
aU x (a) of (a, a) is mapped to the open set (a°), and this means simply
that a° EAU =AK-
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Remark : In the exponential notation as , the operation of G on A appears
as an action on the right. This notation is adequate for many computations
in the case of multiplicative G-modules A. For instance, the notation
as-1 := aaa-1 is to be preferred to writing (cr - 1)a = aaa - a-1. On the
other hand, classical usage often calls for an operation on the left. Thus in the
case of a Galois extension L I K of actual fields, the Galois group G(L I K)
acts as the automorphism group on L from the left, and therefore also in the
same way on the multiplicative group L*. This occasional switch from the
left to the right should not confuse the reader.

For every extension L I K we have AK C AL, and if L I K is finite, then
we have the norm map

NLIK : AL -+ AK, NLIK(a) = flan,
a

where a varies over a system of representatives of GL\GK. If L I K is Galois,
then AL is a G (L I K) -module and one has

AL = AK.L

At the center of class field theory there is the norm residue group

H°(G(LI K), AL) = AKINLIKAL
We also consider the group

H-1(G(LIK),AL) = NLIKALIIG(LIK)AL,
where

NLIKAL - {aEALI NLIK(a)=1}
is the "norm-one group" and IG(LIK)AL is the subgroup of NLIK AL which is
generated by all elements

as-1 := aaa-1

with a E AL, and or E G (L I K). If G (L I K) is cyclic and a is a generator,
then IG(LIK)AL is simply the group

Aa-1 = jaa-1 J a E AL } .L

In fact, the formal identity or k - 1 = (1 + Cr + + or k-1) (a - 1) implies
aak-1 = ba-1 with b = ilt=o a``.

Let us now apply the notions introduced so far to the example of Kummer
theory. For this, we impose on the G-module A' the following axiomatic
condition.



(A
D

.C'

278 Chapter IV. Abstract Class Field Theory

(3.1) Axiom. One has H-' (G(L IK), AL) = 1 for all finite cyclic
extensions LIK.

The theory we are about to develop makes reference to a surjective
G-homomorphism

p:A-3A, aHap,
with finite cyclic kernel p . The order n = #µ,s, is called the exponent of
the operator p. The case of prime interest to us is when p is the n-th power
map a r> a', and µ,, = µn = ( E A I 1) is the group of "n-th roots
of unity" in A.

We now fix a field K such that t,, G AK. For every subset B CA,
let K (B) denote the fixed field of the closed subgroup

H={a EGK Ib° =b for all bEB}
of GK . If B is GK -invariant, then K (B) I K is obviously Galois. A Kummer
extension (with respect to p) is by definition an extension of the form

K(p-1(a)) IK,
where d c_ AK. A Kummer extension K(p-' (L )) I K is always Galois,
and its Galois group is abelian of exponent n. Indeed, for an extension
K (p (a)) I K, we have the injective homomorphism

G(K(do-1(a))IK) F,p, a j as-1

where a E p-'(a). Since It,, c AK, this definition does not depend
on the choice of a. Thus, for a Kummer extension L = K (p-1(A)) _
i taed K(p-(a)), the composite map

G(LIK) -- fl G(K(bo-1(a))IK) - A
aE4

is an injective homomorphism.

The following proposition says that conversely, any abelian extension
L I K of exponent n is a Kummer extension.

(3.2) Proposition. If L I K is an abelian extension of exponent n, then

L = K(p-1(A)) with A = Ai n AK .

If in particular, LIK is cyclic, then we find L = K(a) with ar' = a E AK.
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Proof: We have p-1(A) C AL, for if x e A and xP = aP = a E AK,
a E AL, then x = i a E AL for some i E µg, AK. Therefore
K(r-1(d)) C L. On the other hand, the extension L IK is the composite of
its cyclic subextensions. For it is the composite of its finite subextensions,
and the Galois group of a finite subextension is the product of cyclic
groups, which may be interpreted as Galois groups of cyclic subextensions.
Let now M I K be a cyclic subextension of L I K. It suffices to show that
M C_ K(p-1(A)). Let or be a generator of G(MIK) and a generator
of u,,.Letd=[M:K],d'=n/d
(3.1) shows that = a" for some a E Am. Thus K C K(a) C_ M.
But a" = 'a. Thus a°' = a is equivalent to i 0 mod d, so that
K (a) = M. But = (ac- I? = V = 1, so that a = cry' E AK; then
a E r-1(A), and therefore M C K(g-1(d)).

As the main result of general Kummer theory, we now obtain the following

(3.3) Theorem. The correspondence

A 1 L = K (p-1(a))

is a 1-1-correspondence between the groups A such that AK C A C AK and
the abelian extensions L IK of exponent n.

If A and L correspond to each other, then AP fl AK = a, and we have a
canonical isomorphism

A/AK - Hom(G(L I K), A p) , a mod AK H Xa ,
where the character Xa : G(LIK) A,, is given by Xa(a) = a°-1, for
a E P-1(a).

Proof : Let L I K be an abelian extension of exponent n. By (3.2), we then
find L = K(Y-1(A)) with A = AL fl AK. We consider the homomorphism

A -- H o r n a H Xa,
where X, (or) = a°-1, a E P-1 (a). Since

Xa as-1=1 for all or EG(LI K)
aEAK a=up EAKI

it has the kernel AK p. To prove the surjectivity, we let X E Hom(G (L I K), A p).
X defines a cyclic extension M I K and is the composite of homomorphisms
G(LIK) -* G(MIK) -I p.. Let or be a 'generator of G(MIK). Since
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NMIK (X (6)) = X (0.)1M:KI = 1, we deduce from (3.1) that X(a) = a°-I for
some a E AM. Now, (aff-t = = X(o )P = 1, so that a = a' E
AP' nAK = A. For r E G(LIK), one has X(r) = X(rIM) = az-t = Xa(r),
so that X = Xa. This proves the surjectivity, and we obtain an isomorphism

d/AK = Hom(G(LjK),p.6,).

If 4 is any group between AK and AK and if L = K(p-I(4)), then
4 = AK nAK. In fact, putting 4' = AL nAK, we have just seen that one
has

4'/AK = Hom(G(L I K), A,) .

The subgroup 4 /AK corresponds under Pontryagin duality to the subgroup
Hom(G(LIK)/H, Ap), where

H={QEG(LIK)IXa(o')=1 for all aE4}.
As a°-I = Xa(o-) for a E p-1(a), H leaves fixed the elements
of P` (A), and as K('(4)) = L, we find that H = 1, so that
Hom(G(LJK)/H,A&,,) = Hom(G(LIK),µr,). It follows that 4/AK =
4'/AK, i.e., 4 = A.

It is therefore clear that the correspondence 4 H L = K (p-I (4)) is
a 1-1-correspondence, as claimed. This finishes the proof of the theorem.

Remarks and Examples : 1) If L I K is infinite, then Hom(G (L J K), µ,, )
has to be interpreted as the group of all continuous homomorphisms
X : G(LIK) -+ A,,, i.e., as the character group of the topological group
G(LIK).

2) The composite of two abelian extensions of K of exponent n is again
of the same type, and all of them lie in the maximal abelian extension of
exponent n. It is given by K = K(p-t (AK)), and for the Pontryagin dual

G(KIK)'*=Hom(G(K[K),Q/Z) =Hom(G(KJK),,u,)
we have by (3.3) that

G(KIK)* = AK/AK.

3) If k is an actual field of positive characteristic p and k is the separable
closure of k, then A may be chosen to be the additive group k and p to be
the operator

P:k-*k, ar -) ,a=ap-a.
Then axiom (3.1) is indeed satisfied, for we have, in complete generality:
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(3.4) Proposition. For every cyclic finite field extension L IK , one has
H-'(G(LIK),L) = 1.

Proof: The extension L I K always admits a normal basis {a c I or E G (L I K) },
so that L = ®Q Kac. This means that L is a G(LIK)-induced module in
the sense of §7, and then H-' (G (L I K), L) = 1, by (7.4).

The Kummer theory with respect to the operator pa = a P - a is usually
called Artin-Schreier theory.

4) The chief application of the theory developed above is to the case where G
is the absolute Galois group G (k 1 k) of an actual field k, A is the multiplicative
group k* of the algebraic closure, and p is the n-th power map a H a", for
some natural number n which is relatively prime to the characteristic of k
(in particular, n is arbitrary if char(k) = 0). Axiom (3.1) is always satisfied
in this case and is called Hilbert 90 because this statement occurs as Satz
number 90 among the 169 theorems in Hilbert's famous "Zahlbericht" [72].
Thus we have the

(3.5) Theorem (Hilbert 90). For a cyclic field extension L I K one always
has

H-'(G(LIK),L*) = 1.
In other words:

An element a E L* of norm NLIK (a) = 1 is of the form a
where P E L* and or is a generator of G (L I K).

Proof: Let n = [L : K]. By virtue of the linear independence of the automor-
phisms 1, a, ... , a"-' (see [15], chap. 5, § 7, no. 5), there exists an element
y E L* such that

P = Y + aya +a I+a yoZ + ... + 2Yall-1
0.

As NLIK (a) = 1, one gets a =,61-Q

If now the field K contains the group µ1z of n-th roots of unity, the
operator p (a) = a' has exponent n, and we obtain the following corollary,
which is the most important special case of theorem (3.3).
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(3.6) Corollary. Let n be a natural number which is relatively prime to the
characteristic of the field K, and assume that µ" c K.

Then the abelian extensions L I K of exponent n correspond 1-1 to the
subgroups A c K* which contain K*", via the rule

and we have
G(LIK) = Hom(A/K*", µ").

Hilbert's theorem 90, which is the main basis of this corollary, admits the
following generalization to arbitrary Galois extensions L I K, which goes back
to the mathematician EMMY NOETHER (1882-1935). Let G be a finite group
and A a multiplicative G-module. A 1-cocycle, or crossed homomorphism,
of G with values in A is a function f : G -a A satisfying

f (at) = f (a),f (r)
for all a, r E G. The 1-cocycles form an abelian group Z1(G, A). For every
a E A, the function

fa(a) = as-l

is a 1-cocycle, for one has

fa(ct) = a"-' = (aa-l)zar-1 = fa(a)T fa(t)
The functions fa are called 1-coboundaries and form a subgroup B 1(G, A)
of Z1(G, A). We define

H1(G, A) = Z1(G, A)/B 1(G, A)

and obtain as a first result about this group the

(3.7) Proposition. If G is cyclic, then H 1(G, A) = H-1(G, A).

Proof: Let G = (a). If f E Z'(G, A), then fork > 1

f (ak) = f(ak-1)af (a) = f ((rk-2)a2f (a)a
k-I

f(a)_...= l f(a)a(,
i=0

and f (1) = 1 because f (1) = f (1) f (1). If n = #G, then
n- i

NGf (a) _ f1 f (a)0, = f ((Y") = f (1) = 1,
i=o
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so that f (v) E NGA = {a E A I NGa = fo aa= 1}. Conversely we°
obtain, for every a E A such that NGa = 1, a 1-cocycle by putting f (Q) = a
and-

k-1

f (ak) = fl au'.
t=o

The reader is invited to check this. The map f f (Q) therefore is an
isomorphism between Z 1(G, A) and NG A. This isomorphism maps B 1(G, A)
onto IGA, because f E B 1(G, A) f (,.k) = aak-1 for some fixed a 4=*
f (a) = as-1 f (a) E IGA.

Noether's generalization of Hilbert's theorem 90 now reads:

(3.8) Proposition. For a finite Galois field extension L I K, one has that

H1(G(LIK),L*) = 1.

Proof: Let f : G L* be a 1-cocycle. For c E L*, we put

E f (U)C'
aEG(LIK)

Since the automorphisms a are linearly independent (see [15], chap. 5, §7,
no. 5), we can choose c E L* such that a ¢ 0. For a e G(LIK), we obtain

at = E f E f (z)-1f(ar)cat = f (t)-1a,
a a

i.e., f (r) = z-1 with P = a-1.

This proposition will only be applied once in this book (see chap. VI,
(2.5)).

Exercise 1. Show that Hilbert 90 in Noether's formulation also holds for the additive
group L of a Galois extension LI K.
Hint: Use the normal basis theorem.
Exercise 2. Let k be a field of characteristic p and k its separable closure. For fixed
n > 1, consider in the ring of Witt vectors W (k) (see chap. II, § 4, exercise 2-6) the
additive group of truncated Witt vectors a = (a0,a1.Show that
axiom (3.1) holds for the G (k I k) -module A =

Exercise 3. Show that the operator
da:WW(k)-.W.(k), pa=Fa-a,

is a homomorphism with cyclic kernel j of order p°. Discuss the corresponding
Kummer theory for the abelian extensions of exponent p".
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Exercise 4. Let G be a profinite group and A a continuous G-module. Put
H' (G , A) = Z' (G, A)/ B 1(G, A),

where Z' (G, A) consists of all continuous maps f : G --> A (with respect to the
discrete topology on A) such that f (a r) = f (a)z f (-r), and B1(G, A) consists of
all functions of the form fa(a) = as-1, a E A. Show that if g is a closed normal
subgroup of G, then one has an exact sequence

1 -> H 1(G/g, As) - H' (G, A) -> H 1(g, A).

Exercise 5. Show that H1(G,A) = lir H1(G/N,A^'), where N varies over all
the open normal subgroups of G.

Exercise 6. If 1 --> A --* B -> C -* 1 is an exact sequence of continuous
G-modules, then one has an exact sequence

1-->AG-* BG -->CG +H'(G,A),H1(G,B)->H'(G,C).
Remark : The group H '(G, A) is only the first term of a whole series of groups
H` (G, A), i = 1, 2, 3, ..., which are the objects of group cohomology (see [145]).
Class field theory can also be built upon this theory (see [10], [108]).

Exercise 7. Even for infinite Galois extensions L I K, one has Hilbert's theorem 90:
H'(G(LIK), L*) = 1.
Exercise 8. If n is not divisible by the characteristic of the field K and if pt,, denotes
the group of n-th roots of unity in the separable closure k, then

H'(GK,A,,) f--- VIK".

§ 4. Abstract Valuation Theory

The further development will now be based on a fixed choice of a
surjective continuous homomorphism

from the profinite group G onto the procyclic group Z = 1tn Z/nZ (see
§ 2, example 4). This homomorphism will produce a theory which is an
abstract reflection of the ramification theory of p-adic number fields. Indeed,
in the case where G is the absolute Galois group Gk = G(klk) of a p-adic
number field k, such a surjective homomorphism d : G -- Z arises via the
maximal unramified extension k I k : if ]Fq is the residue class field of k, then,
by chap. II, § 9, p. 173 and example 5 in § 2, we have canonical isomorphisms

G(klk) = G(FgIlFq) - Z
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which associate to the element 1 E Z the Frobenius automorphism
cp E G(kIk). It is defined by

a' = a4 mod p for a E o,
where o, resp. P, denote the valuation ring of k, resp. its maximal ideal. The
homomorphism d : G -+ 7G in question is then given, in this concrete case,
as the composite

In the abstract situation, the initial choice of a surjective homomorphism
d : G --> E mimics the p-adic case, but the applications of the theory are by
no means confined to p-adic number fields. The kernel I of d has a certain
fixed field k I k, and d induces an isomorphism G (k I k) = E.

More generally, for any field K we denote by IK the kernel of the
restriction d : GK -* Z, and call it the inertia group over K. Since

'K =GK flI = GK flG= GK,
the fixed field k of IK is the composite

K=Kk.
We call K IK the maximal unramified extension of K. We put

fK = ( 2 : d(GK))., eK=(1:IK)
and obtain, when fK is finite, a surjective homomorphism

dK = I d: GK
,

with kernel IK, and an isomorphism

dK:G(KIK)-+ 2.

(4.1) Definition. The element cOK E G (K 1 K) such that dK (coK) = 1 is
called the Frobenius over K.

For a field extension L K we define the inertia degree fL IK and the
ramification index eL I K by

fLIK=(d(GK):d(GL)) and eLIK=(IK:IL).
For a tower of fields K C L C M this definition obviously implies that

fMIK = fLIK fMIL and eMIK = eLIK eMIL .
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(4.2) Proposition. For every extension L I K we have the "fundamental
identity"

[L : K] = fLIK eLIK .

Proof : The exact commutative diagram

1 -+ IL GL d(GL) 1

I I I1>IK >GK d(GK)) 1
immediately yields, if L I K is Galois, the exact sequence

1aIK/IL-> G(LIK) ? d(GK)/d(GL)- I.
If L I K is not Galois, we pass to a Galois extension M I K containing L, and
get the result from the above transitivity rules for e and f.

LIK is called unramified if eLIK = 1, i.e., if L C_ K. LIK is called
totally ramified if fLJK = 1, i.e., if L n k = K. In the unramified case, we
have the surjective homomorphism

G(KIK) -->. G(LIK)
ti

and, if fK < oo, we call the image cPLIK of cpK the Frobenius automorphism
of LIK.

For an arbitrary extension L I K one has
f =LK,

since LK = LKk = Lk = L, and L n KKK is the maximal unramified
subextension of L I K. It clearly has degree

.fLIK=[LnK:K].
Equally obvious is the

(4.3) Proposition. If fK and fL are finite, then fLIK = .fLlfK, and we
have the commutative diagram

GL dL 7G

GK 2.

In particular, one has L Ig = KLIK
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The Frobenius automorphism governs the entire class field theory like
a king. It is therefore most remarkable that in the case of a finite Galois
extension L IK, every or E G(L I K) becomes a Frobenius automorphism once
it is manceuvered into the right position. This is achieved in the following
manner. For what follows, let us assume systematically that fK < oo,.
We pass from the Galois extension L I K to the extension L I K and consider
in the Galois group G (E I K) the semigroup

Frob(LIK) _ Cr {E G(LIK) I dK(a) E N} .

Observe here that dK : GK --) Z factorizes through G(LIK) because
GL = IL c IK ; recall also that 0 0 N. Firstly, we have the

(4.4) Proposition. For a finite Galois extension L I K the mapping

Frob(LIK) ---) G(LIK), a 'a IL,

is surjective.

Proof: Let Q E G (L I K) and let (p E G (L I K) be an element such that
dK (cp) = 1. Then tp Ik = 6°K and w I Lnk = cLnKIK. Restricting u to the
maximal unramified subextension L n K 1 K, it becomes a power of the
Frobenius automorphism, or I Lnk = OLfKJK so we may choose n in N. As
L = LK, we have

G(LIK) - G(LIL n k).
If now r E G (L I K) is mapped to Qrp-" I L under this isomorphism, then
v = crp" is an element satisfying & I L = rip" I L = IL = v and
°IK = oK. Hence dK(ff) = n, and so Q E Frob(LIK).

Thus every element or E G (L I K) may be lifted to an element
U E Frob(L IK). The following proposition shows that this lifting, considered
over its fixed field, is actually the Frobenius automorphism.

(4.5) Proposition. Let CT E Frob(LIK), and let E be the fixed field of Q.
Then we have:

(i) ffjK = dK(5), (ii) [E : K] < oo, (iii) E = L, (iv) jr = wz-
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Proof : (i) E n k is the fixed field of d IK = c K (a) , so that

fEIK=[EnK:K]=dK(d)
(ii) One has k c EK = I i4 L ; thus

eEIK = (IK : IE) = #G(E I K) < #G(Elk)
is finite, Therefore [E : K] = ff]KeJIK is finite as well.

(iii) The canonical surjection r = G (LIE) -* G (E I E) - Z has to be
bijective. For since r _ (8) is procyclic, one finds (T : I") < n for every
n E N (see §2, p. 273). Thus the induced maps F/1"' - 7G/n7L are bijective
and so is F -+ Z. But G(LI E') = G(EIE) implies that L = E.
(iv) fLIKdE(d) = dK(d) = fEIK; thus dE(d) = 1, and so d = r oz.

Let us illustrate the situation described in the last proposition by a diagram,
which one should keep in mind for the sequel.

L wL

K
fLIK

fzjK WK
K

All the preceding discussions arose entirely from the initial datum of the
homomorphism d : G -)- Z. We now add to the data a multiplicative G-
module A, which we equip with a homomorphism that is to play the role of
a henselian valuation.

(4.6) Definition. A henselian valuation of Ak with respect to d : G -> Z is
a homomorphism

v:Ak -7
satisfying the following properties:
(i) v(Ak)=ZDZandZ/nZ -7L/n7LforallnEN,
(ii) v(NKIkAK) = fKZ for all finite extensions K Ik.

Exactly like the original homomorphism d : Gk -+ Z, the henselian
valuation v : Ak -> Z has the property of reproducing itself over every finite
extension K of k.
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(4.7) Proposition. For every field K which is finite over k, the formula

1
VK =

fK
V o NK Ik : AK Z

defines a surjective homomorphism satisfying the following properties:

(i) VK=VKooor for all rcG.
(ii) For every finite extension LIK, one has the commutative diagram

AL UL) 7L
NLIK

I }ILIK

AK
VK Z.

289

Proof: (i) If c runs through a system of representatives of Gk/GK, then
o -lro sweeps across a system of representatives of Gk/c-1GKa =
Gk/GKa. Hence we have, for a E AK,

vKa(a') = f1 V(fj aaa-lra)

A v((fla')a) = I v(NKIk(a))
= VK (a).

(ii) For a E AL one has:

fLIKVL(a) = fLIK Tv(NLIk(a)) =
fK

v(NKIk(NLIK(a)))

= vK(NLIK(a)) .

(4.8) Definition. A prime element of AK is an element nK E AK such that
VK (IrK) = 1. We Put

UK= {uEAK I VK(u)=O}.

For an unramified extension L I K, that is, an extension such that
fLIK = [L : K], we have from (4.7), (ii) that VLIAK = vK. In particular, a
prime element of AK is itself also a prime element of AL. If on the other
hand, LIK is totally ramified, i.e., fLIK = 1, and if JrL is a prime element
of AL, then 7rK = NLJK(7rL) is a prime element of AK.
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Exercise 1. Assume that every closed abelian subgroup of G is procyclic. Let K I k
be a finite extension. A microprime p of K is by definition a conjugacy class
(v) c G K of some Frobenius element a E Frob(k I K) which is not a proper power
o'", n > 1, of some other Frobenius element Q' E Frob(kjK). Let spec(K) be the
set of all microprimes of K. Show that if L I K is a finite extension, then there is a
canonical mapping

jr : spec(L) -> spec(K).
Above any microprime p there are only finitely many microprimes 93 of L, i.e., the
set 7r-I(p) is finite. We write g3Ip to mean q3 E 7r-1(p).

Exercise 2. For a finite extension L I K and a microprime TI p of L, let
fqit p = d (T)/d (p). Show that

Ef°Ip=[L:K).
Ip

Exercise 3. For an infinite extension L I K, let
spec(L) = spec(L.),

a
where L. I K varies over the finite subextensions of L I K. What are the microprimes
of k?
Exercise 4. Show that if L I K is Galois, then the Galois group G (L I K) operates
transitively on spec(L). The "decomposition group"

Ge(LIK)=[aEG(LIK)IqF _P]
is cyclic, and if ZT = LG P(LIK) is the "decomposition field" of q3 E spec(L), then
L I Zcp is unramified.

§ 5. The Reciprocity Map

Continuing with the notation of the previous section, we consider again a
profinite group G, a continuous G -module A, and a pair of homomorphisms

d:G-) Z, v:Ak >Z,
such that d is continuous and surjective and v is a henselian valuation with
respect to d. In the following we introduce the convention that the letter K,
whenever it occurs without embellishments or commentary to the contrary,
will always denote a field of finite degree over k. We furthermore impose the
following axiomatic condition, which will be systematically assumed in the
sequel.

(5.1) Axiom. For every unramified finite extension L I K one has

H` (G(L IK), UL) = 1 for i = 0, - 1.



tin

Sr
i

at
e'.

'C7
`',

.
-
,

§ 5. The Reciprocity Map 291

For an infinite extension L I K we set

NLIKAL = nNMIKAM,
M

with M I K varying over the finite subextensions of L I K.

Our goal is to define a canonical homomorphism
rLIK : G(LIK) AKINLIKAL

for every finite Galois extension L I K. To this end, we pass from L I K to the
extension L I K and define first a mapping on the semigroup

Frob(LIK) = {a EG(LIK)I dK(o) NI.

(5.2) Definition. The reciprocity map
rLIK : Frob(LIK) - AK/NLIKAL

is defined by
rLIK(a) = NEIK(JTE) mod NLIKAL,

where E is the fixed field of a and 7rE E AE is a prime element.

Observe that E is of finite degree over K by (4.5), and or becomes the
Frobenius automorphism rpy over E. The definition of rLIK (a) does not
depend on the choice of the element JrE. For another one differs from 7rE
only by an element u E UE, and for this we have NEIK(u) E NLIKAL,
so that NEIK(u) E NMIKAM for every finite Galois subextension MIK
of LIK. To see this, we may clearly assume that E C_ M. Applying (5.1) to
the unramified extension M I E, one finds u = NM I E (e), s E UM, and thus

NEIK(u) = NEIK(NMIE(E)) = NMIK(e) E NMIKAM.
Next we want to show that the reciprocity map rLIK is multiplicative. To do
this, we consider for every a E G (L 1K) and every n E N the endomorphisms

a-1:AL-) AL,
n-!

an:AL . AL, aFafla° .

i=0

In formal notation, this gives an = v" - 1 and we find thata-1'
(a-1)oan =ano(a-1)=an-1.

Now we introduce the homomorphism
N=NLIK:AL-+AK

and prove two lemmas for it.
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(5.3) Lemma. Let cp, or c Frob(L I K) with dK (co) = 1, dK (Q) = n. If E is
the fixed field of or and a E AE, then

NEIK (a) = (N a V.) (a) = (co, o N) (a)

Proof: The maximal unramified subextension EO = E fl k I K is of degree n,
and its Galois group G(E° I K) is generated by the Frobenius automorphism
cPEOIK = 4PK I Eo = cP I K I EO =V I Eo. Consequently, NEo I K = (Pn I A,.o . On
the other hand, one has EK = L and E fl k = E0, and therefore
NEIEO = NIA,. For a E AE we thus get

NEIK(a) = NEoIK (NEIEo(a)) = N(a)P" =

The last equation follows from cpG(L I K) = G(L I k) v.

The subgroup IG(LIk)UL, which is generated by all elements of the
form uT-1, u E UL, r E G(LIK), is mapped to 1 by the homomorphism
N = NLIK : UL UK. We therefore obtain an induced homomorphism

N : Ho(G(LI K), UL) --- UK

on the quotient group Ho(G(LI K), UL) = UL/IG(LIThUL. For this group, we
have the following lemma.

(5.4) Lemma. Ifx E HO(G(LIK), UL) is fixed by an elementq E G(LIK)
such that dK (cp) = 1, i.e., x' = x, then

N(x) E NEIKUL.

Proof: Let x = u mod IG(LIK)UL, with x(P-1 = 1, so that

(*)
rW-1 = tt-1

ac ui ui E UL, Tj E G(LIK).
i=1

Let M I K be a finite Galois subextension of L I K. In order to prove that
N(u) E NMIKUM, we may assume that u, ui c UM and L C M. Let
n = [M : K], a = co' and let E D M be the fixed field of a. Further,
let En I E be the unramified extension of degree n, i.e., the fixed field of
Q" = co'. By (5.1), we can then find elements u, ui E UE such that

u = u°", ui = u!°'
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By (*), the elements u`p-1 and fli uj'-1 only differ by an element 2 E Uz
such that NE I E (x") = 1. Hence - again by (5.1) - they differ by an element
of the form ya-1, with y E U_ r,,. We may thus write

ut;-1U0-1 =yp -1 11 ult`-1 = (VPf)'P-1
F111

i

Applying N gives N(u)P-1 = so that

N(u) = N(ywn) z,

for some z E UK such that zP-1 = 1; therefore z`1 = z, and z E UK. Finally,
applying an and putting y = ya = E U_r, we obtain, observing
n = [M : K] and using (5.3), that

N(u) = N(u)an = N(y°n.)z'

= NEIK(y)NMIK(z) E NMIKUM.

(5.5) Proposition. The reciprocity map

rLIK : Frob(LIK) --) AK/NEIKAL

is multiplicative.

Proof: Let ata2 = a3 be an equation in Frob(LIK), ni = dK(ai), Ei the
fixed field of ai and 7ri E A_rt a prime element, for i = 1, 2, 3. We have to
show that

NE,IK(7r1)N_r2IK(7r2) = NE3jK(ir3) mod NLIKAL.

Choose a fixed q E G (L I K) such that dK (rp) = 1 and put

ti =ai- Ian' EG(LIK).

From a, a2 = a3 and n1 + n2 = n3, we then deduce that

t3 = a2 lai 1(pn2+n, =or 2
"2112

Putting as = P-n2 a1 (Pn2 , n4 = dK(a4) = n i ,
_r4 = 1 74=71 E A _r4

and r4=a411pn4,wefind r3=t2r4and '

NE4I K (n4) = NE'1 I K (nt)

We may therefore pass to the congruence

NE3IK(Jr3) = Nz2lK(Jr2)NE'4IK(Jr4) mod NLIKAL
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the proof of which uses the identity r3 = r2r4 From (5.3), we have
NE;IK(Jri) = N(7rV"' ). Thus, if we put

U -
3 4 2

then the congruence amounts simply to the relation N(u) E NLIKAL. For
this, however, lemma (5.4) gives us all that we need.

"i-1 v-1W"'-1 7 1Since rp,,, o (gyp - 1) = o'ii - 1 and jr = ni ' = 7r ' , we have

r3-11-r4 1-r2
3 -7r4 2

From the identity r3 = r2r4, it follows that (r3 - 1) + (1 - r2) + (1 - r4) _
(1 - r2)(1 - r4). Putting now

73 = u374, 7r2 = u21n4, JC42 = u4n4,

we obtain
u'P-1 = a ur-1

F1
i=2

U, E UL,

For the element x = u mod IG(LIK}UL E Ho(G(L1K), UL), this means that
1, and so x1" = x ; then by (5.4), we do get N(u) = N(x) E NLIK AL.

From the surjectivity of the mapping

Frob(LI K) -> G(LIK)

and the fact that NLI K AL c NL I K AL , we now have the

(5.6) Proposition. For every finite Galois extension LIK, there is a
canonical homomorphism

rLIK : G(LIK) AKINLIKAL

given by

rLIK(o,) = NEIK(Jr ) mod NLIKAL,

where E is the fixed field of a preimage v E Frob (L I K) of Q E G (L I K) and
7rz E Az is a prime element. It is called the reciprocity homomorphism
of LIK.
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Proof: We first show that the definition of rLIK(Q) is independent of the
choice of the preimage v r= Frob(LIK) of v. For this, let 8' E Frob(LIK)
be another preimage, E' its fixed field and 7rE' E AE, a prime element.
If dK (8) = dK (8'), then & I g = 6' I is and a I L = aI L, so that d = Q',
and there is nothing to show. However, if we have, say, dK (Q) < dK (Q'),
then v' = d f for some f E Frob (L I K) , and ?1L = 1. The fixed field E"
of f contains L, so rLIK(f) - NE"IK(7rE'") ° 1 mod NLIKAL. It follows
therefore that rLIK (c) = rLI K (Q) rLIK (r) = rLIK (Q) .

The fact that the mapping is a homomorphism now follows directly
from (5.5) : if &1, Q2 E Frob(L I K) are preimages of al, 0-2 E G (L I K), then
Q3 = &I d'2 is a preimage of o-3 = Ql v2.

The definition of the reciprocity map expresses the fundamental principle
of class field theory to the effect that Frobenius automorphisms correspond
to prime elements: the element a = APE E G (LIE) is map ed to nE E AE ;
for reasons of functoriality, the inclusion G (L I Z) G (L I K) corresponds
to the norm map NEIK : AE -3 AK. So the definition of rLIK(Q) is already
forced upon us by these requirements. This principle appears at its purest in
the

(5.7) Proposition. If L I K is an unramified extension, then the reciprocity
map

is given by

rLIK : G(LIK) AKINLIKAL

rLIK(cOLIK) = nK mod NLIKAL,
and is an isomorphism.

Proof: In this case one has f = K and cDK E G (K I K) is a preimage of
q'LIK with fixed field K, i.e., rLIK((PLIK) = IrK mod NLIKAL. The fact that
we have an isomorphism is seen from the composite

G(LIK) - AK/NLIKAL -+ Z/nZ = Z/nZ,
with n = [L : K], where the second map is induced by the valuation
VK : AK -± Z because VK(NLIKAL) c nZ. It is an isomorphism, for
if vK(a) =- 0 mod nZ, then a = uirK, and since u = NLIK(E) for some
E E UL , by (5.1), we find a = NL I K (ETrK) - 1 mod NLIKAL . On the side of
the homomorphisms, the generators cOLIK, IrK mod NLIKAL, and 1 mod nZ
correspond to each other, and everything is proved.

The reciprocity homomorphism rLIK exhibits the following functorial
behaviour.
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(5.8) Proposition. Let L I K and L' I K' be finite Galois extensions, so that
K C K' and L C L', and let o- E G. Then we have the commutative diagrams

G(L'IK') 1111V) AK,/NL IK,AL G(LIK) rLuc-T AKINLIKAL

I NK'IK I u* 1 or

G(LIK) `IK> AKINLIKAL G(L0 iK) ,-L
AKQ/NLuIKQALQ

where the vertical arrows on the left are given by a' F-+ a' I L, resp. by the
conjugation t r-> o-Iicr.

Proof: Let a' E G(L'IK') and a = a'IL E G(LIK). If 5' E Frob(L'IK')
is a preimage of a', then jr = Q' I L E Frob(L I K) is a preimage of a such
that dK(&) fK'IKdK'(v') N. Let E' be the fixed field of v'. Then
E = E' n L = E' n E is the fixed field of Cr and fE'IE = 1. If now
JE' E AE, is a prime element of E', then nE = NE'IE(7r ) E AE is a
prime element of E. The cdmmutativity of the diagram on the left therefore
follows from the equality of norms

NEIK(nE) = NEIK(NE'IE(Jr ')) = NE'IK(ir ') = NK'IK(NEr1K'(JrE')) .

On the other hand, let r E G (L I K), and let f be a preimage in Frob(L I K)
with fixed field E, and f E G a lifting of f to k. Then EQ is the fixed
field of or -1 f a I Lo , and if 7t E A E is a prime element of Z, then 7r ° E A Eo
is a prime element of E. The commutativity of the diagram on the right
therefore follows from the equality of norms

NEoIK°(Yr) = NEIK(7r)'.

Another very interesting functorial property of the reciprocity map is
obtained via the transfer (Verlagerung in German). For an arbitrary group
G, let G' denote the commutator subgroup and write

Gab = GIG'

for the maximal abelian quotient group. If then H C G is a subgroup of
finite index, we have a canonical homomorphism

Ver : Gab )
Hab

which is called transfer from G to H. This homomorphism is defined as
follows (see [75], chap. IV, § 1).
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Let R be a system of representatives for the left cosets of H in G,
G=RH,IER.If or EGwe write, for every pER,

aP = Pap , Up E H, P' E R,

and we define
Ver(a mod G') = r[ ap mod H'_

PER

Another description of the transfer results from the double coset decomposi-
tion

G = U (a)rH
r

of G in terms of the subgroups (a) and H. Letting f (r) denote the smallest
natural number such that a, = r_laf(T')r E H, one hasHfl(r-iar) = (a1),
and we find that

Ver(a mod G') _ fl at mod H'

This formula is obtained from the one above by choosing for R the set
{a` r I i = 1, ... , f (r)}. Applying this to the reciprocity homomorphism

rLIK : G(LIK)ab ) AKINLIKAL

we get the

(5.9) Proposition. Let L I K be a finite Galois extension and K' an
intermediate field. Then we have the commutative diagram

G(LIK')ab r`I ' AK'INLIK'AL

T
G(LIK)ab rLIK

AKINLIKAL,

where the arrow on the right is induced by inclusion.

Proof: Let us write temporarily G = G (L I K) and H = G (L I K'). Let
a E G (L I K), and let v_be a preimage in Frob(L I K) with fixed field E
and S = G(L I E) _ (a). We consider the double coset decomposition
G = USrH and put Sr = r-'Sr n H and Qr = r-af(t)r as above. Let
G=G(LIK), H=G(LIK'), S=(a), r=TIL and aT=51IL
Then we obviously have

G=USYH,
z
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and therefore

Ver(cr mod G(LI K)') = flot mod G(LIK')'.
T

For every r, let co, vary over a system of right coset representatives of HIS,.
Then one has

.H = U STmt and G = U Srmr.
CUT r, WT

Let Et be the fixed field of Cr,, i.e., the fixed field of ST. Er is the fixed
field of r-tdr so that ET I Et is the unramified subextension of degree f (r)
in L I Er. If now 7r E A_r is a prime element of E, then 7rr E AET is a
prime element of ET, and thus also of E. In View of the above double coset
decomposition, we therefore find

NEIK(7r) = r[ nt(DT = fl(fl(nt)°'T) =FIN ZTIK'(7r'),
r, OJT T (UT r

and since Qt Frob(L I K') is a preimage of or E G (L I K), it follows that

rLIK(a) = flrLIK'(cr) m rLIK'(lr crT) = rLIK (Ver(cr mod G(LIK)')) .
T r 0

Exercise 1. Let L I K be abelian and totally ramified, and let 7r be a prime element
of AL. If then o E G (L I K) and

yV-1 = 7ra-1

with y E UL, then rLIK(c) = N(y) mod NLIKAL, where N = NLIK (B.DWORK, see
[122], chap. XIIl, §5).
Exercise 2. Generalize the theory developed so far in the following way. Let P be
a set of prime numbers and let G be a pro-P -group, i.e., a profinite group all of
whose quotients GIN by open normal subgroups N have order divisible only by
primes in P.

Let d : G Z P be a surjective homomorphism onto the group Z p= HPEP Z P'
and let A be a G -module. A henselian P-valuation with respect to d is by definition
a homomorphism

v: Ak +Zp
which satisfies the following properties:

(i) v(AK) = Z D Z and Z/nZ - Z/n7L for all natural numbers n which are
divisible only by primes in P,
(ii) u(NKIkAK) = fKZ for all finite extensions KIk, where fK = (d(G) : d(GK)).

Under the hypothesis that H` (G (L I K), UL) = I for i = 0, - 1, for all unramified
extensions LIK, prove the existence of a canonical reciprocity homomorphism rLIK
G (L I K)°h - AK /NLIKAL for every finite Galois extension L I K.
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Exercise 3. Let d : G --> 7L be a surjective homomorphism, A a G-module which
satisfies axiom (5.1), and let v : Ak -+ 7L be a henselian valuation with respect to d.

Let K Ik be a finite extension and let spec(K) be the set of microprimes of K
(see §4, exercise 1-5). Define a canonical mapping

rK : spec(K) -+ AKINIJKAk,
and show that, for a finite extension, the diagram

spec(L)
r`

) ALIN-1.Ak

a I I Ntlx

spec(K) rK > AK/NkjKAT

commutes. Show furthermore that, for every finite Galois extension L I K, rK induces
the reciprocity isomorphism

rLIK : G(LIK) - AKINLIKAL.
Hint: Let V E GK be an element such that dK(V) E N. Let E' be the fixed field of
Q and

AE =. AKa,
a

where K. I K varies over the finite subextensions of E I K, and where the projective
limit is taken with respect to the norm maps NK,IK, : AK', -* AK.. Then there is a
surjective homomorphism vE : AE -a Z and a homomorphism NECK : AE -)- AK.

§ 6. The General Reciprocity Law

We now impose on the continuous G-module A the following condition.

(6.1) Class Field Axiom. For every cyclic extension L I K one has

#H`(G(LIK),AL) = j[L:K] for i = 0,
for i = -1.

Among the cyclic extensions there are in particular the unramified ones.
For them the above condition amounts precisely to requiring axiom (5.1), so
that one has

(6.2) Proposition. For a finite unramified extension L I K, one has

H`(G(LIK),UL) =1 for i=0, -1.
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Proof : Since L I K is unramified, a prime element nK of AK is also a
prime element of AL. As H-1(G(LIK), AL) = 1, every element u E UL
such that NLIK(u) = 1 is of the form u = as-', with a E AL, Q = VLIK
So writing a = EnK, E E UL, we obtain u = s°. This shows that
H-1(G(LIK),UL) = 1.

On the other hand, the homomorphism vK : AK - Z gives rise to a
homomorphism

VK AKINLIKAL --> Z/nZ = Z/n7L,
where n = [L : K] = fLIK, because VK(NL(KAL) _ !LIKZ = nZ. This
homomorphism is surjective as vK (7rK mod NLIKAL) = 1 mod nZ, and it is
bijective as #AK /NLIKAL = n. If now u e UK, then we have u = NL I K (a) ,

with a E AL, since vK(u) = 0. But 0 = VK(U) = vK(NLIK(a)) = nvL(a),
so we get in fact a E UL. This proves that H°(G(LIK), UL) = 1.

By definition, a class field theory is a pair of homomorphisms
(d : G -7, v:A ---> 7L),

where A is a G-module which satisfies axiom (6.1), d is a surjective
continuous homomorphism, and v is a henselian valuation. From proposition
(6.2) and § 5, we obtain for every finite Galois extension L I K, the reciprocity
homomorphism

rLIK : G(LIK)ab ) AKINLIKAL
But the class field axiom yields moreover the following theorem, which
represents the main theorem of class field theory, and which we will call the
general reciprocity law.

(6.3) Theorem. For every finite Galois extension L I K, the homomorphism
r.LIK : G(LIK)ab ) AKINLIKAL

is an isomorphism.

Proof: If M I K is a Galois subextension of L I K , we get from (5.8) the
commutative exact diagram

1-* G(LIM) G(LIK) ---- G(MIK) -=r 1

rLIM 1 rLIK rMIK

AMINLIMAL
NM

AKINLIKAL ) AKINMIKAM -- 1

We use this diagram to make three reductions.
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First reduction. We may assume that G(LIK) is abelian. For if the
theorem is proved in this case, then, putting M = Lab the maximal
abelian subextension of L I K , we find G (L I K )ab = G (M I K), and the
commutator subgroup G (L I M) of G (L I K) is precisely the kernel of rL I K,
i.e., G(LIK)ab -+ AKINLIKAL is injective. The surjectivity follows by
induction on the degree. Indeed, in the case where G(LIK) is solvable,
one has either M = L or [L : M] < [L : K], and if rMIK and rLIM are
surjective, then so is rLIK. In the general case, let M be the fixed field of a
p-Sylow subgroup. M I K need not be Galois, but we may use the left part
of the diagram, where rLIM is surjective. It then suffices to show that the
image of NMIK is the p-Sylow subgroup SP of AK/NLIKAL. That this holds
true for all p amounts to saying that rLIK is surjective. Now the inclusion
AK C AM induces a homomorphism

i : AKINLIKAL -) AMINLIMAL,

such that NMIK o i = [M : K]. As ([M : K], p) = 1, SP SP is
surjective, so SP lies in the image of NM I K, and therefore of rL I K .

Second reduction. We may assume that L I K is cyclic. For if M I K varies
over all cyclic subextensions of L I K, then the diagram shows that the kernel
of rLIK lies in the kernel of the map G(L I K) - JM G(M I K). Since
G (L I K) is abelian, this map is injective and hence the same is true of rL I K .

Choosing a proper cyclic subextension M I K of L I K, surjectivity follows by
induction on the degree as in the first reduction for solvable extensions.

Third reduction. Let L I K be cyclic. We may assume that fLIK = 1. To
see this, let M = L fl k be the maximal unramified subextension of L I K.
Then fLIM = 1 and rMIK is an isomorphism by (5.7). In the bottom
sequence of our diagram, the map NMIK is injective because the groups
in this sequence have the respective orders [L : M], [L : K], [M : K] by
axiom (6.1). Therefore rLIK is an isomorphism if rLIM is.

Now let LIK be cyclic and totally ramified, i.e., fLIK = 1. Let a be a
generator of G (L I K). We view o via the isomorphism G (L I K) - G (L I k)
as an element of G(L I K), and obtain the element v = o coL E Frob(L IK),
which is a preimage of or E G (L I K) such that dK (Q) = dK (cPL) = 1

I K = 1, and so E fl K = K.We thus find for the fixed field I K of & that f r
Let M I K be a finite Galois subextension of L I K containing E and L, let
M° = M fl k be the maximal unramified subextension of M I K, and put
N=NMIMo.AS fEIK =.fLIK = 1, one finds NIAE =NEIK,NIAL =NLIK
(see the proof of (5.3)).
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For the injectivity of rLI K, we have to prove this: if rLI K (Or k) = 1, where
0 < k < n = [L : K], then k = 0.

In order to do this, let nE E A_r, nL E AL be prime elements. Since
L', L C M, nE and nL are both prime elements of M. Putting 74 = u3r ,
U E UM, we obtain

rL!K(ak) = N(rE) = N(u) N(ni) = N(u) mod-NLIKAL.
From rLI K (6k) = 1, it thus follows that N(at) = N(v) for some v E UL, so
that N(u-'v) = 1. From axiom (6.1), we may write u-IV = as-' for some
a E Am, and find in AM the equation

nLv)a-I = (nkv)°-t = (n4u-t V)°-1 = (aa-l)a-I = (aa

and so x = 7r va l-a E AMo. Now vMo (x) E 2 and nvMo (x) = vM (x) = k
imply that one has k = 0, and so rLIK is injective. The surjectivity then
follows from (6.1).

The inverse of the mapping rLIK : G(LI K)ab - AK/NLIKAL gives, for
every f rite Galois extension L I K , a surjective homomorphism

( LIK) : AK -± G(LIK)ab

with kernel NLIKAL. This map is called the norm residue symbol of LIK.
From (5.8) and (5.9) we have the

(6.4) Proposition. Let L I K and L' I K' be finite Galois extensions such that
K C K' and L c L', and let a E G. Then we have the commutative diagrams

AK (,L'I K) ` G(L'IK')ab AK (

NK'I K j I a t t a*
AK LIK G(LIK)ab AKa ( LalKa) . G(LaIKa)ab

and if K' C L, we have the commutative diagram
AK LIK') G(LIK,)ab

I f Ver
AK G(LIK)ab
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The definition of the norm residue symbol automatically extends to
infinite Galois extensions L I K. For if L t 1 K varies over the finite Galois
subextensions, then

G(L IK)ab = G(L; I K)ab

(see §2, exercise 6). As (a, Lj/ I K) I Lab = (a, L; I K) for Li, D L; , the
individual norm residue symbols (a, L; I K), a E AK, determine an element

(a,LIK) E G(LIK)ab.

In the special case of the extension KIK , we find the following intimate
connection between the maps dK, VK, and ( , KIK).

(6.5) Proposition. One has

(a, KIK) = cpK (a)
, and thus dKo( ,KIK)=VK-

Proof : Let L I K be the subextension of KIK of degree f. As Z/ f Z =
7Z/fZ, we have vK(a) = n + fz, with n E Z, z E Z; that is, a = u7rKbf,
with u E UK, b E AK. From (5.7), we obtain

(a,KIK)IL= (a,LIK) = (7rK,LIK)n(b,LIK)f =c0K(a)IL.

Thus we must have (a, k I K) = O K (a)
El

The main goal of field theory is to classify all algebraic extensions of
a given field K. The law governing the constitution of extensions of K is
hidden in the inner structure of the base field K itself, and should therefore
be expressed in terms of entities directly associated with it. Class field theory
solves this problem as far as the abelian extensions of K are concerned.
It establishes a 1-1-correspondence between these extensions and certain
subgroups of AK. More precisely, this is done as follows.

For every field K, we equip the group AK with a topology by declaring
the cosets aNLIK AL to be a basis of neighbourhoods of a E AK, where LIK
varies over all finite Galois extensions of K. We call this topology the norm
topology of AK.

(6.6) Proposition. (i) The open subgroups of AK are precisely the closed
subgroups of finite index.
(ii) The valuation VK : AK + Z is continuous.
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(iii) If L I K is a finite extension, then NL I K : AL -+ A K is continuous.
(iv) AK is Hausdorff if and only if the group

AK = (1 NLIKAL
L

of universal norms is trivial.

Proof: (i) If Ar is a subgroup of AK, then

Ar =AK-1 UaN.
WOAr

Now, if N is open, so are all cosets aN, so that Al is closed, and since Al has
to contain one of the neighbourhoods NLIK AL of the basis of neighbourhoods
of 1, Al is also of finite index. If, conversely, Al is closed and of finite index,
then the union of the finitely many cosets aN Al is closed, and so Al
is open.
(ii) The groups f Z, f E N, form a basis of neighbourhoods of 0 E Z
(see § 2), and if L I K is the unramified extension of degree f , then it follows
from (4.7) that

VK(NLIKAL) _ fvL(AL) C .f7L,
which shows the continuity of UK.
(iii) Let NM I K AM be an open neighbourhood of 1 E A K. Then

NLIK(NMLILAML) = NMLIKAML C NMIKAM,

which shows the continuity of NL I K-
(iv) is self-evident.

The finite abelian extensions L I K are now classified as follows.

(6.7) Theorem. Associating

LHNL=NLIKAL
sets up a 1-1-correspondence between the finite abelian extensions L I K and
the open subgroups Al of AK. Furthermore, one has

L1 c L2 NL2, NL,L2 =NL, n NL2, NL,nL2 =NL,NL2.

The field L corresponding to the subgroup Al of AK is called the class
field associated with Al. By (6.3), it satisfies

G(LIK) = AK/N.
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Proof of (6.7): If L1 and L2 are abelian extensions of K, then the transitivity
of the norm implies NL,LZ C NL, nNL2. If, conversely, a E NL, nNLZ, then
the element (a, L IL2I K) E G(L1L2I K) projects trivially onto G(L1I K), that
is, (a,LiIK) = 1 for i = 1,2. Thus (a,L1L2jK) = 1, i.e., a E NLL2. We
therefore have NL,L2 = NL, n NL2, and so

NL1 2XL2{#==> ML 1nNL,=NL1L2=NL2 [L1L2:K]

=[L2:K]4L1CL2.
This shows the injectivity of the correspondence L H NL.

If N is any open subgroup, then it contains the norm group ML = NLIK AL
of some Galois extension L I K. (6.3) implies that NL = NLab , so we may
assume L I K to be abelian. But (N, L I K) = G (L I L') for some intermediate
field L' of L I K. Since N 2 NL , the group N is the full preimage of
G(LIL') under the map (,LIK) : AK -# G(LI K), and thus it is the full
kernel of ( , L'IK) : AK - G(L'IK). Thus N = NL,. This shows that the
correspondence L H NL is surjective.

Finally, the equality NL1nL2 = NL,NL, is obtained as follows,
L1 n L2 S; Li implies that NL1nLZ 2 NL, , i = 1, 2, and thus

NL,nL2 2 NL1NL2 .

As NL1NL2 is open, we have just shown that NLINL2 = NL for some finite
abelian extension L I K. But NL, S; NL implies L c L 1 n L2, so that

NL1.NL2 = NL 2 NL1nL2 .

Exercise 1. Let n be a natural number, and assume the group µ E A I " = 1}
is cyclic of order n, and A C A". Let K be a field such that c AK, and let
L I K be the maximal abelian extension of exponent n. If L I K is finite, then one has
NLIKAL = A'K''

Exercise 2. Under the hypotheses of exercise 1, Kummer theory and class field theory
yield, via Pontryagin duality G(LI K) x Horn (G(LIK),A.") --> p.,,, a nondegenerate
bilinear mapping (the abstract "Hilbert symbol")

( ):AK/A'KxAK/A'.
Exercise 3. Let p be a prime number and (d : G - Z,,, v : Ak -> Z) a p-class
field theory in the sense of §5, exercise 2. Let d' : G --> Z, be another surjective
homomorphism, and K the 7LP-extension defined by d'. Let v' : Ak -> 7Gp be the
composite of

c 1C'IKTAk G(K 1K) zP

Then (d', v') is also a p-class field theory. The norm residue symbols associated to
(d, v) and (d', v') coincide. (No analogous statement holds in the case of 7L-class
field theories (d:G--;7L,v:Ak--->ZM
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Exercise 4. (Generalization to infinite extensions.) Let (d : G 7L, v : Ak - Z)
be a class field theory. We assume that the kernel Uk of vk : Ak -. 7G is compact for
every finite extension K 1k. For an infinite extension K 1k, put

AK, = AK, ,
where K. I k varies over the finite subextensions of K Ik and the projective limit is
taken with respect to the norm maps NK,JK,, : AKA -+ AKa. Show:
1) For every (finite or infinite) extension L I K, one has a norm map

NLIK : AL - AK,
and if LIK is finite, there is an injection iLIK : AK -+ AL. If furthermore LIK is
Galois, then one has AK = AL(LIK)
2) For every extension K (k with finite inertia degree fK = [K n k : k], (d, v) induces
a class field theory (dK : GK --> 2, VK : AK -->- Z)-
3) If K C K' are extensions of k with fK, fK, < oo, and L I K and L'I K' are (finite
or infinite) Galois extensions with L C L', then one has a commutative diagram

AK ( L'IK') G(L,IK )ab

I
AK (LIK) > G(LIK)an

Exercise 5. If L I K is a finite Galois extension, then Gjb is a G (L I K)-module in a
canonical way, and the transfer from GK to GL is a homomorphism

Ver : GK (Gib)G(LIK)

Exercise 6. (Tautological class field theory.) Assume that the profinite group G
satisfies the condition: for every finite Galois extension,

Ver : GK (GL)G(LIK)
is an isomorphism. (These are the profinite groups of "strict cohomological dimen-
sion 2" (see [145], chap. III, th. (3.6.4)).) Put AK = GK and form the direct limit
A = liter AK via the transfer. Then AK is identified with AGK.

Show that for every cyclic extension L I K one has

#H' (G (L I K), AL) = ([L : K ] for i = 0 ,
1 1 for i = -1,

and that for every surjective homomorphism d : G -+ 7L, the induced map
v : Ak = Gab -> 7G is a henselian valuation with respect to d. The corresponding reci-
procity map rLIK : G(LIK) -* AK/NLIKAL is essentially the identity.

Abstract class field theory acquires a much broader range of applications if it is
generalized as follows.

Exercise 7. Let G be a profinite group and B(G) the category of finite G-sets,
i.e., of finite sets X with a continuous G-operation. Show that the connected, i.e.,
transitive G-sets in B(G) are, up to isomorphism, the sets G/GK, where GK is an
open subgroup of G, and G operates via multiplication on the left.
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If X is a finite G-set and x E X, then
nr,(X,x)=G_T={cEGlax=x}

is called the fundamental group of X with base point x. For a map f : X -* Y in
B(G), we put

G(XIY) =Auty(X).
f is called Galois if X and Y are connected and G(X I Y) operates transitively on
the fibres f-'(y).
Exercise 8. Let f : X -a Y be a map of connected finite G-sets, and let x E X,
y = f (X) E Y. Show that f is Galois if and only if 7r1 (X, x) is a normal subgroup
of 7r1 (Y, y). In this case, one has a canonical isomorphism

G(XIY) = jr1(Y,y)1ni(X,x).

A pair of functors
A = (A*, A*) : B(G) -+ (ab),

consisting of a contravariant functor A* and a covariant functor A* from B(G) to
the category (ab) of abelian groups is called a double functor if

A*(X) = A*(X) _: A(X)
for all X E B(G). We define

AK = A(GIGK)
If f : X Y is a morphism in B(G), then we put

A4(f)=f' and A5(f)=f4.
A homomorphism h : A -* B of double functors is a family of homomorphisms
h (X) : A(X) -> B (X) representing natural transformations A* -+ B * and A. -a B*.

A G-modulation is defined to be a double functor A such that
(i) A(X U Y) = A(X) x A(Y).
(ii) If among the two diagrams

X ( s
X' A(X) s, ) A(X')

fI If' and f* I I f:

Y <
8 Y' A(Y) 8 - A(Y')

in B(G), resp. (ab), the one on the left is cartesian, then the one on the right is
commutative.

Remark: G-modulations were introduced in a general context by A. DRESS under
the name of Mackey functors (see [32]).

Exercise 9. G-modulations form an abelian category.

Exercise 10. If A is a G-module, then the function A(G/GK) = AGK extends to a
G-modulation A in such a way that, for an extension LIK, the map f* : AK AL,
resp. f* : AL -+ AK, induced by f : G/GL -* G/GK, is the inclusion, resp. the
norm NLIK.
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The rule A r A is an equivalence between the category of G-modules and the
category of G-modulations with "Galois descent", i.e., of those G-modulations A
such that

f* : A(Y) - A(X)G(X'Y),
for every Galois mapping f : X -+ Y, is an isomorphism.
Exercise 11. G-modulations are explicitly given by the following data. Let
B0(G) be the category whose objects are the G-sets G/U, where U varies
over the open subgroups of G, and whose morphisms are just the projections
rr : G/U -+ G/V for U C V, as well as the maps c(a) : G/U --> G/aUa't,
TU H TUa-1 = Ta-'(aUa-'), for a E G.

Let A = (A*, A,) : B0(G) -+ (ab) be a double functor and for 7r : G/U --> G/V
(U C V), resp. c(a) G/U -* G/aUa-' (a E G), define

Indu = A, (7r): A(G/U) --> A(G/V),
Rest = A*(Jr): A(G/V) -- A(G/U),

c(a), = A,(c(a)): A(G/U) A(G/aUa-1).

If for any three open subgroups U, V C W of G, one has the induction formula

Rest o IndW = oc(a), o Resvr, ju° ,
U\W/V

then A extends uniquely to a G-modulation A : B(G) --> (ab).

Hint: If X is an arbitrary finite G-set, then the disjoint union
Ax = U A(G/G.,)

xEX

is again a G-set, because c(a),A(G/Gc) = A(G/G°,t). Define A(X) to be the
group

A(X) = Homx(X, Ax)
of all G-equivariant sections X Ax of the projection Ax -* X.

Exercise 12. The function Jrab(G/GK) = GK extends to a G-modulation
Trab : B(G) -4 (pro-ab)

into the category of pro-abelian groups. Thus, for an extension LIK, the maps
f : GK -)- GL , resp. ULe GK , induced by f : G/GL -* G/GK are given
by the transfer, resp. the inclusion GL -3 GK.

Exercise 13. Let A be a G-modulation. For every connected finite G-set X, let
NA(X) = n.f,, A(Y),

where the intersection is taken over all Galois maps f : Y -* X. Show that the
function NA(X) defines a G-submodulation NA of A, the modulation of universal
norms.

Exercise 14. If A is a G-modulation, then the completion A is again a G-modulation
which, for connected X, is given by

A(X) _m A(X)/f,A(Y),
where the projective limit is taken over all Galois maps f : Y --> X.
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For the following, let d : G -- Z be a fixed surjective homomorphism. Let
f : X -* Y be a map of connected finite G-sets and X E X, y = f (x) E Y. The
inertia degree, resp. the ramification index, of f is defined by

fxlr = (d(Gy) : d(G.,)), resp. exir = (ly : Ix),
where Iy, resp. I,, is the kernel of d : Gy -+ Z, resp. d : G, -+ Z. f is called
unramified if exly = 1.

Exercise 15. d defines a G -modulation Z such that the maps f *, f*, corresponding
to a mapping f : X --* Y of connected G-sets, are given by

X,yZ(Y) = Z E Z = Z(X).
fXIY

This gives a homomorphism of G-modulations
dn'ab>Z.

Exercise 16. An unramified map f X -+ Y of connected finite G-sets is Galois,
and d induces an isomorphism

G(XIY) ZlfxlyZ.
Let cpxjy E G(XIY) be the element which is mapped to 1 mod fx,yZ.

Let A be a G-modulation. We define a henselian valuation of A to be a
homomorphism

v:A -*Z
such that the submodulation v(A) of Z comes from a subgroup Z C Z which
contains Z and satisfies Z/nZ = Z/nZ for all n E N. Let U denote the kernel of A.
Exercise 17. Compare this definition with the definition (4.6) of a henselian valuation
of a G-module A.
Exercise 18. Assume that for every unramified map f : X --> Y of connected finite
G-sets, the sequence

0 U(Y) U(X) PXY U(X) - t`-* U(Y) -* 0

is exact, and that A(Y)Ux;Y) c f*A(X) for every Galois mapping f : X -- Y (the
latter is a consequence of the condition which will be imposed in exercise 19). Then
the pair (d, v) gives, for every Galois mapping f : X -* Y, a canonical "reciprocity
homomorphism"

rx1y : G(XIY) -> A(Y)lf*A(X).

Exercise 19. Assume, beyond the condition required in exercise 18, that for every
Galois mapping f : X --a Y with cyclic Galois group G(XIY), one has

(A(Y) : f*A(X)) = [X : Y] and ker f* = im((Y* - 1),
where [X : Y] = #f-1(y), with y E Y, and u is a generator of G(XIY). Then if rxly
is an isomorphism for every Galois mapping f : X Y of prime degree [X : Y],
so is

rxly : G(X ly)ab A(Y)/f*A(X),

for every Galois mapping _f-.4 , Y.
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Exercise 20. Under the hypotheses of exercise 18 and 19 one obtains a canonical
homomorphism of G-modulations

A ) 7rab
whose kernel is the G -modulation NA of universal norms (see exercise 13). It
induces an isomorphism

A-+rab
of the completion A of A (see exercise 14).

Remark : The theory sketched above and contained in the exercises has a very
interesting application to higher dimensional class field theory. In chap. V, (1.3),
we will show that, for a Galois extension L I K of local fields, there is a reciprocity
isomorphism G(LIK)ab = K*/NLIKL*
The multiplicative group K* may be interpreted in K-theory as the group K, (K) of
the field K. The group K2(K) is defined to be the quotient group

K2(K) = (K* (9 K*)/R,
where R is generated by all elements of the form x ® (1 - x). Treating Galois
extensions LIK of "2-local fields" - these are discretely valued complete fields
with residue class field a local field (e.g., Q ((x)), FP((x))((y)) ) - the Japanese
mathematician KAZUYA KATO (see [83]) has established a canonical isomorphism

G(LIK)ab = KZ(K)INLIKK2(L)
Kato's proof is intricate and needs heavy machinery. It was simplified by the
Russian mathematician I. FesENxo (see [36], [37], [38]). His proof may be viewed
as a special case of the theory sketched above. The basic idea is the following.
The correspondence K r-* K2(K) may be extended to a G-modulation K2. It does
not satisfy the hypothesis of exercise 15, so that one may not apply the abstract
theory directly to K2. But FESENxo considers on K2 the finest topology for which the
canonical map ( , ) : K* x K* -+ K2(K) is sequentially continuous, and for which
one has x,, + y -a 0, -x -- 0 whenever x,, 0, y -> 0. He puts

K2a'(K) = K2(K)/A2(K),
where A2(K) is the intersection of all open neighbourhoods of 1 in K2(K), and he
shows that

Ki'(K)INLIxKzP(L) = K2(K)INLIKK2(L)
for every Galois extension L I K, and that K2"' (K) satisfies properties which imply
the hypothesis of exercise 18 and 19 when viewing KZ P as a G-modulation. This
makes KATO's theorem into a special case of the theory developed above.

§ 7. The Herbrand Quotient

The preceding section concluded abstract class field theory. In order to
be able to apply it to the concrete situations encountered in number theory,
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it is all important to verify the class field axiom (6.1) in these contexts.
An excellent tool for this is the Herbrand quotient. It is a group-theoretic
formalism, which we develop here for future use.

Let G be a finite cyclic group of order n, let cr be a generator, and A a
G-module. As before, we form the two groups

H°(G,A) = AG/NGA and H-1(G, A) = NcA/1GA,
where

n-1
AG={aEAIa'=a}, NGA={NGa= Fj aa`IaEA},

i=o

NGA={aEAINGa=1}, IGA={aa-'I aEA}.

(7.1) Proposition. If 1 --> A --f B --+ C -* 1 is an exact sequence of
G -modules, then we obtain an exact hexagon

H°(G,A) f H°(G,B
fs

H-1 (G, C)

H-1(G, B) , f4
H-1 (G, A)

H° (G, C)
a

Proof: The homomorphisms fl, f4 and f2, f5 are induced by A -' B
and B -] + C. We identify A with its image in B so that i becomes the
inclusion. Then f3 is defined as follows. Let c E CG and let b E B be
an element such that j (b) = c. Then we have j (ba-1) = ca-1 = 1 and
NG(ba-1) = NG(ba)/NG(b) = 1, so that ba-1 E N0A. f3 is thus defined
by c mod NGC H ba-1 mod IGA. In order to define f6, let c e NGC, and
let b E B be an element such that j(b) = c. Then j(NGb) = NGC = 1, so
that NGb E A. The map f6 is now given by c mod IGA H NGb mod NGA.

We now prove exactness at the place H°(G, A). Let a E AG such that
fl (a mod NG A) = 1; in other words, a = NGb for some b E B. Writing
c = j(b), we find f6 (c mod IGC) = a mod NGA. Exactness at H(G, A)
is deduced as follows: let a ENGA and f4(a mod IGA) = 1, i.e., a = b",
with b E B. Writing c = j(b), we find f3(c mod NGC) = a mod IGA.
The exactness at all other places is seen even more easily.
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(7.2) Definition. The Herbrand quotient of the G-module A is defined
to be

h(G A) = #H°1 G, A)
#H- (G, A)

provided that both orders are finite.

The salient property of the Herbrand quotient is its multiplicativity.

(7.3) Proposition. If 1 -- A -* B -* C 1 is an exact sequence of
G -modules, then one has

h(G, B) = h(G, A) h(G, C)

in the sense that, whenever two of these quotients are defined, so is the third
and the identity holds.

For a finite G-module A, one has h(G, A) = 1.

Proof: We consider the exact hexagon (7.1). Calling n; the order of the
image of fi, we find

#H°(G, A) = n6n1, #H°(G, B) = n1n2, #H°(G, C) = n2n3,
#H-1(G, A) = n3n4, #H-1(G, B) = n4n5, #H-1(G, C) = n5n6,

and thus

#H°(G, A) #H°(G, C) #H-1(G, B)
= #H°(G, B) - #H-1(G, A) #H-1(G, C).

At the same time, we see that if any two of the quotients are well-
defined, then so is the third. And from the last equation, we obtain
h(G,B) = h(G, A)h(G, C). Finally, if A is a finite G-module, then the
exact sequences

1 ---) A`' - A -a IGA -) 1, 1 --) N0 A --) A -N-G+ NG A --> 1,

show that #A = #AG #IGA = #NGA #NGA, and h(G, A) = 1.

If G is an arbitrary group and g a subgroup, then to any g-module B, we
may associate the so-called induced G-module

A = Indg(B).
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It consists of all functions f : G ->. B such that f (xr) = f (x)t for all
r E g. The operation of Or E G is given by

fa (x) = f ((Tx).
If g = (1}, we write IndG(B) instead of IndG(B). We have a canonical
g -homomorphism

Jr : IndG(B) -- B, f t--r .f(1),
which maps the g-submodule

B'= (fEIndG(B)I f(x)=1 forx0g}
isomorphically onto B. We identify B' with B. If g is of finite index, we find

IndG(B) = fl Ba,
aEG/g

where the notation or E Gig signifies that or varies over a system of left
coset representatives of G/g.

Indeed, for any f c- IndG (B) we have a unique factorization f = fQ ,

where fa denotes the function in B' which is determined by fa (1)-= f (a-1).
If conversely A is a G -module with a g-submodule B such that A is the

direct product
A = II Ba,

aEG/g

then A - IndG (B) via B - B'.

(7.4) Proposition. Let G be a finite cyclic group, g a subgroup and B a
g -module. Then we have canonically

H`(G, IndG(B)) - H'(g, B) for i =0, - 1.

Proof: Let A = IndG(B) and let R be a system of right coset representatives
for G/g with 1 E R. We consider the g-homomorphisms

rr:A ) B, f H f(1); v:A ) B, f F- fl f(p)
pER

Both admit the g-homomorphism
1 ba for or E g,s:B-+A, bi ) fb(a)={

1 for a 'g,
as a section, i.e., rr o s = v o s = id, and we have

rroNG=Ngov,
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because one finds that, for f E A,

(NGf)(1)= n 11 fPT(1)=flflf(pr)=II(flf(P))T =Ng(v(f)).
TEg PER r P r P

If f E AG, then f (v) = f (1) for all or E G, and f (1) = f (r) = f (1)T for
all r E g. The map it therefore induces an isomorphism

rr:AG ) Bg.
It sends NGA onto Ng B , for one has 7r (NG A) = Ng (vA) c NgB on the
one hand, and on the other, Ng(B) = Ng(vsB) _ Jr(NG(sB)) S; Tr(NGA).
Therefore H°(G, A) = H°(g, B).

As Ng o v = rr o NG, the g-homomorphism v: A--). B induces a
g-homomorphism

v:
It is surjective since v o s = id. We show that IGA is the preimage of IgB.
IGA consists of all elements f'-', f E A, Cl E G. For if G = (oo) and
a, = o'p, then fQ-t = f(1}ap F E IGA. In the same way, one
has lgB=(bT-'IbEB, rEg).Writing nowup=p'rr,with p,p'ER,
aP E g, we obtain

F1 f(QP) = F1 f(P')iP _ flby -1 E IgB.
PER f (P) P' f (p) P

On the other hand, for bi-t E 1gB, the function fr-1, with f = sb,
is a preimage as v(ft-1) = Vs(b)T-1 = br-t. After this it remains to
show ker(v) c IGA. Let G = (gyp), n = (G : g), R = {l,(p,
Let f ENG A be such that v(f) _ Fl! o gyp` = 1. Define the function
h E A by h(1) = 1, h(rPk) = nk-t f ((p'). Then f (wk) = h(cpk-1) _

for 0 < k < n, and f (1)V-1-1(1) = Fln f (cpt) = 1. Hencei=O
f = hl- E IGA. Thus we finally get H(G, A) = H-1(g, B).

Exercise 1. Let f, g be endomorphisms of an abelian group A such that
f o g = g o f = 0. Make sense of the following statement. The quotient

q1,5(A)
(ker f im g)
(ker g im f)

is multiplicative.

Exercise 2. Let f, g be two commuting endomorphisms of an abelian group A.
Show that

go,g1(A) = go,g(A)go,1(A),
provided all quotients are defined.
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Exercise 3. Let G be a cyclic group of prime order p, and let A be a G-module
such that q0(A) is defined. Show that

h(G, A)p-'
=go,,(AG)plgo,p(A).

Hint: Use the exact sequence

0->AGA*A°-'-'0.
Let N = 1-I- o- + + vp-" in the group ring Z[G]. Show that the ring 7L[G]/7LN
is isomorphic to 7L[fl, for 1; a primitive p-th root of unity, and that in this ring
one has

p = (d - 1)p-te,

where a is a unit in 7L[G]/7LN.

Exercise 4. Let L I K be a cyclic extension of prime degree. Using exercise 3,
compute the Herbrand quotient of the group of units oL of L, viewed as a
G (L I K) -module.

Exercise 5. If G is a group, g a normal subgroup and A a g-module, then
H' (G, Ind' (A)) 25 H' (g, A).
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Chapter V

Local Class Field Theory

§ 1. The Local Reciprocity Law

The abstract class field theory that we have developed in the last chapter
is now going to be applied to the case of a local field, i.e., to a field which is
complete with respect to a discrete valuation, and which has a finite residue
class field. By chap. II, (5.2), these are precisely the finite extensions K of
the fields Qp or lFp((t)). We will use the following notation. Let

vK be the discrete valuation normalized by VK (K*) = 7G,

OK = { a E K VK (a) ? 0} the valuation ring,
pK = (a E K VK (a) > 0} the maximal ideal,

K = oK/PK the residue class field,
UK = { a E K* VK (a) = 0} the unit group,

UK) = 1 + pK the group of n-th higher units, n = 1, 2, ... ,

q =qK=#K,
Jalp = q-"K(a) the normalized p-adic absolute value,

An the group of n-th roots of unity, and An (K) = An n K*.

IrK, or simply ir, denotes a prime element of K, i.e., PK = IOK

In local class field theory, the role of the profinite group G of abstract
class field theory is taken by the absolute Galois group G (k 1k) of a fixed
local field k, and that of the G-module A by the multiplicative group k*
of the separable closure k of k. For a finite extension K1k we thus have
AK = K*, and the crucial point is to verify for the multiplicative group of
a local field the class field axiom:

(1.1) Theorem. For a cyclic extension L I K of local fields, one has

#H`(G(LIK),L*) __ [L : K] fori =0,
11 fori =-1.
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Proof: For i = -1 this is the claim of proposition (3.5) ("Hilbert 90")
in chap. IV. So all we have to show is that the Herbrand quotient is
h(G,L*) = #HO(G,L*) = [L : K], where we have put G = G(L !K).
The exact sequence

1 ) UL>L*-!-L+ Z)0,
in which Z has to be viewed as the trivial G -module, yields, by chap. IV,
(7.3),

h(G,L*) = h(G,Z) h(G, UL) = [L : K]h(G,UL).
Hence we have to show that h(G, UL) = 1. For this we choose a normal
basis {a° I O E G} of LI K (see [93], chap. VIII, § 12, th. 20), a E OL, and
consider in OL the open (and closed) G-module M = OKa°. Then
the open sets

Vn=1+7r"M, n=1,2,...,
form a basis of open neighbourhoods of 1 in UL. Since M is open, we have
7rK OL C M for suitable N, and for n > N the V" are even subgroups
(of finite index) of UL, because we have

(7rgM)(7rj{M) =7r2 MM C7r2 OL c ,.2 -NM C 7rKM.

Hence V"V" C V", and since 1 - 7rKµ, for µ E M, lies in V", so
does (1 - 7rKµ)- = 1 + 7r" (E°_1 ,'7,KVia the correspondence
1 + 7rKa H a mod 7rK M, we obtain G-isomorphisms as in II, (3.10),

V'/ V'+1 = MI7rKM = ® (OKIpK)a° = IndG(OK/pK)
aEG

So by chap. IV, (7.4), we have H` (G, Vn/Vn+1) = 1 for i = 0, - 1
and n > N. This in turn implies that H' (G, V") = 1 for i = 0, - 1
and n > N. Indeed, if for instance i = 0 and a E (V")G, then a = (NGbO)al,
with b° E V", a1 E (Vn+1)G and thus a1 = (NGb1)a2i for some b1 E Vn+1,

a2 E (V"+2)G, etc.; in general,

ai = (NGbi)ai+1, bi E Vn+i ai+l E (Vn+i+l)G

This yields a = NGb, with the convergent product b = TlO°° bi E V",
so that H°(G, V") = 1. In the same way we have for a E V" such that
NGa = 1, that a = b°-1, for some b E V", where or is a generator of G.
Thus H-1(G, V") = 1. We now obtain

h(G, UL) = h(G, UL/V") h(G, V") = 1

because UL/V" is finite.
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(1.2) Corollary.- If L I K is an unramified extension of local fields, then for
i = 0, - 1, one has

H`(G(LJK),UL) = 1 and H`(G(LIK),ULn)) = 1 for n=1,2,...
In particular,

NLIKUL = UK and NLIKUL) = UK ).

Proof : Let G = G (L I K). We have already seen that H` (G, UL) = 1 in
chap. IV, (6.2). In order to prove H` (G, UL )) = 1, we first show that

H` (G,,l*) = 1 and H` (G, A) = 1,

for the residue class field A of L. It is enough to prove this for i = -1,
as A is finite, and so h (G, A*) = h (G,,X) = 1. We have H-1(G, A,*) = 1
by Hilbert 90 (see chap. IV, (3.5)). Let f = [a.: k] be the degree of A over
the residue class field K of K, and let cP be the Frobenius automorphism
of X I K. Then we have

#NG.L=#{XEA IXV _ >xq'=0} <q.1'
i=0 i=0

and

#QP-1)A=q
since the map .L X has kernel K. Therefore H-1 (G, A.) = NG A/(cp - 1)X
= 1.

Applying now the exact hexagon of chap. IV, (7.1), to the exact sequence
of G -modules

1 UL1) - UL

we obtain Hi (G, UL(')) = Hi (G, UL) = 1, because Hi (G, A*) = 1. If rr is
a prime element of K, then 7r is also a prime element of L, so the map

UL(n) - > A given by 1 -{- arrn -* a mod PL is a G -homomorphism. From the
exact sequence

1 ULn+I) UL(n) - - a - 1,
we now deduce by induction just as above, because Hi (G, .k) = 0, that

(n)H` (G, ULn+1)) = H` (G, UL = 1,

since H` (G, UL1)) = 1.
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We now consider the maximal unramified extension k I k over the ground
field k. By chap. II, § 9, the residue class field of k is the algebraic closure K
of the residue class field K of k. By chap. II, (9.9), we get a canonical
isomorphism

G(kIk) = G(KIK) = Z.
It associates to the element 1 E Z the Frobenius automorphism x H xq
in G (K I K), and the Frobenius automorphism Vk in G (k 1 k) which is given by

awk = aq mod pk, a E ok.

For the absolute Galois group G = G (k i k) we therefore obtain the continu-
ous and surjective homomorphism

d:G--->7G.
Thus the abstract notions of chap. IV, § 4, based on this homomorphism,
like "unramified", "ramification index", "inertia degree", etc., do agree, in
the case at hand, with the corresponding concrete notions defined in chap. II.

As stated above we choose A = k* to be our G-module. Hence AK = K*,
for every finite extension K 1k. The usual normalized exponential valuation
vk : k* --* Z is then henselian with respect to d, in the sense of chap. IV, (4.6).
For, given any finite extension KIk, - VK is the extension of Vk to K*, and
by chap. II, (4.8),

eK
VK(K*)

[K
k] Vk(NKIkK*) = eKfK

Vk(NKIkK*),

i.e., vk(NKIkK*) = fKVK(K*) = fKZ. The pair of homomorphisms

(d: G 2, Vk:k*-+ Z)
therefore satisfies all the properties of a class field theory, and we obtain the
Local Reciprocity Law:

(1.3) Theorem. For even finite Galois extension L I K of local fields we have
a canonical isomorphism

rLIK : G(LIK)ab --> K*INLIKL*

The general definition of the reciprocity map in chap. IV, (5.6), was
actually inspired by the case of local class field theory. This is why it is
especially transparent in this case: let a E G(L IK), and let & be an extension
of Q to the maximal unramified extension L I K of L such that dK (U) E N
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or, in other words, & I K = AK, for some n E N. If E is the fixed field of Q
and ir-r E E is a prime element, then

1rLIK(a) = NEIK(t ) mod NLIKL*.
Inverting rLIK gives us the local norm residue symbol

( LIK) : K* G(LIK)ab

It is surjective and has kernel NLIKL*.

In global class field theory we will have to take into account the field
R = Q along with the p-adic number fields Q F. It also admits a reciprocity
law: for the unique non-trivial Galois extension GIR, we define the norm
residue symbol

( cCIR) : R* _) G(CIR)
by

(a, C IR) sgn(a)

The kernel of ( , C IR) is the group R+ of all positive real numbers, which
is again the group of norms NCIRC* = {zz I z E (C*}.

The reciprocity law gives us a very simple classification of the abelian
extensions of a local field K. It is formulated in the following

(1.4) Theorem. The rule
LH.NL=NLIKL*

gives a 1-1-correspondence between the finite abelian extensions of a local
field K and the open subgroups N of finite index in K*. Furthermore,

L1 C L2 NL1 RNL2, NL,L2 =NL, fNL2, NL,nL2 =NL,NL2.

Proof: By chap. IV, (6.7), all we have to show is that the subgroups N
of K* which are open in the norm topology are precisely the subgroups of
finite index which are open in the valuation topology. A subgroup N which is
open in the norm topology contains by definition a group of norms NL I K L *.
By (1.3), this has finite index in K*. It is also open because it contains the
subgroup NLIKUL which itself is open, for it is closed, being the image of
the compact group UL, and has finite index in UK. We prove the converse
first in

The case char(K) fi n. Let N be a subgroup of finite index n = (K* : )V).
Then K*': C N, and it is enough to show that K*" contains a group of
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norms. For this we use Kummer theory (see chap. IV, § 3). We may assume
that K* contains the group pn of n-th roots of unity. For if it does not, we
put K, = K (p") . If Kin contains a group of norms NL, I K, L i , and L I K is
a Galois extension containing L1, then

NLIKL* = NKIIK(NLIKLL*) C NKIIK(NLtIK1Ll)

C NKIIK(Kln) C K*n.

So let µ" C K, and let L = K (n K *) be the maximal abelian extension of
exponent n. Then by chap. IV, § 3, we have

(*) Hom(G(LjK),µn) = K*/K*"

By chap. II, (5.8), K*/K*" is finite, and then so is G(LIK). Since K*/NLIKL*
is isomorphic to G(LIK) and has exponent n, we have that K*n c_ NLIKL*,
and (*) yields

#K*/K*n = #G(L JK) = #K*/NLIKL* ,

and therefore K*" = NLIKL*.

The case char(K) = pin. In this case the proof will follow from Lubin-Tate
theory which we will develop in § 4. But it is also possible to do without this
theory, at the expense of ad hoc arguments which turn out to be somewhat
elaborate. Since the result has no further use in the remainder of this book,
we simply refer the reader to the beautiful treatment in [122], chap. XI, §5,
and chap. XIV, § 6.

The proof also shows the following

(1.5) Proposition. If K contains the n -th roots of unity, and if the character-
istic of K does not divide n, then the extension L = K(n K*) IK is finite, and
one has

NLIKL* = K*n and G(LIK) = K*/K*"

Theorem (1.4) is called the existence theorem, because its essential
statement is that, for every open subgroup N of finite index in K*, there
exists an abelian extension LIK such that NLIKL* = Al. This is the
"class field" of Al. (Incidentally, when char(K) = 0, every subgroup of
finite index is automatically open - see chap. II, (5.7).) Every open subgroup
of K* contains some higher unit group U, as these form a basis of
neighbourhoods of 1 in K*. We put UK) = UK and define:
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(1.6) Definition. Let L 1K be a finite abelian extension, and n the smallest
number > 0 such that UK) C NLIKL*. Then the ideal

pK
is called the conductor of L I K.

(1.7) Proposition. A finite abelian extension L I K is unramified if and only
if its conductor is f = 1.

Proof : If UK is unramified, then UK = NL K UL by (1.2), so that
f = 1. If conversely f = 1 f then UK c NL 1K UL and nK E NL K L
for n = (K* : NLIKL*). If MIK is the unramified extension of degree n,
then NMIKM* = (irk-) x UK c NLIKL*, and then M D L, i.e., LIK is
unramified.

Every open subgroup N of finite index in K* contains a group of the
form (Trf) X UK U. This is again open and of finite index. Hence every
finite abelian extension L I K is contained in the class field of such a
group (2rf) x UK ). Therefore the class fields for the groups (nrf) x UK)

are particularly important. We will characterize them explicitly in §5, as
immediate analogues of the cyclotomic fields over Qp. In the case of the
ground field K = Qp, the class field of the group (p) x UK) is precisely
the field Q p (µP") of p" -th roots of unity :

(1.8) Proposition. The group of norms of the extension Qp (µP") IQ p is the
group (p) x UWQP.

Proof : Let K = Qp and L = Q p (i p" ). By chap. II, (7.13), the extension
L I K is totally ramified of degree pn-1(p - 1), and if 1" is a primitive p" -th
root of unity, then 1- is a prime element of L of norm NLI K (1- ) = p.
We now consider the exponential map of Qp. By chap. II, (5.5), it gives an
isomorphism

exp : p K - UK)

for v > 1, provided p 2, and for v > 2, even if p = 2. It
transforms the isomorphism pK -, pK s-1 given by a H ps-1(p - 1)a,
into the isomorphism UK) UK +s-t) given by x H xP" (P-1), so that
(UK ))Pa-1 (P-1) = UK) if p 54 2, and (UK ))2"-2 = UK if p = 2, n > 1
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(the case p = 2, n = 1 is trivial). Consequently, we have UK ) c_ NL K L *
if p 0 2. For p = 2 we note that

UKl = UK> U 5UK31 = (UK j)2 U 5(UKl)2,

because a number that is congruent to 1 mod 4 is congruent to 1 or 5 mod 8.
Hence

U( n) - (U(2) 2" U J2rs-2 (UK)) 2n-1

It is easy to show that 52 -2 = NLIK(2+i), so UK) C NLJKL* holds also in
case p = 2. Since p = NLIK(1 - 0, we have (p) x U(n) C NLIKL*,
and since both groups have index pn-1(p - 1) in K*, we do find that
NLJKL* = (p) x UK) as claimed.

As an immediate consequence of this last proposition, we obtain a local
version of the famous theorem of Kronecker-Weber, to the effect that every
finite abelian extension of Q is contained in a cyclotomic field.

(1.9) Corollary. Every finite abelian extension of L I Q p is contained in a field
Q ( ) . where is a root of unity. In other words:

The maximal abelian extension Qpb I Q p is generated by adjoining all roots
of unity.

Proof: For suitable f and n, we have (pf) x U(n) C NLIKL*. Therefore L
is contained in the class field M of the group

(p1) x ((pf) x UQP) n ((p) x
By (1.4), M is the composite of the class field for (pf) x UQP - this being
the unramified extension of degree f - and the class field for (p) x UUP .

M is therefore generated by the (pf - 1)pn-th roots of unity.

From the local Kronecker-Weber theorem, one may readily deduce the
global, classical Theorem of Kronecker-Weber.

(1.10) Theorem. Every finite abelian extension L IQ is contained in a field
Q generated by a root of unity .
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Proof : Let S be the set of all prime numbers p that are ramified in L, and
let Lp be the completion of L with respect to some prime lying above p.
Then L p I Q p is abelian, and therefore L p _C Q p (µ17P ), for a suitable np.
Let pep be the precise power of p dividing np, and let

n = I- P
pES

We will show that L C Q(µn). For this let M = L(I0). Then MIQ is
abelian, and if p is ramified in MIQ, then p must lie in S. If Mp is the
completion with respect to a prime of M above p whose restriction to L
gives the completion Lp, then

Mp = L p (ILn) = Qp (IJ peP n') = Q p (ApeP) Q p (An' ),
with (n', p) = 1. Q p (µn') I Q p is the maximal unramified subextension of
Q (ILpepn')IQp. The inertia group Ip of M.IQ, is therefore isomorphic to
the group G (Q p (/.t pep) I Q p ), and consequently has order qp (pep), where
is Euler's function. Let I be the subgroup of G (M IQ) generated by all 1p,
p E S. The fixed field of I is then unramified, and hence by Minkowski's
theorem from chap. III, (2.18), it equals Q, i.e., I = G (M IQ). On the other
hand we have

#I < fl #Ip = flI o(peP) = So(n) = [Q(pn) : Q]
pES pES

and therefore [M : Q} = [Q(An) : Q}, so that M = Q(Itn). This shows that
L C Q(L1). O

The following exercises 1-3 presuppose exercises 4-8 of chap. N, § 3.

Exercise 1. For the Galois group F = G(K I K), one has canonically
H'(I',Z/nZ) Z/nZ and H'(P, p.") = UKK`"/K'"

the latter provided that n is not divisible by the residue characteristic.
Exercise 2. For an arbitrary field K and a GK -module A, put

H'(K,A) = H'(GK,A).
If K is a p-adic number field and n a natural number, then there exists a nondegen-
erate pairing

H'(K,Z/nZ) x H'(K,Ft,,) --} Z/nZ
of finite groups given by

(X, a) H X((a,KIK))
If n is not divisible by the residue characteristic p, then the orthogonal complement of

H,;,.(K,Z/n) := H'(G(KIK),Z/nZ) C H'(K,Z/nZ)
is the group

H,,,(K,!-tn) H'(G(KIK)>Fr,,) 9 H'(K,An)
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Exercise 3. If L I K is a finite extension of p-adic number fields, then one has a
commutative diagram

H'(L, Z/nZ) x

H' H' (K, p.) -* 7L/n7L.

Exercise 4 (Local Tate Duality). Show that the statements of exercises 2 and
3 generalize to an arbitrary finite GK-module A instead of Z/nZ, and A' _
Hom(A, K*) instead of N.,,.

Hint: Use exercises 4-8 of chap. IV, §3.

Exercise 5. Let LIK be the composite of all 7Lp-extensions of a p-adic number field
K (i.e., extensions with Galois group isomorphic to 77p). Show that the Galois group
G (L I K) is a free, finitely generated Z , -module and determine its rank.

Hint: Use chap. II, (5.7).

Exercise 6. There is only one unramified 7Lp-extension of K. Generate it by roots of
unity.

Exercise 7. Let p be the residue characteristic of K, and let L be the field generated
by all roots of unity of p-power order. The fixed field of the torsion subgroup of
G (L I K) is a Z P -extension. It is called the cyclotomic ZP -extension.

Exercise S. Let Qp I Qp be the cyclotomic Zp -extension of Q,, let G (&, I Q,) = Z,
be a chosen isomorphism, and let d : GQ -+ Z p be the induced homomorphism of
the absolute Galois group. Show:

For a suitable topological generator u of the group of principal units of Qp,

log a
log it

defines a henselian valuation with respect to d, in the sense of abstract p-class field
theory (see chap. IV, §5, exercise 2).

Exercise 9. Determine all p-class field theories (d : GK -a 77p, v : K* -+ 74p) over
a p-adic number field K.

Exercise 10. Determine all class field theories (d : GK v : K* -3 7L) over a
p-adic number field K.

Exercise 11. The Well group of a local field K is the preimage WK of Z under the
mapping dK : GK --)- Z. Show:

The norm residue symbol (, K" I K) of the maximal abelian extension Kab I K
yields an isomorphism

( , KabjK) : K* -!-* WKb,

which maps the unit group UK onto the inertia group I (Kab I K), and the group of
principal units UK's onto the ramification group R (Kab I K).
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§ 2. The Norm Residue Symbol over Qp

If is a primitive m -th root of unity, with (m, p) = 1, then Qp (0 I Qp
is unramified, and the norm residue symbol is obviously given by

rpup(a)

But if is a primitive p'1 -th root of unity, then we obtain the norm residue
symbol for the extension Q explicitly in the simple form

where a = up"P(a), and "-1 is the power -r with any rational integer
r - u-1 mod p°. This result is important, not only in the local situation, but
it will play an essential role when we develop global class field theory (see
chap. VI, § 5). Unfortunately, there is no direct algebraic proof of this fact
known to date. We have to invoke a transcendental method which makes
use of the completion K of the maximal unramifiedextension K of a local
field K. We extend the Frobenius V E G(K IK) to k by continuity. First we
prove the

(2.1) Lemma. For every c E oK, resp. every c E Uk, the equation

x`° - x = c, resp. xv-1 = C'.

admits a solution in oK, resp. in UK. If x9' = x forx E ok, then x E OK.

Proof: Let 7r be a prime element of K. Then .7r is also a prime element
of K, and we have the gyp-invariant isomorphisms

UK/Uk = K*, UK )/UK Fl) - K

(see chap. II, (3.10)). Let C E UK and c = c mod pK. Since the residue class
field K of k is algebraically closed, the equation. o = y q = x - c (q = qK )
has a solution ,0 0 in K = oK/pK, i.e.,

c=x° at, xl E UK, a1 E UK').

For similar reasons, we find that a1 = x2 -1a2, for some x2 E UK) and
a2 E UKl, so that c = (x1x2)`O-1a2. Indeed, putting a1 = 1_ + bin,
x2 = 1 + yen, gives a1x2- 1 - (y2 - y2 - b1)7r mod 7r2, i.e., we
have to solve the congruence y2 - Y2 - bl = 0 mod 7r, or equivalently the
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equation y2 - Y2 - b1 = 0 in K. This is possible because x is algebraically
closed. Continuing in this way, we get

(n)c = (x1x2 ... xn)'P 1an , x,1 E U(n-1) a,: E UK

and passing to the limit finally gives c = x = Hn° 1 x,T E U.
The solvability of the equation x° - x = c follows analogously, using the
isomorphisms pK/pK 1 = K.

Now let x E oK and xw = x. Then, for every n > 1, one has

(*) X = Xn + Jrnyn With xn E OK and Y,, E oK.

Indeed, for n = 1 we have x = a + Jrb, with a E oK, b E oK, and x° = x
implies a`' = a mod Jr. Hence a = x1 + Jrc, with x1 E OK, C E ok, and
therefore x = x1+7r(b+c) = x1+7ry1, y1 E ok. The equation x = Xn+Jrnyn
implies furthermore that y,' = y,,, so that we get as above yn = cn + Jrdn,
with cn E OK, do E oK, and therefore x = (xn + cnrr n) + Jrn+l do =
xn+1 +rn+lyn+1, for some xn+i E OK, Yn+1 E oK. Now passing to the limit
in the equation (*) gives x = limn-).oa xn E OK, because K is complete.

For a power series F(X1, ..., X,) E OK[[Xi, ... , X,,]], let Fv be the
power series in OK [[X 1, ..., Xn]] which arises from F by applying qp to the
coefficients of F. A Lubin-Tate series for a prime element Jr of K is by
definition a power series e(X) E OK[[X]] with the properties

e(X) =_ JrX mod deg2 and e(X) - Xq mod Jr,

where q = qK denotes, as always, the number of elements in the residue
class field of K. The totality of all Lubin-Tate series is denoted by E. In
£n there are in particular the polynomials

e(X) = uXq +Jr(aq_1Xq-1 + -- +a2X2) +JrX,

where u, ai E OK and u = 1 mod Jt. These are called the Lubin-Tate
polynomials. The simplest one among them is the polynomial Xq + JrX.
In the case K = Q for example, e(X) = (1 + X)P - 1 is a Lubin-Tate
polynomial for the prime element p.

(2.2) Proposition. Let Jr and n be prime elements of K, and let e(X) E £,
e(X) E£n be Lubin-Tate series. Let L(X1, ...,Xn) _F_n 1alXi be a linear
form with coefficients ai E oK such that

7rL(X1, ...X,) .--,Xn)-
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T h e n there is a uniquely determined power series F (X I , ... ; X )
E Og[[X I, . , Xn]] satisfying

F(X1, ...,X,:) =L(XI, ...,Xn) moddeg2,

e(F(Xi, ...,X,)) =F°(e(X1), ...,e(X,)).
If the coefficients of e, e, L lie in a complete subring O of Ok such that oP = o,
then F has coefficients in o as well.

Proof: Let o be a complete subring of og such that o`° = o, which
contains the coefficients of e, e, L. We put X = (X1, ... , and e(X)
(e (X t), ... , e(X.)). Let

00
F(X) = F E o[[X]]

v=1

be a power series, E (X) its homogeneous part of degree v, and let
r

Fr(X) > E, M.
V=1

Clearly, F (X) is a solution of the above problem if and only if F1 (X)
L (X) and

(1) e(Fr(X)) - F,P(e(X)) mod deg(r + 1)

for every r > 1. We determine the polynomials E (X) inductively. For
v = 1 we are forced to take E1(X) = L(X). Condition (1) is then satisfied
for r = 1 by hypothesis. Assume that the E, (X), for v = 1, ... , r, have
already been found, and that they are uniquely determined by condition (1).
We then put Fr+1(X) = Fr (X) + Er+t (X) with a homogeneous polynomial
Er+I (X) E o[X] of degree r + 1 which has yet to be determined. The
congruences

e(F,-+1(X)) e(Fr(X)) +7rEr+I(X) moddeg(r+2),

F+1(e(X)) F,?(e(X)) +n''+1E,+1(X) mod deg(r +2)
show that E,.+1 (X) has to satisfy the congruence

(2) Gr+I (X) Jr Er+t (X) - n r+t E++1(X) _= 0 mod deg(r + 2)

with Gr+t(X) = e(Fr(X)) - F,°(e(X)) E 0[[X]]. We have Gr+t(X) 0
mod deg(r + 1) and

(3) Gr+t(X) = Fr(X)4 - F"(XQ) - 0 mod 7r
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because e (X) = jq) X q mod rr and av = a' mod jr for a E 0.
Now let X' = XI' Xn' be a monomial of degree r + 1 in o[X ]. By (3),
the coefficient of X' in Gr+i is of the form -7r,B, with S E o. Let a be
the coefficient of the same monomial X` in Er+1 Then rra - ira is the
coefficient of X' in 7r Er+i - irE +I . Since Gr+1(X) = 0 mod deg(r + 1),
(2) holds if and only if the coefficient a of X' in E,.+1 satisfies the equation
(4) -7rf + Ira - 0

for every monomial X ` of degree r + 1. This equation has a unique solution a
in oK, which actually belongs to o. For if we put y = n-'5-rr+1 we obtain
the equation

a-yca`°=/3,
which is clearly solved by the series

a =,B+y/w+YI+`pp,2 +... E o
(the series converges because vR(y) > 1). If a' is another solution,
then a - a' = y (a`' - hence vK (a - a') = vK (Y) + vk ((a -
a')9) = vK (y) + vK (a - a'), i.e., vK (a - a') = co because vK (y) ? 1,
and therefore a = a'. As a consequence, for every monomial X' of
degree r + 1, equation (4) has a unique solution a in o, i.e., there
exists a unique Er+1(X) E o[X] satisfying (2). This finishes the proof.

(2.3) Corollary. Let n and it be prime elements of K, and let e E £n,
e E £X be Lubin-Tate series with coefficients in OK. Let 7r = u n, u E UK,
and u = &-1, s e U. Then there is a uniquely determined power series
8 (X) E oK [[X]] such that 8 (X) = eX mod deg 2 and

eo0=9 oe.
Furthermore, there is a uniquely determined power series [u] (X) E OK [[X]]
such that [u](X) = uX mod deg2 and

eo[u]=[u]oe.
They satisfy

8`0=9o[u].

Proof: Putting L (X) = EX, we have irL (X) = it L`O(X) and the first
claim follows immediately from (2.2). In the same way, with the linear
form L (X) = uX, one obtains the existence and uniqueness of the power
series [u](X) E OK[[X]]. Finally, defining 01 = 8'P-' o [u], we get
e o 81 = (e o 8)w-' o [u] = (9' o e)S' o [u] _ (0`1 o [u])5' o e = 04, o e,

and thus 81 = 0 because of uniqueness. Hence B5' = 0 o [u].
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(2.4) Theorem. Let a = up"P(a) E Q*, and let be a primitive pn -th root of
unity. Then one has

"-1

Proof: As N is dense in Zp, we may assume that u E N, (u, p) = 1.
Let K = Q p , L = Q p and let or E G (L I K) be the automorphism
defined by

° = u-t
Since is totally ramified, we have G(LIK) - G(LIK), and
we view c as an element of G(L I K). Then a = crcPL E Frob(L IK) is an
element such that dK(a) = 1 and &IL = 6. The fixed field E of a is totally
ramified because fljK = dK (a) = 1 by chap. IV, (4.5). The proof of the
theorem is based on the fact that the field E' can be explicitly generated by
a prime element nE which is given by the power series 0 of (2.3).

In order to do this, assume a and cp = IPL have been extended continuously
to the completion L of L, and consider the two Lubin-Tate polynomials

e(X)=upX+XP and e(X)=(1+X)P-1
as well as the polynomial [u](X) = (1 + X)" - 1. Then e([u](X)) _
(1+X)"P-1 = [u](e(X)). By (2.3), there is a power series 8(X) E OK[1X]1
such that

eoB=8'°oe and 0°=Bo[u].
Substituting the prime element A 1 of L, we obtain a prime element
of 1by

YrE = 0(A).

Indeed, [u](A°) _ (1 +A°)" - 1 1 = A, and therefore

jr' = 0 e([u]O°)) = 0(1) = 7rE>
i.e., 7rE E X. We will show that

P(X) = en-'(X)P-1 +up E ZP[X]
is the minimal polynomial of 7r_r, where e` (X) is defined by e°(X) = X and
e'(X) = e(ei-1(X)). P(X) is monic of degree pn`1(p - 1) and irreducible
by Eisenstein's criterion, as e(X) = XP mod p, and so en-I (X) p-1

XP"-'(P-') mod p. Finally, e'(X) = en-1(X) (up + en-1(X)P-1) =
en-1(X)P(X), so that

P(nE')en-1(rj) =
Since e` (7rz) = e'(O(),)) = 09` (e` (A)) = 0'((i +A)P` - 1) = ef' 1),
we have en(9rL) = 0, en-1(7rL) 0 0, and thus P(irz) = 0.
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Observing that NLIK
we obtain

-1) _ (-1)d p, d = [L : K] (see chap. II, (7.13)),

NEIK(rE) _ (-I)dp(o) = (_l)dpu as u mod NLIKL*

and therefore rLIK(v) = u mod NLIKL*, i.e., (u,LIK) = (a,LIK) = or, as
required.

In order to really understand this proof of theorem (2.4), one has to
read §4. Let us note that one would get a direct, purely algebraic proof, if
one could show without using the power series 0 that the splitting field of
the polynomial e" (X) is abelian, and that its elements are all fixed under
& = urpL. This splitting field would then have to be equal to the field E
and every zero of P(X) = e"(X)/e"-t(X) would have to be a prime
element 7r E E such that NZIK(7rj) as u mod NLIKL*, in which case
rLIK(u) as u mod NLIKL*, and so (u,LIK) = or.

Exercise 1. The p-class field theory (d : GQ -- 7Ly, v : Q* ->. Z) for the unramified
7LP-extension of Qp, and the p-class field theory (d : GQ -* 7Lp, D : Qp -->- ZP) for
the cyclotomic 7LP-extension of Qp (see § 1, exercise 7) yield the same norm residue
symbol (,LIK).

Hint: Show that this statement is equivalent to formula (2.4) : (u, Q p Q p).

Exercise 2. Let L I K be a totally ramified Galois extension, and let L (resp. K) be
the completion of the maximal unramified extension L (resp. K) of L (resp. K).
Show that NtIRL* = K*, and that every y E L* with NE, k (y) = 1 is of the form
y=fiz°'-',v; EG(LIK).
Exercise 3 (Theorem of DwoRK). Let LI K be a totally ramified abelian extension of
p-adic number fields. Let X E K* and Y E L* such that NE, k (y) = x. Let z; E V
and choose a E G (L I K) such that

ywrc-1 = II z ' .

Putting v = ]l; v one has (x,LI K) = v-t.
Hint: See chap. IV, § 5, exercise 1.

Exercise 4. Deduce from exercises 2 and 3 the formula (u, Qfor
some p" -th root of unity .
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§ 3. The Hilbert Symbol

Let K be a local field, or K = IR, K = C. We assume that K contains
the group µ of n-th roots of unity, where n is a'natural number which
is relatively prime to the characteristic of K (i.e., n can be arbitrary if
char(K) = 0). Over such a field K we then have at our disposal, on the
one hand, Kummer theory (see chap. IV, § 3), and on the other, class field
theory. It is the interplay between both theories, which gives rise to the
"Hilbert symbol". This is a highly remarkable phenomenon which will lead
us to a generalization of the classical reciprocity law of Gauss, to n-th power
residues.

Let L = K (" K *) be the maximal abelian extension of exponent n.
By (1.5), we then have NLIKL* = K*n,

and class field theory gives us the canonical isomorphism
G(LIK) Q--' K*IK*".

On the other hand, Kummer theory gives the canonical isomorphism
Hom(G(L I K), µn) = K*/K*n

The bilinear map
G(LIK) x Hom(G(LIK),1-An) --* µn, (cr,X) X(Or),

therefore defines a nondegenerate bilinear pairing
K*/K*n X K*/K*n An

(bilinear in the multiplicative sense). This pairing is called the Hilbert
symbol. Its relation to the norm residue symbol is described explicitly in
the following proposition.

(3.1) Proposition. For a, b E K*, the Hilbert symbol (a b) E g, is given
by

(a, K( )IK) = (_ ) / .

Proof: The image of a under the isomorphism K */K*" - G (L J K) of class
field theory is the norm residue symbol a = (a, L I K). The image of b under
the isomorphism K*/K*" - Hom(G(L I K), µn) of Kummer theory is the
character Xb : G (L I K) -+ An given by Xb (r) = t/ '. By definition of
the Hilbert symbol, we havea b )=Xb(o)=Q / fb
hence (a,K( )IK) =(a,LIK)=(ab)
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The Hilbert symbol has the following fundamental properties:

(3.2) Proposition.
(1) (a

P

b) (aPb) (aP1),

(ii) (a pb ) (apb) (ap ,11),

(iii) (alb) = 1 a is a norm from the extension K (') I K,

(iv) (alb) _
(bra)-t,

(v) (a'1 a)=1and(a' a)=1,

(vi) If ( ab ) = 1forallbEK*,then a EK*n.

Proof: (i) and (ii) are clear from the definition, (iii) follows from (3.1), and
(vi) reformulates the nondegenerateness of the Hilbert symbol.

If b E K* and X E K such that xn -b 0, then
n-1

xn - b=fl f"=b,
i=0

for some primitive n-th root of unity . Let d be the greatest divisor of n such
that yd = b has a solution in K, and let n = dm. Then the extension K (48) I K
is cyclic of degree m, and the conjugates of x - i are the elements x - J
such that j = i mod d. We may therefore write

d-t
xn - b = 1 J NK(#)IK(x -

i=0

Hence xn - b is a norm from K () I K, i.e.,
(xn

pb,b)=1.

Choosing x = 1, b = 1 - a, and x = 0, b = -a then yield (v). (iv) finally
follows from

(aPb)(bPa) a,
P

a)(aPb)(bPa)(b,
P

b

(a, ab)(b, dab)-(ab,p ab
-

)=1 D
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In the case K = R we have n = 1 or n = 2. For n = 1 one finds, of
course, (a'bb) = 1, and for n = 2 we have

P

a b sgna-1 sgnb-1(
P

)=(-1) 2 2

sgna-Ibecause (a,lR(/)IR) = 1 for b > 0, and = (-1) T for b < 0. Here
the letter p symbolically stands for an infinite place.

Next we determine the Hilbert symbol explicitly in the case where K is
a local field (¢ l[8, cC) whose residue characteristic p does not divide n. We
call this the case of the tame Hilbert symbol. Since µ" c µq-1 one has
n I q - 1 in that case. First we establish the

(3.3) Lemma. Let (n,p) = 1 and x E K*. The extension K(/)IK is
unramified if and only if x E UK K*'.

Proof: Let x = uy' with u E UK, Y E K*, so that K(im) = K(" u). Let
K' be the splitting field of the polynomial X" - u mod p over the residue
class field K, and let K' I K be the unramified extension with residue class
field K' (see chap. II, § 9, p. 173). By Hensel's lemma, X" - u splits over K'
into linear factors, so C K' is unramified. Assume conversely that
L = K(" x) is unramified over K, and let x = uJrr, where u E UK and
Jr is a prime element of K. Then vL (" i ) = n VL (Jr') = n E Z, hence
nIr, i.e., 7tr E K*", and thus x E UKK*".

Since UK = µq_1 X UKI, every unit u e UK has a unique decomposition

u = co(u)(u)

with CO (u) E µq-1 and (u) E UK u = a) (u) mod p. With this notation we
will now prove the

(3.4) Proposition. If (n, p) = 1 and a, b E K*, then

l a
b l

=
cv((-1)a ba \ 4-1)l

"P 0
where a = VK (a), . = vK (b).
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Proof: The function
ba l (q-1)ln

(a, b) := w((-1)afi a- /
is obviously bilinear (in the multiplicative sense). We may therefore assume
that a and b are prime elements: a = it, b = -7ru, u E UK. Since clearly

7r, -n(7r, - 7r) _ ( ) = 1, we may restrict to the case a = 7r, b = u. Let
y = and K' = K(y). Then we have

(
(X, u) = w(u)and (n> K'I K)Y

7r u \= Y .
P

By (3.3), we see that K'IK is unramified and by chap. IV, (5.7), (7r,K'IK)
is the Frobenius automorphism V = 'PK' I K . Consequently,

7C, 1t 'PY - Yq-1 - (q-1)ln - (q-1)1n -= u w(u) (n, u) mod=
P Y

hence (" u) _ (7r, u), because µq_1 is mapped isomorphically onto K* by
UK --)- 1C*.

The proposition shows in particular that the Hilbert symbol
Jr, ll (u)(q-1)ln

(in the case (n, p) = 1) is independent of the choice of the prime element
it. We may therefore put

(up) := (----)
for U E UK.

is the root of unity determined by

ll (q-1)/nu mod pK.
p

We call it the Legendre symbol, or the n-th power residue symbol. Both
names are justified by the

(3.5) Proposition. Let (n, p) = 1 and u E UK . Then one has

(U) u is an n -thpower modpK.
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Proof: Let be a primitive (q - 1)-th root of unity, and let m = g
Then a is a primitive m-th root of unity, and

=!D(u)n= = 1 w(u) E ant ? w(u) _ (c)'

U = W(u) mod pK .

It is an important, but in general difficult, problem to find explicit formulae
for the Hilbert symbol (2

P

b) also in the case p In. Let us look at the case
where n = 2 and K = Q . If a E Z2, then (-1)a means

(-1)a = (-1)',
where r is a rational integer - a mod 2.

(3.6) Theorem. Let n = 2. For a, b e Q , we write

a=Pea', b=pflb', a',b'EUQ .

lip 2, then
a, b P:---Ic, aAby.

I n particular, one has (L' P) _ (-1)(p-1)/2 and ( P P ) p if u is a unit.
Ifp=2anda,bEUQ2,then

22 1 =
(-1)(a2_1)/8

( l l a21 b21

\a2 ) =
(\ b2a) _ (-1) 2 2

Proof: The claim for the case p # 2 is an immediate consequence of (3.4),
and will be left to the reader. So let p = 2. We put i7(a) = a2 and

E(a) = a 2
1. An elementary computation shows that

n(ala2) = q(a1) + 77(a2) mod 2 and E(a1a2) as E(a1) + E(a2) mod 2.

Thus both sides of the equations we have to prove are multiplicative and it
is enough to check the claim for a set of generators of (5, - 1}
is such a set. We postpone this for the moment and define (a, b) _ (alb) .
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We have (-l,x) = 1 if and only if x is a norm from Q2( )1Q2,
i.e.,x=y22+z2,y,zEQ2.Since 5=4+1 and2=1+1,wefind that
(-1, 2) = (-1, 5) = 1. If we had (-1, - 1) = 1, then it would follow that
(-1,x) = 1 for all x, i.e., -1 would be a square in Q2, which is not the
case. Therefore we have (-1, - 1) = -1.

We have (2,2) = (2, - 1) = 1 and (5,5) = (5, - 1) = 1. It remains
therefore to determine (2, 5). (2, 5) = 1 would imply (2, x) = 1 for all x,
i.e., 2 would be a square in Q , which is not the case. Hence (2,5) = -1.

By direct verification one sees that the values we just found coincide with
those of resp. (-l)E(°)Elbl, in the respective cases.

It remains to show that is generated by {5, - 1}. We set U =
UQ2, Ui"l = U. By chap. II, (5.5), exp : 2"Z2 -+ U(°) is an isomorphism
for n > 1. Since a r-+ 2a defines an isomorphism 2222 -+ 2322, x N X2
defines an isomorphism U(2) --). UM. It follows that U(3) C U2. Since
(1, - 1, 5, - 5) is a system of representatives of U/U(3), U/U2 is generated
by-land5.

It is much more difficult to determine the n-th Hilbert symbol in the
general case. It was discovered only in 1964 by the mathematician HELMUT
BRUCKNER. Since the result has not previously been published in an easily
accessible place, we state it here without proof for the case n = p" of odd
residue characteristic p of K.

So let gpP C K, choose a prime element r of K, and let W be the ring
of integers of the maximal unramified subextension T of K I Qp (i.e., the
ring of Win vectors over the residue class field of K). Then every element
x E K can be written in the form

x = PIT),
with a Laurent series f (X) E W ((X )).

For an arbitrary Laurent series f (X) ai X ` E W ((X)), let
f P (X) denote the series

f'(X) =rawX'P
t

where rp is the Frobenius automorphism of W. Further, let Res(f dX) E W
denote the residue of the differential f dX,

d log f := fdX,
and 00

log f :_ (-1)t+t (f
if f E 1 + pW[[X]]
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Now let be a primitive p°-th root of unity. Then 1 - is a prime
element of Q and thus

for some unit s of K, where e is the ramification index of KIQ Let
n(X) E W[[X]] be a power series such that

s=r(7r),
and let h (X) be the series

h(X) = 1 1 + (1 - Xe7l(X))P° _ 00
a;X`, ai E W, urn ai = 0.

2 1 - (1 - Xe?1(X))P° i=-CC i-*-oo

With this notation we can now state BRUCKNER's formula for the p°-th Hilbert
symbol (x'2) , p = char(m) # 2.

(3.7) Theorem. If x, y E K* and f, g E W ((X)) * such that f (7r) = x and
g(7r)=y,then

(x,y)
=;.w(x,Y)

where
P P

w (x, y) = TrWIZ Res h. (1 log fP d log g- 1 log gP l d log f P) mod p".
P f P 9P P

For the proof of this theorem, we have to refer to [20] (see also
[69] and [135]). BRUCKNER has also deduced an explicit formula for the
case n = 2 but it is much more complicated. A more recent treatment
of the theorem, which also includes the case n = 2', has been given by
G. HENNIART [69].

It would be interesting to deduce from these formulae the following
classical result of IwAsAwA [80], ARTIN and HASSE (see [9]) relative to the
field

where is a primitive p" -th root of unity (p $ 2). Putting 7r = 1 - and
denoting by S the trace map from ' to Q p, we obtain for the p ° -th Hilbert
symbol (x-y) of the field 0v the
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r
(3.8) Proposition. For a E U n ) and b E fiv one has

(1)
a,bl _ S( togaDlogb)/p°

where D log b denotes the formal logarithmic derivative in it of an arbitrary
representation of b as an integral power series in it with coefficients in Zp.

For a E U ) one has furthermore the two supplementary theorems

(2)

(3)

( ' a l S(loga)/p°

The supplementary theorems (2) and (3) go back to ARTIN and HASSE [9].
The formula (1) was proved independently by ARTIN [10] and HASSE [61]
in the case v = 1, and by IwnsAwA [80] in general. In the case v = 1, for
instance, one can indeed obtain the formulae from BRUCKNER'S theorem (3.7).
Since

i=p-1 and loga-0modp2,
p Omodp, ip-1,

one may also interpret the -exponent in the formulae (1)-(3) as the (p -1)-
st coefficient of a it-adic expansion of log a D log b. In this way it appears as
a formal residue Resn -I log a D log b. As to the supplementary theorems,

7r P
one has to define also D log D log rr = 7t'

Exercise 1. For n = 2 the Hilbert symbol has the following concrete meaning:
a, b(-) = 1 ax' +bye - z2 = 0 has a nontrivial solution in K.

P
Exercise 2. Deduce proposition (3.8) from theorem (3.7).

Exercise 3. Let K be a local field of characteristic p, let k be its separable
closure, and let W (K) be the ring of Witt vectors of length n, with the operator
p : W. (,Z) - pa = Fa - a (see chap. IV, §3, exercises 2 and 3). Show
that one has ker(p) = W (]FP).

Exercise 4. Abstract Kummer theory (chap. IV, (3.3)) yields for the maximal abelian
extension L I K of exponent n a surjective homomorphism

Hom(G(LI x F--> X.=,

where one has X.,(a) = a - z; for all or E G(L I K), with an arbitrary E W,, (L)
such that p = x. Show that x ra X,L has kernel
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Exercise 5. Define, for X E W, (K) and a E K*, the symbol [x, a) E W,, (F,) by
[x, a) =X.,((a,LIK)),

where (, L I K) is the norm residue symbol. Show:

(i) [x, a) = (a, I K) - 4, if E W,, (K) with 9z = x.

(ii) [x + y, a) = [x, a) + [y, a).
(iii) [x, ab) _ [.x, a) + [x, b).

(iv) [x,a) = 0 a E NK(t)IKK(i)*, where E is an element such
that p = x.
(v) [x, a) = 0 for all a E K* X E pW, (K).

(vi) [x, a)=0forallx a EK*P".

Exercise 6. Let K be the residue class field of K and 7r a prime element such that
K = K((7r)). Let

d:K -+ S2KIK, fF- df,
be the canonical map to the differential module of K I K (see chap. III, §2, p.200).
For every f E K one has

df = f,'d7r,
where f, is the formal derivative of f in the expansion according to powers of 7r
with coefficients in K. Show that for co a;7r')dlr, the residue

Res w := a_,
does not depend on the choice of the prime element 7r.

Exercise 7. Show that in the case n = 1 the symbol [x, a) is given by

[x, a) = TrKI]Fn Res(x da) .
a

Remark: Such a formula can also be given for n > 1 (P. KOLCZE [88]).

§ 4. Formal Groups

The most explicit realization of local class field theory we have encoun-
tered for the case of cyclotomic fields over the field Qp, i.e., with the ex-
tensions Qp (1;) I Q p , where is a p'-th root of unity. The notion of formal
group allows us to construct such an explicit cyclotomic theory over an ar-
bitrary local field K by introducing a new kind of roots of unity which are
"division points" that do the same for the field K as the p" -th roots of unity
do for the field Qp.
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(4.1) Definiton. A (1-dimensional, commutative) formal group over a ring o
is a formal power series F (X , Y) E o[[X , Y]] with the following properties:

(i) F (X, Y) = X + Y mod deg 2,
(ii) F(X,Y) = F(Y,X) "commutativity",
(iii) F(X, F(Y, Z)) = F(F(X,Y), Z) "associativity".

From a formal group one gets an ordinary group by evaluating in a domain
where the power series converge. If for instance o is a complete valuation
ring and p its maximal ideal, then the operation

x+y := F(x,y)
F

defines a new structure of abelian group on the set p.

Examples :
1. Ga (X, Y) = X + Y (the formal additive group).

2. G,,, (X, Y) = X + Y + XY (the formal multiplicative group). Since

X + Y + XY = (1 + X)(1 + Y) - 1,
we have

(x+y)+1=(x+1).(y+ 1).
Gn,

So the new operation + is obtained from multiplication via the translation
Gm

X H X + 1.

3. A power series f (X) = a1X + a2X2 + E o[[X]] whose first
coefficient a1 is a unit admits an "inverse", i.e., there exists a power series

f-1(X) =a, 1X+ E o[[X]],
such that f (f (X )) = f (f -1(X)) = X. For every such power series,

F(X,Y) = f-1(f(X)+f(Y))
is a formal group.

(4.2) Definition. A homomorphism f : F G between two formal groups
is a power series f (X) = a1X + a2 X2 + E o[[X]] such that

f(F(X,Y)) = G(f (X), f (Y)) .
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In example 3, for instance, the power series f is a homomorphism of the
formal group F to the additive group Ga. It is called the logarithm of F.

A homomorphism f : F -4 G is an isomorphism if a1 = f'(0) is a unit,
i.e., if there is a homomorphism g = f -1 : G -+ F such that

f(g(X)) = g(f(X)) = X.
If the power series f (X) = a1X + a2 X2 + satisfies the equation
f (F (X, Y)) = G(f (X), f (Y)), but its coefficients belong to an extension
ring o', then we call this a homomorphism defined over o'. The following
proposition is immediately evident.

(4.3) Proposition. The homomorphisms f : F --> F of a formal group F
over o form a ring End, (F) in which addition and multiplication are defined
by

(f F g)(X) = F(f (X), g(X)) , (f o g)(X) = f (g(X)).

(4.4) Definition. A formal o-module is a formal group F over o together
with a ring homomorphism

o ---; Endo(F), a [a]F(X),

such that [a]F (X) - aX mod deg 2.
A homomorphism (over o' D o) between formal o-modules F, G is a

homomorphism f : F -3 G of formal groups (over o') in the sense of (4.2)
such that

f([a]F(X)) = [a]G(f(X)) for all a E o.

Now let o = OK be the valuation ring of a local field K, and write
q = (OK : PK). We consider the following special formal OK -modules.

(4.5) Definition. A Lubin-Tate module over OK for the prime element 7r is
a formal OK -module F such that

[ir]F(X) = Xq modjr.
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This definition reflects once more the dominating principle of class field
theory, to the effect that prime elements correspond to Frobenius elements. In
fact, if we reduce the coefficients of some formal c-module F modulo zr, we
obtain a formal group F (X , Y) over the residue class field IFq . The reduction
mod 7r of [7r]F(X) is an endomorphism of F. But on the other hand,
f (X) = X9 is clearly an endomorphism of F, its Frobenius endomorphism.
Thus F is a Lubin-Tate module if the endomorphism defined by a prime
element .7r gives via reduction the Frobenius endomorphism of F.

Example : The formal multiplicative group is a formal Z p -module with
respect to the mapping

7Lp -± EndZp (,G i) , a 1-*
00

[a]G,,, (X) = (1 + X )a - 1 = (v)x
)=1

Gm is a Lubin-Tate module for the prime element p because

[p]Gm(X)=(1+X)"-1-Xpmodp.

The following theorem gives a complete and explicit overall view of the
totality of all Lubin-Tate modules. Let e(X), e(X) E 0K[[X]] be Lubin-Tate
series for the prime element it of K, and let

Fe(X,Y) E QK[[X,Y]l and [a]e,e(X) E OK[[X]l
(a E OK) be the power series (uniquely determined according to (2.2)) such
that

Fe(X,Y) = X +Y mod deg2, e(Fe(X,Y)) = Fe(e(X),e(Y)) ,

[a],,e(X) = aX mod deg2, e([ale,e(X)) = [ale,e(e(X))
If e(X) = e(X) we simply write [a]e,e(X) _ [a]e(X)

(4.6) Theorem. (i) The Lubin-Tate modules for 7r are precisely the series
Fe (X, Y), with the formal OK -module structure given by

OK -* Endo,e (Fe) , a H [a]e(X)

(ii) For every a E OK the power series [a]e, e (X) is a homomorphism

[a]e,e:Fe>Fe
of formal c-modules, and it is an isomorphism if a is a unit.
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Proof: If F is any Lubin-Tate module, then e(X) := [7r]F(X) E 6,
and F = Fe because e(F(X,Y)) = F(e(X),e(Y)), and because of the
uniqueness statement of (2.2). For the other claims of the theorem one has
to show the following formulae.

(1) Fe(X,Y) = Fe(Y,X),
(2) Fe(X,Fe(Y,Z)) = Fe(Fe(X,Y),Z),
(3) [a]e,e(Fe(X,Y)) = Fe([a]e,e(X), [a]e,e(Y)),
(4) [a +b]e,e(X) = FeQa],,e(X), [b]e,e(X)),
(5) [ab]e e (X) = [a]e, e ([b]ee ,=(X))1

(6) [7r]e(X) =e(X)
(1) and (2) show that Fe is a formal group. (3), (4), and (5) show that

OK ) EndoK (Fe) , a I-> [a].,
is a homomorphism of rings, i.e., that Fe is a formal oK -module, and that
[a]e,e is a homomorphism of formal oK-modules from FF to Fe. Finally,
(6) shows that Fe is a Lubin-Tate module.

The proofs of these formulae all follow the same pattern. One checks
that both sides of each formula are solutions of the same problem of (2.2),
and then deduces their equality from the uniqueness statement. In (6) for
instance, both power series commence with the linear form irX and satisfy
the condition e([rr]e(X)) _ [Tr]e(e(X)), resp. e(e(X)) = e(e(X)).

Exercise 1. End,(G.) consists of all aX such that a E o.
Exercise 2. Let R be a commutative Q -algebra. Then for every formal group F (X, Y)
over R, there exists a unique isomorphism

loge : F G, ,

such that loge (X) X mod deg 2, the logarithm of F.
Hint: Let F1 = aF/aY. Differentiating F(F(X, Y), Z) = F(X, F(Y, Z)) yields
Fl (X, 0) = 1 mod deg 1. Let >/r (X) = 1 + F°° 1 a,, X R E R [[X]] be the power series
such that /r (X) Fl (X, 0) = 1. Then loge (X) = X + °_ i n X" does what we want.

00
Exercise 3. logG,n(X) _ (-1)"+1

nn
= log(1 + X).

n=1

Exercise 4. Let n be a prime element of the local field K, and let f (X) _
X + 7r-1 XQ + 7r-Z XQZ + - Then

F(X,Y)=f-'(f(X)+f(Y)), [a]F(X)=f-'(af(X)), ae K,
defines a Lubin-Tate module with logarithm loge = f-
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Exercise 5. Two Lubin-Tate modules over the valuation ring OK of a local field K,
but for different prime elements n and 5T, are never isomorphic.

Exercise 6. Two Lubin-Tate modules Fe and Fe for prime elements Tr and f always
become isomorphic over o, , where K is the completion of the maximal unramified
extension k I K.

Hint: The power series B of (2.3) yields an isomorphism 0 : Fe + Fe.

§ 5. Generalized Cyclotomic Theory

Formal groups are relevant for local class field theory in that they allow
us to construct a perfect analogue of the theory of the pn -th cyclotomic
field Q ( ) over Qp, with its fundamental isomorphism

G(Q (o IQ ) -+ (Z/pnZ)*
(see chap.I (7.13)), replacing Qp by an arbitrary local ground field K.
The formal groups furnish a generalization of the notion of pn -th root of
unity, and provide an explicit version of the local reciprocity law in the
corresponding extensions.

A formal oK -module gives rise to an ordinary OK -module if we read
the power series over a domain in which they converge. We now choose for
this the maximal ideal F of the- valuation ring of the algebraic closure k of
the given local field K. If G (X1, ..., X n) E OK [[X l , ..., X,11 is a power
series with constant coefficient 0, and if xt, ... , xn E F, then the series
G (x1, ... , x,) converges in the complete field K (xt , ... , xn) to an element
in F. From the definition of the formal o-modules and their homomorphisms
we therefore obtain immediately the

(5.1) Proposition. Let F be a formal OK -module. Then the set F with the
operations

x+y=F(x,y) and

a E OK, is an OK -module in the usual sense. We denote it by FF.
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If f : F -> G is a homomorphism (isomorphism) of formal OK -modules,
then

f:pF - +pG, x1 ) f(x),
is a homomorphism (isomorphism) of ordinary OK -modules.

The operations in pF, and particularly scalar multiplication a x =
[a]F(x), must of course not be confused with the usual operations in the
field K.

We now consider a Lubin-Tate module F for the prime element 7r of OK.
We define the group of 7r"-division points by

F(n) = J X E F I 7r' - X = 01 = ker([7r"]F)

This is an OK-module, and an oK/7r'oK-module because it is killed
by 7r'ioK.

(5.2) Proposition. F (n) is a free OK /7r'oK -module of rank 1.

Proof: An isomorphism f : F G of Lubin-Tate modules obviously
induces isomorphisms f : pF - pG and f : F(n) -* G(n) of OK-
modules. By (4.6), Lubin-Tate modules for the same prime element 7r are all
isomorphic. We may therefore assume that F = Fe, with e(X) = Xq-{-7rX =
[7r]F(X). F(n) then consists of the q'2 zeroes of the iterated polynomial
e°(X) = (e o . . . o e) (X) = [7r"] F M, which is easily shown, by induction
on n, to be separable. Now if ) E F(n) N F(n - 1), then

OK --> F(n), a f-r a A,
is a homomorphism of OK-modules with kernel7r'0K. It induces a bijective
homomorphism oK/7r'0K -* F(n) because both sides are of order q'.

(5.3) Corollary. Associating a [a]F we obtain canonical isomorphisms

oK/7r'0K -- EndoK (F(n)) and UK/UK Aut0K (F (n)) .

Proof: The map on the left is an isomorphism since oK/7r'ioK - F(n)
and EndOK(oK/7rnoK) = 007r' OK. The one on the right is obtained by
taking the unit groups of these rings.
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Given a Lubin-Tate module F for the prime element 7r, we now define
the field of ir"-division points by

L"=K(F(n)).
Since F(n) S-= F(n + 1) we get a tower of fields

KCLICL2C...CL, =UL,,.- - n_t

These fields are also called the Lubin-Tate extensions. They only depend
on the prime element 7r, not on the Lubin-Tate module F. For if G is
another Lubin-Tate module for 7r, then by (4.6), there is an isomorphism
f : F -+ G, f E OK [[X]] such that G(n) = f (F (n)) C K(F(n)), and
hence K(G(n)) = K(F(n)). If F is the Lubin-Tate module Fe belonging to
a Lubin-Tate polynomial e(X) E g,, , then e(X) = [7rI F (X) and L, i K is the
splitting field of the n-fold iteration

e" (X) = (e o ... o e) (X) _ [7r"]F (X)

Example: If OK = Z p and F is the Lubin-Tate module G,,, , then

e" (X) _ [P"]Gm(X) = (1 +X)pn - 1.
So G,, (n) consists of the elements - 1, where varies over the p"-th roots
of unity. Ln I K is therefore the p" -th cyclotomic extension Qp (p. pn) I Q p. The
following theorem shows the complete analogy of Lubin-Tate extensions with
cyclotomic fields.

(5.4) Theorem. L" K is a totalIyramified abelian extension ofdegree qi-t (q-
1) with Galois group

G(L"IK) = AutOK(F(n)) - UK/UK),

i.e., for every U E G(L" I K) there is a unique class u mod UK ), with u E UK
such that

A = [u]F(X) for X E F(n).
Furthermore the following is true: let F be the Lubin-Tate module Fe associated
to the polynomial e(X) E E, and let ,l" E F(n) F(n - 1). Then ?" is a
prime element of L, i.e., L" = K (X,), and

On (X) =
ee'

tXX) = X4"-1(4-1) + ... +7r E OK[X]

is its minimal polynomial. In particular one has NL IK (-X.) = 7r
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Proof : If

e(X) = Xq + rr(aq_1Xq-1 + - + a2 X2) +7rX

is a Lubin-Tate polynomial, then

e"(X)On
(X) = en-1(g)

= en-1(X)q-1 +,,r (aq-tea-1(X )q-2 + ... + a2en-1(X )) +g

is an Eisenstein polynomial of degree qn-1 (q - 1). If F is the Lubin-Tate
module associated to e, and Xa E F(n) N F(n - 1), then .Ln is clearly a zero
of this Eisenstein polynomial, and is therefore a prime element of the totally
ramified extension K (a.") I K of degree qn-1(q - 1). Each a E G (L I K)
induces an automorphism of F(n). We therefore obtain a homomorphism

G(L,,IK) -j Aut,K(F(n)) - UK/U(nl.
It is injective because La is generated by F(n), and it is surjective because

#G(L1IK) ? [K(A,) : K] = qn-1(q - 1) =#UK/Utai.
This proves the theorem. `

Generalizing the explicit norm residue symbol of the cyclotomic fields
Q p (µ p,") Q p (see (2.4)), we obtain the following explicit formula for the
norm residue symbol of the Lubin-Tate extensions.

(5.5) Theorem. For the field Ln IK of Ira-division points and for a
uirVK(a) E K*, u E UK, one has

(a, LJK),l = [u-1]F(X), ), E F(n).

Proof : The proof is the same as that of (2.4). Let a E G (L I K) be the
automorphism such that

Xor = [u-1 ]F(X), X, E F(n).

Let & be an element in Frob(L" I K) such that or _= & I L. and dK (Q) = 1. We
view v as an automorphism of the completion f, = L"K of L. Let 1 be
the fixed field of 6. Since fE1K = dK (Q) = 1, E I K is totally ramified. It has
degree qn-1 (q - 1) because z n K = K and E = E'K = L. Consequently
[I':K]=[L,, :K]=[La:K].
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Now let e E E,, J E £n be Lubin-Tate series over OK, where 7r = un,
and let F = F. By (2.3), there exists a power series 9(X) = EX + E
o [[X]], with s E Uk, such that

9'=9o[u]F and (cc=coK).

Let ,l, E F (n) N F (n - 1). a.,, is a prime element of L , and

nE =B(in)
is a prime element of E because

7rE = 9`P(X ) = 9,([u-'IF (xn)) = 0(Xn) = nE

Since e'(9(,ln)) = 00 = 0 for i = n, and # 0 for i = n - 1,
we have 7rE E Fe(n) N Fe(n - 1). Hence E = K(7rE) is the field of 7r"-
division points of Fei and NEIK(-7rE) = 7r = un by (5.4). Since n =
NL,IK(-An) E NL,IKLn, we get

rL,IK(6) = NEIK(-7rE) =7r m u mod
and thus

(a, Ln I K) = (7r vK(a), Ln I K) (u, Ln I K) = (u, Ln I K) = a .

(5.6) Corollary. The field L I K of7r' -division points is the class field relative
to the group (7r) x UK) C K*.

Proof : For a = u7r °K (a) we have

a (a,LnIK)=1 [u-1]F(?)=X forallXEF(n)
[u-1 ]F = idF(n) u1 E UKl - a E (7r) X UK1

For the maximal abelian extension Kab I K, this gives the following
generalization of the local Kronecker-Weber theorem (1.9):

(5.7) Corollary. The maximal abelian extension of K is the composite

Kab = KL,,
where L,r is the union Un° 1 Ln of the fields L of7rn-division points.



III

§ 5. Generalized Cyclotomic Theory 351

Proof: Let LIK be a finite abelian extension. Then we have 7rf E NLIKL*
(n) form a basisfor suitable f . Since NLIKL* is open in K*, and since the UK

of neighbourhoods of 1, we have (7rf) x UK) C NLIKL* for a suitable
n. Hence L is contained in the class field of the group (7rf) x UK) _
((7r) x UK 1) fl ((irf) x UK). The class field of (7r) x UK 1 is L, and that
of (7r f) x UK is the unramified extension K f of degree f . It follows that
LCKfL,, CKLn=Kab.

Exercise 1. Let F = Fe be the Lubin-Tate module for the Lubin-Tate series e E E,
with the endomorphisms [a] = [a]e. Let S = oK[[X]] and S* = (g E S I g(O) E UK).
Show:

(i) If g E S is a power series such that g(F(1)) = 0, then g is divisible by [7r], i.e.,
g(X) = [7r](X)h(X), h(X) E S.
(ii) Let g E S be a power series such that

g(X +A) = g(X) for all A E F(1),
F

where we write X +X = F (X , A). Then there exists a unique power series h (X) in
F

S such that
g=ho7r.

Exercise 2. If h(X) is a power series in S, then the power series
h1(X)= fl h(X+A)

AEF(1) F

also belongs to S, and one has h1(X+A) = h1(X) for all A E F(1).
F

Exercise 3. Let N(h) E S be the power series (uniquely determined by exercise 1
and exercise 2) such that

N(h) o [7r] = rj h(X +A) .
.LEF(T) F

The mapping N : S -+ S is called Coleman's norm operator. Show:
(i) N(h1h2) = N(h1)N(h2).
(ii) N(h) - h mod p.
(iii) h E X' S* for i> N (h) E X' S*.

(iv) h - 1 mod p' for i-> 1 ==> N(h) - 1 mod
(v) For the operators N°(h) = h, Nn(h) = N(Nn-1(h)), one has

N"(h)o[7rn]= r[ h(X+A), n>0.
zEF(n) F

(vi) If h EX'S*, i > 0, then N"+1(h)/Nn (h) E S* and
Nn+1(h) - N" (h) mod pn+i n > 0.
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Exercise 4. Let A E F(n+1) -, F(n), n > 0, and A; _ [Jr" '](A) E F(i +1) for 0 <
i < n. Then A; is a prime element of the Lubin-Tate extension L;+1 = K(F(i + 1)),
and o;+t = oK [A; ] is the valuation ring of L;+i, with maximal ideal p;+t = A; o;+t
Show:

let Pi E Jr"-'piOj+t, 0 < i < n. Then there exists a power series h(X) E S such
that

for 0<i <n.
Hint: Write ,8; = 7r'-`Aoh;(A;), with h;(X) E o[X] and put, for 0 < i < n:
g; (X) = [rr"+t ] [,r' ]/ [rr'+t ] Then h = h; g; is a solution.

Exercise 5. Let A E F(n + 1) -, F(n) and A; 0 < i < n. For every
u E UL,,,, there exists a power series h(X) E o[[X]] such that

N",;(u) = h(A;) for 0 < i < n,
where N; is the norm from L,,+, to Li+,.
Hint: Write u = ht(A), ht(X) E o[X], and put h2 = N"(ht) E S*. Show that
,B; = Nn,; (u) - h2 (A;) E Jr"-' p t o;+i . Then by exercise 4 there is a power series
h3(X) E o[[X]] such that $ = h3 (4), 0 < i < n. Show that h = h2 +h3 works.

Remark: The solutions of these exercises are discussed in detail in [79], 5.2.

§ 6. Higher Ramification Groups

Considering the homomorphism

( LIK) : K* --* G(LIK)
defined for an abelian extension L I K of local fields by the norm residue
symbol, it is striking that both groups are equipped with a canonical filtration:
in the group K* on the left we have the descending chain

(*) K* D UK = UK°) D UM D UK) D .. .

of higher unit groups UK), and on the right there is the descending chain

(**) G(LIK) 2 G°(LIK) R G'(LIK) D_ G2(LIK) 2
of ramification groups G` (L I K) in the upper numbering (see chap. H, § 10).
The latter arose from the ramification groups in the lower numbering

G1(LIK)={o EG(LIK)I vL(aa-a)>i+l for all aEOL]
via the strictly increasing function

s dx
71LIK(S) (Go: Gs)
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by the rule
G`(LIK) =G,LJK(1)(LIK),

where 1 is the inverse function of q. We will now prove the remarkablearithmetic fact that the norm residue symbol ( , L I K) relates both filtration
(*) and (**) in a precise way. To this end we determine (generalizing chap. U,§ 10, exercise 1) the higher ramification groups of the Lubin-Tate extensions.

(6.1) Proposition. Let L I K be the field ofrr" -divisionpoints of a Lubin-Tatemodule for the prime element ir. Then
GI (L" I K) = G(L,:ILk) for qk-t < i < qk -

Proof: By (5.4) and (5.5), the norm residue symbol gives an isomorphism
UK/UK) -+ G(LkIK) for every k. Hence (UK),L,=IK). Wetherefore have to show that

Gt(LnlK) = (U(k),LnIK) for qk_i < i < qk - 1.
Let U E G i (L I K) and or = (u, L" I K ). Then we have necessarily
u E UK) because (, L I K) : UK/UK) -+ G(L1I K) maps the p-Sylow
subgroup UK) / UK) onto the p-Sylow subgroup G (Ln I K) of G (L" I K).Let u = 1 + E7rn, K E UK, and 2, e F(n) -, F(n - 1). Then A is a prime
element of L" and from (5.4) we get that

21a = [u]F(x) = F(a., [Eyr n']F(X)) .
If m>n,then a=1,so that vLn(A -A)=oo,If m<n,then A_"__[Jrr]F(A) is a prime element of Ln-m and therefore also [s7rm]F(A) _[E]F (An-m). As L,7I Ln_n, is totally ramified of degree q' we may write
[E7rm]F(A) =

EOXgm
for some Eo E UL,,. Since F(X,0) = X, F(0,Y) = Y,we have F (X , Y) = X +Y +XYG(X , Y) with G (X , Y) E OK [[X , Y]]. Thus

X° - A = F (X EO),gn:) _X = 60 qm + a),qm+1

a E OLn ,

VL,, (XC -),) = qn' ifm <n,
oo if m > n.

By chap. IT, §10, we have Gj(LnIK) _ (Q E G(L"IK) I
i i qk - 1. If it E UK), then in > k, i.e.,
iL IK (Q) > qk >_ i + 1, and so v E G1(Ln I K). This proves the inclusion
(UK ),L"IK) c G1(LnIK). If conversely a E and a 0 1, theniL IK (6) = qm > i > qk-i i.e., m > k. Consequently u E UK ), and this
shows the inclusion Gi (Ln I K) c (UK , L, I K). 0
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From this proposition we get the following result, which may be consid-
ered the main theorem of higher ramification theory.

(6.2) Theorem. If L I K is a finite abelian extension, then the norm residue
symbol

( ,LIK):K* _) G(LIK)
(n) onto the group G"(L I K), for n > 0.maps the group UK

Proof : We may assume that LIK is totally ramified. For if L° I K is
the maximal unramified subextension of LIK, then we have on the one
hand G"(LIK) = G"(LIL°) because 'i/iLOIK(s) = s and 1/fLIK(s)
>'LILo(*LOIK(s)) = *LILO(s) (see chap. II, (10.8)). On the other hand, by
chap. IV, (6.4), and chap. V,((1.2), we have

(Uio,LIL°) = (NLOIKUL ),LIK) = (UKI,LIK),

so we may replace LIK by L I L°.
If now L I K is totally ramified and nL is a prime element of L, then

n = NL I K (r) is a prime element of K and (Jr) x UK = c_ NL I K L * for m
sufficiently big. Therefore L I K is contained in the class field of (7r) x UK'),
which, by (5.6), is equal to the field L,,, of 7r°1-division points of some
Lubin-Tate module for ,r. In view of chap. II, (10.9), and chap. IV, (6.4), we
may even assume that L = L,,,. By (6.1), the norm residue symbol maps the
group UK ) onto the group

G(Lm I Ln) = Gi (Lm I K) for

But we have (see chap. II, § 10)

qn-1 <i <q"-1.

1
r1LIK(q"-1)- g°(g1+...+ggn_i)

with gi .= #Gi (LIK) = #G(Lm I Ln) _ (qm-1 _qn-1)(q -1) for qn-1 < i <
q'-I. This yields rI L IK (q" -1) = n and thus (UKl ,LIK) = Gqn _ 1(L I K)
G" (LIK).

Higher ramification groups Gt (LIK) were introduced for arbitrary real
numbers t >.-I. Thus we may ask for which numbers they change. We
call these numbers the jumps of the filtration {Gt (LIK)}t>_1 of G(L I K). In
other words, t is a jump if for all £ > 0, one has

Gt(LIK) Gt+E(LIK).
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(6.3) Proposition (HASSE -ARF). For a finite abelian extension L I K, the jumps
of the filtration (G' (L I K))t,_i of G (L I K) are rational integers.

Proof: As in the proof of (6.2), we may assume (since Gr (L I K) =
Gt (L I L°)) that L I K is totally ramified and contained in a Lubin-Tate
extension L,,,IK. If now t is a jump of {G'(LIK)}, then by chap. II (10.9),
t is also a jump of {Gt (L,,, I K)}. Since by (6.1), the jumps of {G,s (L,,, I K)}
are the numbers q" - 1 , for n = 0, ... , m - 1 (q = 2 is an exception: 0 is
not a jump), the jumps of {Gt (L", I K)} are the numbers TILm IK (q" - 1) =n,
forn=0, ...,m-1.

The theorem of HASSE-ARF has an important application to Artin L -series,
which we will study in chap. VII (see chap. VII, (11.4)).
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Chapter VI

Global Class Field Theory

§ 1. Ideles and Idele Classes

The role held in local class field theory by the multiplicative group of the
base field is taken in global class field theory by the ideae class group. The
notion of idele is a modification of the notion of ideal. It was introduced
by the French mathematician CLAUDE CHEVALLEY (1909-1984) with a view
to providing a suitable basis for the important local-to-global principle, i.e.,
for the principle which reduces problems concerning a number field K to
analogous problems for the various completions Kp. CHEVALLEY used the term
"ideal element", which was abbreviated as id. el.

An adele of K - this curious expression, which has the stress on the
second syllable, is derived from the original term "additive ideae" - is a
family

a = (ap)
of elements up E Kp where p runs through all primes of K, and up is integral
in Kp for almost all p. The adeles form a ring, which is denoted by

AK = II Kp.
p

Addition and multiplication are defined componentwise. This kind of product
is called the "restricted product" of the Kp with respect to the subrings
Op C Kp.

The idele group of K is defined to be the unit group

IK = AK.

Thus an ideae is a family
a = (ap)

of elements up E Kp where ap is a unit in the ring op of integers of Kp, for
almost all p. In analogy with AK, we write the idele group as the restricted
product

IK = II Kp
p



358 Chapter VI. Global Class Field Theory

with respect to the unit groups op. For every finite set of primes S, IK
contains the subgroup

IK=r[KpxF1 Up
pes p¢S

of S-ideles, where Up = Kp for p infinite complex, and Up = R+ for p
infinite real. One clearly has

IK = U IS ,

s
if S varies over all finite sets of primes of K.

The inclusions K C Kp allow us to define the diagonal embedding

K*) IK,
which associates to a E K* the ideae a E IK whose p-th component is the
element a in K. We thus view K* as a subgroup of IK and we call the
elements of K* in IK principal idi les. The intersection

KS=K*nIK
consists of the numbers a E K* which are units at all primes p S, p {' oo,
and which are positive in Kp = R for all real infinite places p 0 S. They
are called S-units. In particular, for the set Scc, of infinite places, Ks- is the
unit group oK of og. We get the following generalization of Dirichlet's unit
theorem.

(1.1) Proposition. If S contains all infinite places, then the homomorphism

A:KS
pES

X(a) = (log lalp)pES'

has kernel A(K), and its image is a complete lattice in the (s -1) -dimensional
trace-zero space H = { (xp) E [IPES R I EpES xp = 01 , S = #S.

Proof: For the set S,,,, = {p I oo}, this is the claim of chap. I, (7.1) and (7.3).
Let Sf = S N Sam, and let J(Sf) be the subgroup of JK generated by
the prime ideals p E Sf. Associating to every a E KS the principal ideal
is = '(a) E J(Sf), we obtain the commutative diagram

1 oK K S ) J (Sf)
I)L, Iz Ix//

PESO. peS pESf
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with exact rows. The map X" on the right is given by

x"( II pup) F1 vp log M(P)
PESf pESf

(observe that Jalp = M(p)-Up(a)), and maps_J(Sf) isomorphically onto the
complete lattice spanned by the vectors

ep = (0, ...,0, log R(p),0, ...,0),
for p E Sf. It follows that ker(a.) = ker(A.') = µ(K), and we obtain the exact
sequence

() 0 --- im().') -) im(),) im()"),

where the groups on the left and on the right are lattices. This implies that
the group in the middle is also a lattice. For if x E im(A), and U is a
neighbourhood of i (x) which contains no other point of im(),"), then i -1(U)
contains the coset x + im(?'), and no other. It is discrete since im(X') is
discrete.

For every p E Sf, if h is the class number of K, then ph belongs to i (KS),
i.e.,

J(Sf)h C i(KS) C J(Sf).
The groups on the left and on the right have rank #Sf, hence so does i (KS).
In the sequence (*), the image of i therefore has rank #Sf, and the kernel has
rank #S,, -1. Hence im(A) is a lattice of rank #S,, -1-F#S f = #S - 1. It lies in
the (#S-1)-dimensional trace-zero space H, since FI,ES- Ia (p = fp Ia Ip = 1
for a E KS.

(1.2) Definition. The elements of the subgroup K* of IK are called principal
ideles and the quotient group

CK = IK/K*

is called the idele class group of K.

The relation between the ideal class group CIK and the idele class group
CK is as follows. There is a surjective homomorphism

( ) : IK - JK fl pVp(«,)
pt-

from the idele group IK to the ideal group JK. Its kernel is
Is-_ flK*x flUp.

P1- pt00
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360 Chapter VI. Global Class Field Theory

It induces a surjective homomorphism

with kernel IK K*/K*. We may also consider the surjective homomorphism

IK -f J(Q), IX H ttpvp(ap)

P

onto the replete ideal group J(a). Its kernel is

IK={(ap)E'KI = 1 for all p}

(see chap. III, § 1). It takes principal ideles to replete principal ideals and
induces a surjective homomorphism

CK - Pic(o)
onto the replete ideal class group, with kernel IKK*/K*. We therefore have
the

(1.3) Proposition. C1K = IK/I K°°K*, and Pic(o) = IK/IKK*.

In contrast to the ideal class group, the ideae class group is not finite. But
the finiteness of the former is reflected in terms of the latter as follows.

(1.4) Proposition. IK = IKK*, i.e., CK = IKK*/K*, if S is a sufficiently
big finite set of places of K.

Proof: Let a,a , ,- ah be ideals representing the h classes of JK I PK . They
are composed of a finite number of prime ideals pt, ... , p, Now if S is any
finite set of places containing these primes and the places at infinity, then
one has IK = IKK*.

In order to see this, we use the isomorphism IK/I K°° = JK. If a E IK,
then the corresponding ideal (a) = rjpta, p"p(1p) belongs to some class ai PK,
i.e., (a) = ai (a) for some principal ideal (a). The idele a' = as-I is mapped
by IK -+ JK to the ideal ai = HPt,,,, p°p(an)Since the prime ideals occurring
in ai lie in S, we have vp(a'p) = 0, i.e., ap E Up for all p ¢ S. Hence
a'=as-'E Is, and thus aEIKK*.
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The idele group comes equipped with a canonical topology. A basic
system of neighbourhoods of 1 E IK is given by the sets

HWpX HUpcIK,
pES p¢S

where S runs through the finite sets of places of K which contain all p 100,
and W. C Kp is a basic system of neighbourhoods of 1 E Kp K. The groups Up
are compact for p ¢ S. Therefore the same is true of the group IIpVS Up. If
the Wp, for pIoo, are bounded, then 11 pcS Wp x Fjp s Up is a neighbourhood
of 1 in IK whose closure is compact. Therefore IK is a locally compact
topological group.

(1.5) Proposition. K* is a discrete, and therefore closed, subgroup of 'K.

Proof: It is enough to show that 1 E IK has a neighbourhood which contains
no other principal idele besides 1.

.1,t=taEIKI IapIp=1forp{oo, Iap - llp < lforploo},
is such a neighbourhood. For if we had a principal idele x E it different
from 1, then we get the contradiction

1=IIlx-llp= II IX-11p- H IX-11P
p pt- p l- -

< r[ ix -1 Ip < rj max[ Ix lp,1} = 1.
pfi- pf-

That the subgroup is closed follows for a completely general reason: since
(x, y) H xy-1 is continuous, there is a neighbourhood V of 1 such that
VV-1 C it. For every y E IK, the neighbourhood y V then contains at most
one x E K*. Indeed, from x1 = yv1, x2 = yv2 E K*, with x1 x2, one
deduces x1x21 = v1v21 E 1.1, a contradiction.

As K* is closed in IK, the fact that IK is a locally compact Hausdorff
topological group carries over to the idele class group CK = IK/K*. For
any idele a = (ap) E IK, its class in CK will be denoted by [a]. We define
the absolute norm of a to be the real number

m(a) = 1 L 1(p)"o(ao)

= _ 1 1 lap (p
p p

If X E K* is a principal idele, then we find by chap. 111, (1.3), that
Tt(x) _ flp Ix I _

1 = 1. We thus have a continuous homomorphism

f7t : CK + R.
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It is related to the absolute norm on the replete Picard group Pic(o) via the
commutative diagram

CK 91 + 18+

I
Pic(o) -> R.

Here the arrow
CK Pic(o)

is induced by the continuous surjective homomorphism

IK J05), (ap) 1 ) fl pvv(av)
p

with kernel
IK = { (ap) E IK I laplp = l for all p} .

As to the kernel CK of 01 : CK R+, we obtain, in analogy with chap. III,
(1.14), the following important theorem. It reflects the finiteness of the unit
rank of K as well as the finiteness of the class number.

(1.6) Theorem. The group CK = ([a] E CK 191([a]) = 1) is compact.

Proof: The claim concerning the commutative exact diagram

CK ) Il8+ ) 1

1 -a Pic(o)° Pic(o) ) R* --k 1

will be reduced to the compactness of the group Pic(o)°, which was
proved in chap. III, (1.14). The kernel of the vertical arrow in the middle
is the group IKK*/K* = IK/IK fl K*, where we have IK = fp Ip°,
Ip = far E Kp I laplp = 1}, and IK fl K* = µ(K) by chap. 111, (1.9).
This kernel is clearly compact. We obtain an exact sequence

1 -* IKK*/K* Co -+ Pic(o)° --3 1
of continuous homomorphisms. Since Pic(o)° is compact, and the same
is true for the fibres of the mapping CK -+ Pic(o)° (they are cosets, all
homeomorphic to IKK*/K*), hence so is CK.
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The ideae class group CK plays a similar role for the algebraic number
field K as the multiplicative group Kp does for a p-adic number field K.
It comes equipped with a collection of canonical subgroups which are to be
viewed as analogues of the higher unit groups Up(n) = 1 + p' of a p-adic
number field K. Instead of pn, we take any integral ideal m = pl p'P
We may also write it as a replete ideal

m = lyllpna
p

with np = 0 for p I oo, and we treat it in what follows as a module of K. For
every place p of K we put UP = Up, and

1+pnP, if pf oo,
UpnP) :- R* C K; , if p is real,

C* = K* , if p is complex,

for np > 0. Given up E K* we write

up =- 1 mod pn0 up E UpnP)

For a finite prime p and np > 0 this means the usual congruence; for a
real place, it symbolizes positivity, and for a,complex place it is the empty
condition.

(1.7) Definition. The group

CK = IKK*lK*,

formed from the ideae group

nIK = I1 U( v)
p

p

is called the congruence subgroup mod m, and the quotient group CK /CK
is called the ray class group mod m.

Remark : This definition of the ray class group does correspond to the
classical one, as given (in the ideal-theoretic version) for instance in Hasse's
"Zahlbericht" [53]. It differs from those found in modem textbooks, and also
from that given in [107] by the author: in the present book, the components
up of ideles a in IK are always positive at all real places p, so we have here
fewer congruence subgroups than in the other texts. This choice does not only
simplify matters. Most of all, it was made substantially because of the choice
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of the canonical metric (, ) on the Minkowski space KR (see chap. I, § 5).
In fact, we saw in chap. III, § 3, that this choice forces the extension C I R to
be unramified. We will explain in § 6 below how to interpret this situation,
and how to reconcile it with the definition of ray classes in other texts.

The significance of the congruence subgroups lies in that they provide an
overview over all closed subgroups of finite index in CK. More precisely,
we have the

(1.8) Proposition. The closed subgroups of finite index of CK are precisely
those subgroups that contain a congruence subgroup C.

Proof: CIK is open in CK because IK = fp Upnpl is open in IK.
IK is contained in the group Is' = Fl. K* x l lt. Up, and since
(CK : IK K*/K*) = #ClK = h < oo, the index

(CK : CK) = h(IK K* IKK*) < h(IK : IK)

= h fl (Up Unp) ) fl (Kp :
Upnp)

)
pt* pl-

is finite. Being the complement of the nontrivial open cosets, which are
finite in number, Cg is closed of finite index. Consequently, every group
containing CK is also closed of finite index, for it is the union of finitely
many cosets of C.

Conversely, let N be an arbitrary closed subgroup of finite index. Then
N is also open, being the complement of a finite number of closed cosets.
Thus the preimage J of N in IK is also open, and it thus contains a subset
of the form

W=j(Wpx j-jUp,
pES p¢S

where S is a finite set of places of K containing the infinite ones,
and Wp is an open neighbourhood of 1 E K*. If P E S is finite,p
we are liable to choose Wp = Upn° c Kp
form a basic system of neighbourhoods of 1 E K. If p E S is real,
we may choose Wp c R. The open set W, will then generate the
group R+, resp. K* in the case of a complex place p. The subgroup of J
generated by W is therefore of the form 1K, so N contains the congruence
subgroup C.
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The ray class groups can be given the following purely ideal-theoretic
description. Let JK be the group of all fractional ideals relatively prime to m,
and let PK be the group of all principal ideals (a) E PK such that

a as 1 mod m and a totally positive.

The latter condition means that, for every real embedding K -+ IR, a turns
out to be positive. The congruence a as 1 mod m means that a is the quotient
b/c of two integers relatively prime to m such that b as c mod m. This
is tantamount to saying that a as 1 mod p"p in Kp, i.e., a E Up"pl for
all pim = flpf p"p. We put

CIK = Ji-I PK
We then have the

(1.9) Proposition. The homomorphism

( ):IK-->JK, aF(a)=flpvp(a.)
pfoo

induces an isomorphism

CK/CK = C1K .

Proof : Let m = l l p p'1', and let
IK1aEIKIapEUp"forpImoo}.

(")K*, because for every a E IK, by the approximationThen IK = 1K
theorem, there exists an a c= K* such that apa as 1 mod pnp for plm,
and apa > 0 for p real. Thus _ (apa) E IK 1, so that a = pa-' E IK )K*.
The elements a E IKl n K* are precisely those generating principal ideals
in PK. Therefore the correspondence a (a) = llpfoopvp("p) defines a
surjective homomorphism

CK = IKK*/K* = IK/1K n K* - JKIPK
Since (a) = 1 for a E IK, the group CK = IKK*/K* is certainly contained
in the kernel. Conversely, if the class [a] represented by a E IK ) belongs
to the kernel, then there is an (a) E PK, with a E 1 1 n K*, such that
(a) = (a). The components of the ideae ,B = as-1 satisfy Pp E Up for
p moo, and P. E Up"p> for pImoo, in other words, 13 E 1K, and hence
[a] _ [,B] E IKK*/K* = C. Therefore CK is the kernel of the above
mapping, and the proposition is proved.
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366 Chapter VI. Global Class Field Theory

The ray class groups in the ideal-theoretic version ClK = JK/PK were
introduced by HEINRICH WEBER (1842-1913) as a common generalization of
ideal class groups on the one hand, and the groups (Z/mZ)* on the other.
These latter groups may be viewed as the ray class groups of the field Q :

(1.10) Proposition. For any module m = (m) of the field Q, one has

CQ/C = Cl' = (Z/mZ)*.

Proof: Every ideal (a) E JE has two generators, a and -a. Mapping
the positive generator onto the residue class mod m, we get a surjective
homomorphism J, -+ (Z/mZ)* whose kernel consists of all ideals (a)
which have a positive generator - 1 mod m. But these are precisely the
ideals (a) such that a - 1 mod p'p for p Imoo, i.e., the kernel of q.

The group (Z/mZ)* is canonically isomorphic to the Galois group
G(Q(µm)IQ) of the m-th cyclotomic field We therefore obtain a
canonical isomorphism

G(Q(hm)IQ) = CQ/Cm
It is class field theory, which provides a far-reaching generalization of this
important fact. For all modules m of an arbitrary number field K, there will
be Galois extensions K'" I K generalizing the cyclotomic fields: the so-called
ray class fields, which satisfy canonically

G(KmIK) = CKICK
(see § 6). The ray class group mod 1 is of particular interest here. It is related
to the ideal class group ClK - which according to our definition here, is in
general not a ray class group - as follows.

(1.11) Proposition. There is an exact sequence

1R*/18+-*CIK-+CIK1,
p real

where o+ is the group of totally positive units of K.

Proof: One has C1K CK/CK = 1K/IKK* and, by (1.3), C1K
IK/IK°OK*, where IK = f p Up and Is- _ fpt Up x jlp,,,.K*.
We therefore obtain an exact sequence

1 IK K*/IKK* CK/CK -+ ClK 1.
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For the group on the left we have the exact sequence
1 is,* n K*/II n K* > Is /IK - IK°°K/IKK* - 1.

But IK°° n K* = n*, IK n K* = o* , and IK°°/IK = FpI1 K*/Up =
17
!p real R*/R-{-' 0

Exercise 1. (i) AQ = (Z (9z Q) x R.
(ii) The quotient group AQ/Z is compact and connected.
(iii) AQ/7L is arbitrarily and uniquely divisible, i.e., the equation nx = y has a
unique solution, for every n E N and y E A0/7L.
Exercise 2. Let K be a number field, m = 2°m' (m' odd), and let S be a finite set
of primes. Let a E K* and a E Kp"', for all p ¢ S. Show:
(i) If is cyclic, where 2" is a rimitive 2°-th root of unity, then a E K*m.
(ii) Otherwise one has at leas t that a E

primitive

Hint: Use the following fact, proved in (3.8): if L I K is a finite extension in which
almost all prime ideals split completely, then L = K.
Exercise 3. Write IK = If x 1,, with If = r[p{ Up, 1. Up. Show that
taking integer powers of ideaes a E If extends by continuity to exponentiation ax
with x E Z.
Exercise 4. Let si, ... , e, E oK be independent units. The images E1, ... , E, in 1/
are then independent units with respect to the exponentiation with elements of 7L,
i.e., any relation

El' Tt`r=1, x;EZ,
implies x; = 0, i = 1, ... , t.
Exercise 5. Let s E oK be totally positive, i.e., s E I' . Extend the exponentiation
Z -. IK, n F-> a' , by continuity to an exponentiation Z x l -* IK = I' x I.,
a H sz, in such a way that Ot(s'') = 1.
Exercise 6. Let pi, ..., p,, be the complex primes of K. For Y E R, let My) be
the idele having component e2-'Y at Pk, and components 1 at all other places. Let
e1, ... , s, be a 7L-basis of the group of totally positive units of K.
(i) The ideaes of the form

a = e ). I ... d11(Yl) s (Ys) , X, E 7L x R, y, E l[8 ,
form a group, and have absolute norm OZ(a) = 1.
(ii) a is a principal ideal if and only if A; E Z C 7L x R and y, E Z C R.
Exercise 7. Sending

(AI, ...,A,,Y1, ...,ys) H Ell ...el'0l(Y1)...0,(Ys)
defines a continuous homomorphism

f: (7Lx1R)'xl[ls-tCK
into the group CKO = ([a] e CK I Tt([a]) = 1), with kernel V x V.
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368 Chapter VI. Global Class Field Theory

Exercise 8. (i) The image DK of f is compact, connected and arbitrarily divisible.
(ii) f yields a topological isomorphism

f : ((7G x 1[1)/76)' x (R/Z)S DK .

Exercise 9. The group DK is the intersection of all closed subgroups of finite index
in CK, and it is the connected component of I in CK.
Exercise 10. The connected component DK of 1 in the idele class group CK is the
direct product of t copies of the "solenoid" (2 x R)/Z, s circles R/Z, and a real
line.

Exercise 11. Every ideal class of the ray class group C1K can be represented by an
integral ideal which is prime to an arbitrary fixed ideal.
Exercise 12. Let o = OK. Every class in (o/m)* can be represented by a totally
positive number in o which is prime to an arbitrary fixed ideal.
Exercise 13. For every module m, one has an exact sequence

I --> 0+* /0+ --> (o/m)' - C1K C11 -+ 1,
where o+, resp. o+, is the group of totally positive units of o, resp. of totally
positive units - 1 mod m.

Exercise 14. Compute the kernels of C1K - C/K and ClK ---> CI, for m`jm.

§ 2. Ideles in Field Extensions

We shall now study the behaviour of ideles and idele classes when we
pass from a field K to an extension L. So let L I K be a finite extension of
algebraic number fields. We embed the idele group IK of K into the idele
group IL of L by sending an idele a = (up) E IK to the idele a' = (a') E IL
whose components a' are given by

a' = ap EKp CL* for 13Ip.

In this way we obtain an injective homomorphism

IK -) IL,
which will always be tacitly used to consider IK as a subgroup of IL. An
element a = (aq3) E IL therefore belongs to the group IK if and only if its
components aq belong to Kp (j3lp), and if one has furthermore ap = api
whenever 93 and 93' lie above the same place p of K.

Every isomorphism o : L o L induces an isomorphism

a:IL >IaL
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like this. For each place 3 of L, a induces an isomorphism

or :LT -*(6L)QT.
For if we have a = T-lim aj, for some sequence a; E L, then the sequence
vat e oiL converges with respect to I,T in (oL)vp, and the isomorphism
is given by

a = 3-lim al I-+ va = cr 3-lim o'a;.
For an idele a E IL, we then define o'a E IL to be the idele with components

(oa)o = o-ap E (QL),T.
If L I K is a Galois extension with Galois group G = G (L I K) , then
every a E G yields an automorphism or : IL - IL, i.e., IL is turned into an
G -module. As to the fixed module IL _ (a E IL I au = a for all a EG),
we have the

(2.1) Proposition. If L I K is a Galois extension with Galois group G, then

ILG =IK.

Proof: Let a E IK C IL. For o' E G, the induced map a : LT -* LQT is a
Kp-isomorphism, if 93Ip. Therefore

(aa)ap = as .T = a'p =.aQp,
so that as = a, and therefore Of E 1LG. If conversely a = (a,) E IL , then

(aa)'T =
a E G. In particular, if or belongs to the decomposition group

Gqj = G(Lq3lKp), then aq3 = 93 and aap = ap so that ap E K. If a- E G
is arbitrary, then or : LT -* L,T induces the identity on Kp, and we get
aT = vat = aQp for any two places 3 and o r93 above p. This shows that
a EIK.

The idele group IL is the unit group of the ring of adeles AL of L. It is
convenient to write this ring as

AL = II Lp,
p

where
Lp = fl LT-

Tip
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The restricted product IIpLp consists of all families (ail) of elements Up E Lp
such that Up E Cep = fIp CST for almost all p. Via the diagonal embedding

Kp -->Lp,
the factor Lp is a commutative Kr-algebra of degree E,,Ip[LT : Kp] _
[L : K]. These embeddings yield the embedding

AK AL,

whose restriction
IK=A A,=IL

turns out to be the inclusion considered above.

Every up e Lp defines an automorphism

up : Lp Lp, X ) Upx,

of the Kp-vector space L and as in the case of a field extension, we define
the norm of at,, by

NL,IKp (ail) = det(ail) .

In this way we obtain a homomorphism

NLPIKP Lp -* K*
It induces a norm homomorphism

NLIK:IL -kIK
between the idele groups IL = IIpL* and IK = L[K*. Explicitly the norm
of an idele is given by the following proposition.

(2.2) Proposition. If L I K is a finite extension and a = (aT) E IL, the local
components of the idele NLIK(a) are given by

NLIK(a)p = fl11 NL,IKp(a,,).
TI p

Proof: Putting up = (acp)pIp E Lp, the Kp-automorphism Up : Lp Lp is
the direct product of the Kp-automorphisms ail : LT Lq3. Therefore

NL,Ixp(ap) = det(ail) _ fl det(ail) _ fl NLTIKp(ap).
TIP Tip

The idele norm enjoys the following properties.
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(2.3) Proposition. (i) For a tower of fields K C L C M we haveNMIK = NLIK o NMIL - -
(ii) If L I K is embedded into the Galois extension MI K and if G = G (M I K )
and H = G(MIL), then one has fora E IL: NLIK(a) = ! aa
(iii) NLIK(a) = a1L:K] fora E IK.

(iv) The norm of the principal idele x E L* is the principal idele of K
defined by the usual norm NLIK (x).

The proofs of (i), (ii), (iii) are literally the same as for the norm in a field
extension (see chap. I, § 2). (iv) follows from the fact that, once we identify
Lp = L ®K Kp (see chap. II, (8.3)), the Kp-automorphism fY : Lp -* Lp,
y H xy, arises from the K -automorphism x : L -+ L by tensoring with K.
Hence det(ff) = det(x).

Remark : For fundamental as well as practical reasons, it is convenient to
adopt a formal point of view for the above considerations which allows us to
avoid the constant back and foiih between ideles and their components. This
point of view is based on identifying the ring of adeles AL of L as

AL = AK ®K L,

which results from the canonical isomorphisms (see chap. H, (8.3))

Kp®KLLp= fLT, ap®ar ) ap,(ra).
TIP

Here rp denotes the canonical embedding rp : L -+ LT.
In this way the inclusion by components IK c IL is simply given by the

embedding AK - AL, a H a ® 1, induced by K c_ L. An isomorphism
L -* oL then yields the isomorphism

or :AL =AK OK L-AK OK aL=AQL
via or (a (& a) = a ® aa, and the norm of an L-idele a E A* is simply
the determinant

NLIK (CO = detAK (a)

of the endomorphism a : AL -* AL which a induces on the finite AK -
algebra AL = AK ®K L.

Here are consequences of the preceding investigations for the idele class
groups.
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(2.4) Proposition. If L I K is a finite extension, then the homomorphism
IK - IL induces an injection of idele class groups

CK -* CL, aK* i aL*.

Proof: The injection IK --f IL clearly maps K* into L*. For the injectivity,
we have to show that IK n L* = K*. Let MIK be a finite Galois extension
with Galois group G containing L. Then we have IK c IL S I", and

IKnL*cIKnM*c(IKnM*)G=IKnM*G=IKnK*=K*.

Via the embedding CK --> CL, the idele class group CK becomes a
subgroup of CL: an element aL* E CL (a E IL) lies in CK if and only if the
class aL* has a representative a' in IK. It is important to know that we have
Galois descent for the idele class group:

(2.5) Proposition. If L I K is a Galois extension and G = G (L I K), then CL
is canonically a G -module and CL = CK.

Proof: The G-module IL contains L* as a G-submodule. Hence every
or r= G induces an automorphism

CL CL, aL* H (aa)L* .

This gives us an exact sequence of G-modulesI)L*ILCL1.
We claim that the sequence

1L*G IL CL 1

deduced from the first is still exact. The injectivity of L*G - ItG is trivial.
The kernel of IL _-_>. CL is IL n L* = IKnL* = K* = L*G. The
surjectivity of IL ___> CL is not altogether straightforward. To prove it, let
aL* E CG L. For every a E G, one then has a(aL*) = aL*, i.e., as = axa
for some xa E L*. This xa is a "crossed homomorphism", i.e., we have

xar =xa Qxr.
Indeed, x ara ara as ra asat= a = Qa ' a =a(.)a =axrxa.ByHIlbert 90 in
Noether's version (see chap. IV, (3.8)) such a crossed homomorphism is of
the form xa = ay/y for some y c L*. Putting a' = ay-1 yields a'L* = aL*
and aa' = aaay-1 = axaay-1 = ay-1 = a', hence a' E I. This proves
surjectivity.
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The norm map NLIK : IL --) IK sends principal ideles to principal ideaes
by (2.3). Hence we get a norm map also for the id6le class group CL,

NLIK : CL -* CK .

It enjoys the same properties (2.3), (i), (ii), (iii), as the norm map on the
idele group.

Exercise 1. Let co1, ... , m be a basis of L I K. Then the isomorphism
L (&K Kp = n lp L induces, for almost all prime ideals p of K, an isomorphism

...ED flop, 1

TIP
where op, resp. Op, is the valuation ring of K, resp. L p
Exercise 2. Let L I K be a finite extension. The absolute norm 91 of ideles of K,
resp. L, behaves as follows under the inclusion iLIK : IK -* IL, resp. under the
norm NLIK:IL -+ IK:

O1(iLJK(a)) ='Rt(a)EL:Kl for a E IK,
'71(NLIK (a)) _ 01(a) for a E IL .

Exercise 3. The correspondence between ideles and ideals, a (a), satisfies the
following rule, in the case of a Galois extension L ( K,

(NLIK(a)) = NLIK(((X)).
(For the norm on ideals, see chap. III, § 1.) .

Exercise 4. The ideal class group, unlike the id6le class group, does not have
Galois descent. More precisely, for a Galois extension L I K , the homomorphism
CIK c1L(LIK° is in general neither injective nor surjective.

Exercise 5. Define the trace TrLIK : AL ---* AK by TrLIK(a) = trace of the
endomorphism x r-p ax of the AK -algebra AL, and show:
(i) TrLIK(a)p = Y_ TIP TrL.IKp(as.)
(ii) For a tower of fields K C L C M, one has TrMIK = TrLIK 0TrMIL
(iii) If L I K is embedded into the Galois extension M I K, and if G = G (M I K) and
H = G(MIL), then one has for a E AL, TrLIK(a) = F,eG/x aa.
(iv) TrLIK(a) = [L : K]a for a E AK.
(v) The trace of a principal adele x E L is the principal adele in AK defined by the
usual trace TrLIK(x).

§ 3. The Herbrand Quotient of the Idele Class Group

Our goal now is to show that the id6le class group satisfies the class
field axiom of chap. IV, (6.1). To do this we will first compute its Herbrand
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quotient. It is constituted on the one hand by the Herbrand quotient of the
idele group, and by that of the unit group on the other. We study the idele
group first.

Let L I K be a finite Galois extension with Galois group G. The G -module
IL may be described in the following simple manner, which immediately
reduces us to local fields. For every place p of K we put

Lp=nL* and UL,p=fJUc.
TIP `SIP

Since the automorphisms a E G permute the places of L above p, the
groups LP and UL,p are G -modules, and we have for the G -module IL the
decomposition

IL = IIL*
p

where the restricted product is taken with respect to the subgroups UL, p c L.
Choose a place 93 of L above p, and let GT = G(LtpIKp) c G be
its decomposition group. As o- varies over a system of representatives of
G/Gp, a93 runs through the various places of L above p, and we get

Lp = FILQ = fla(L*), UL,p = FjUa' = f a(UU).
a a a

In terms of the notion of induced module introduced in chap. IV, § 7, we thus
get the following

(3.1) Proposition. L and UL, p are the induced G -modules

LP =IndGW(L ), UL,p =IndGT (Uq3).

Now let S be a finite set of places of K containing the infinite places. We
then define IS = IL , where S denotes the set of all places of L which lie
above the places of S. For IL we have theer77G-module decomposition

IG= 11 Lpx 11UL,p,
pES p¢S

and (3.1) gives the

(3.2) Proposition. If L I K is a cyclic extension, and if S contains all primes
ramified in L, then we have for i = 0, - 1 that

H' (G, Is) = ® H' (Go, L*) and H' (G, IL) = ®H (GT, L
peS P

where for each p, q3 is a chosen prime of L above p.
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Proof: The decomposition IL = (®pES Ly) ® V, V = l ip¢S UL, p, gives us
an isomorphism

H`(G, Is _ ®H`(G,Lp) ® H'(G,V),
PES

and an injection H' (G, V) -* flpos H' (G, UL, p). By (3.1) and chap. IV,
(7.4), we have the isomorphisms H' (G, Lp)- = H' (GT, L*) and
H' (G, UL, p) = H' (GT, UT). For p S, L tp I Kp is unramified. Hence
H'(GT, UT) = 1, by chap. V, (1.2). This shows the first claim of the
proposition. The second is an immediate consequence:
H` (G, IL) = lily H (G, IL) = H` (GT, L*) ®H` (GT, L*).

S S pES P

The proposition says that one has H-'(Q, IL) = [I), because H-1 (GT, L*
1) by Hilbert 90. Further it says that

IKINLIKIL = ®KpINLTIK,L 93,
p

where q3 is a chosen place above p. In other words:
An idele a E IK is a norm of an idele of L if and only if it is a norm

locally everywhere, i.e., if every component ap is the norm of an element
of

93*

As for the Herbrand quotient h(G, IL) we obtain the result:

(3.3) Proposition. If L I K is a cyclic extension and if S contains all ramified
primes, then

h(G,IL) = rj np,

where np = [LT : Kr].
peS

Proof: We have H(G, IL) = fpES H-1(Gq3, L*) = 1 and

H°(G, IL) = fl H°(Ge , L*).
PES

By local class field theory, we find #H°(Gp, L*) _ (Kp
= np. Hence

: s)

h(G,IL) = #H°(G,IL) _ F1 np. El
#H-1(G, IL) pES

Next we determine the Herbrand quotient of the G -module LS = L n IL.
For this we need the following general
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(3.4) Lemma. Let V be an s -dimensional R -vector space, and let G be a
finite group of automorphisms of V which operates as a permutation group
on the elements of a basis v1, ..., u5: avi = vo(i).

If F is a G-invariant complete lattice in V, i.e., aT C I' for all a, then
there exists a complete sublattice in F,

F,=Zw1+ ...+ZwS,
such that awi = W ( 1 ) for all a E G.

Proof: Let I I be the sup-norm with respect to the coordinates of the basis
v1, ... , vs. Since P is a lattice, there exists a number b such that for every
x E V, there is a y E F satisfying

Ix - yl < b.
Choose a large positive number t c IR, and a y E F such that

Itvl - y I < b,
and define wi= F ay, i=1,...,s,

or (1)=i

i.e., the summation is over all or E G such that a(1) = i. For every r E G
we then have twi = ray = py = wr(i) .

Q(1)=i p(1)=r(i)
It is therefore enough to check the linear independence of the wi. To do this,
let s

ci wi = 0, R .
i=1

If not all of the ci = 0, then we may assume I ci I < 1 and c j = 1 for some j.
Let

y = tv1 - y,
for some vector y of absolute value I y I < b. Then

wi = E ay = t E v,(1) - yi = tni vi - yi,
o(1)=i u(1)=i

where Iyi I < gb, for g = #G, and ni = #{a E G I a(l) = i}. We
therefore get

with IzI < sgb, i.e.,

s s

0 = ci wi = t ci ni vi - z,
i=L i=1

z = tnjvj + E tcinivi.
i0i

If t was chosen sufficiently large, then z cannot be written in this way. This
contradiction proves the lemma.
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Now let L I K be a cyclic extension of degree n with Galois group
G = G(LIK), let S be a finite set of places containing the infinite places,
and let S be the set of places of L that lie above the places of S. We denote
the group LS of S-units simply by LS.

(3.5) Proposition. The Herbrand quotient of the G -module LS satisfies

h(G,LS) = 1 f np,
n pES

where np = [LT : Kp}.

Proof: Let {ep I '43 E 9)f be the standard basis of the vector space
V = f ?Es R. By (1.1), the homomorphism

X:LS V, A(a)= F loglaI 3ep,
g3ES

has kernel A(L) and its image is an (s - 1) -dimensional lattice, s = #S. We
make G operate on V via

0eT = eaT.
Then A is a G-homomorphism because we have, for a E G, -.

A(aa) log Iaalpep _ slog IaIQ_ipaeQ-ip

= v(Elog IaIQ_iTe,-LT) = aA(a).

Therefore eo = F ES e p and X(LS) generate a G invariant complete
lattice 1' in V. Since 7Le0 is G-isomorphic to 7L, the exact sequence

0 -* 7Ze0 - P -) 1 /7Leo -* 0,
together with the fact that F/7Leo = A(LS), yields the identities

h(G, LS) = h(G,A(LS)) =
h(G,7L)-3h(G,F) = 1 h(G, F).

n
We now choose in F a sublattice r', in accordance with lemma (3.4). Then
we have

F'=®Zwq =®ED 7Lwp=®rp
T pES`-pip pES

and aw p = wok. This identifies F as the induced G-module

rp = ®Zwq3 = ® a(7Lweo) = IndG°(7Lwpo),
TIP vEGIGp
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where 93o is a chosen place above p, and Gp is its decomposition group. The
lattice T' has the same rank as F, so is therefore of finite index in F. From
chap. IV, (7.4), we conclude that

h(G, Ls)
1= h(G,1') = 1

fl h(G, r,') = fl
h(Gp, Zwcpo)

n n n pPCs

= 1 11 h(Gp,Z).
n

Thus we do find that h(G, LS) = 1 r1pes no, where np = #Gp = [LT : Kp].

From the Herbrand quotient of IL and LS we immediately get the
Herbrand quotient of the idele class group CL. To do it choose a finite set of
places S containing all infinite ones and all primes ramified in L, such that
IL = ILL*. Such a set exists by (1.4). From the exact sequence

1-BLS-kIL ILL- IL I

arises the identity

h(G, CL) = h(G, IL)h(G, LS)-I ,
and from (3.3) and (3.5) we obtain the

(3.6) Theorem. If L I K is a cyclic extension of degree n with Galois group
G = G(LIK), then

_ #H°(G,CL)
h(G,CL) = #H_1(G,CL) = n.

In particular (CK : NLIKCL) > n.

From this result we deduce the following interesting consequence.

(3.7) Corollary. If L I K is cyclic of prime power degree n = p" (v > 0),
then there are infinitely many places of K which do not split in L.

Proof : Assume that the set S of nonsplit primes were finite. Let M I K be the
subextension of L I K of degree p. For every p 0 S, the decomposition group
GofLIKisdifferentfrom G(LIK).Hence Gp g G (L I M). Therefore every
p S splits completely in M. We deduce from this that NMIKCM = CK,
thus contradicting (3.6).
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Indeed, let a E IK . By the approximation theorem of chap. II, (3.4),
there exists an a E K* such that apa-t is contained in the open subgroup
NM,PIKPM', for all p E S. If P S, then apa-t is automatically contained
in NMs,IK,M* because MT = Kp. Since

IKINMIKIM = ® KpINM,IK,M.
p

the ideae as-1 is a norm of some idele fi of IM, i.e., a = (NMIK f )a E
NMIKIMK*. This shows that the class of a belongs to NMIKCM, so that
CK = NMIKCM. -

(3.8) Corollary. Let L IK be a finite extension of algebraic number fields.
If almost all primes of K split completely in L, then L = K.

Proof : We may assume without loss of generality that L I K is Galois. In
fact, let M I K be the normal closure of L I K, and write G = G (M I K) and
H = G(MIL). Also let p be a place of K, T a place of M above p, and
let GT be its decomposition group. Then the number of places of L above p
equals the number#H\G/Gtp of double cosets HaG I in G (see chap. I, §9).
Hence p splits completely in L if #H\G/Gp = [L : K] = #H\G. But this
is tantamount to GT = 1, and hence to the fact that p splits completely in M.

So assume L I K is Galois, L ; K, and let a E G (L I K) be an element
of prime order, with fixed field K'. If almost all primes p of K were
completely split in L, then the same would hold for the primes p' of K. This
contradicts (3.7).

Exercise 1. If the Galois extension L I K is not cyclic, then there are at most finitely
many primes of K which do not split in L.

Exercise 2. If L I K is a finite Galois extension, then the Galois group G (L I K) is
generated by the Frobenius automorphisms V of all prime ideals 1 of L which are
unramified over K.

Exercise 3. Let L I K be a finite abelian extension, and let D be a subgroup of IK
such that K*D is dense in IK and D C NLIKL*. Then L = K.

Exercise 4. Let L i , ... , Lr 1 K be cyclic extensions of prime degree p such that
L; fl Lj = K for i 0 j. Then there are infinitely many primes p of K which split
completely in L; , for i > 1, but which are nonsplit in L I.
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§ 4. The Class Field Axiom

Having determined the Herbrand quotient h(G, CL) to be the degree
n = [L : K] of the cyclic extension LIK, it will now be enough to show
either H-t(G,CL) = 1 or H°(G,CL) = (CK : NLIKCL) = n. The first
identity is curiously inaccessible by way of direct attack. We are thus stuck
with the second. We will reduce the problem to the case of a Kummer
extension. For such an extension the norm group NLIKCL can be written
down explicitly, and this allows us to compute the index (CK : NLIKCL).

So let K be a number field that contains the n-th roots of unity, where n
is a fixed prime power, and let L I K be a Galois extension with a Galois
group of the form

G(LIK) = (Z/nZ)'
We choose a finite set of places S containing the ramified places, those that
divide n, and the infinite ones, and which is such that IK = I S K*. We write
again KS = IK n K* for the group of S-units, and we put s = #S.

(4.1) Proposition. One has s > r, and there exists a set T of s - r primes
of K that do not belong to S such that

where 4 is the kernel of the map KS 1 1peT Kp/K**nk

Proof: We show first that L = K if 4 = L*`: n KS, and then that 4 is
the said kernel. By chap. IV, (3.6), we certainly have that L = K with
D = L*n nK. If x E D, then KO (/) I Kp is unramified for all p ¢ S because
S contains the places ramified in L. By chap. V, (3.3), we may therefore
write x = upyp, with up E Up, yp E K. Putting yp = 1 for p E S, we get
an idele y = (yp) which can be written as a product y = az with a e IK,
z E K*. Then xz_n = upap E Up for all p ¢ S, i.e., xz_n E IK n K* = KS,
so that xz-n E A. This shows that D = 4K*n, and thus L = K(Z).

The field N = K (n KS) contains the field L because 4 = L*n n KS c_
KS. By Kummer theory, chap. IV, (3.6), we have

G(NIK) = Hom(KS/(KS)n,Z/nZ) .

By (1.1), KS is the product of a free group of rank s - 1 and of the
cyclic group µ(K) whose order is divisible by n. Therefore KS/(Ks)n
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is a free (Z/nZ)-module of rank s, and so is G(NIK). Moreover,
G(N I K)/G(N I L) - G(L I K) - (Z/nZ)" is a free (Z/nZ)-module of
rank r so that r < s, and G(N IL) is a free (7G/nZ)-module of rank s -r. Let
0 i, be a Z/nZ-basis of G(N I L), and let Ni be the fixed field of 6i,
i = 1, ..., s - r. Then L = nsi-i Ni. For every i = 1, ..., s - r we choose
a prime ¶3i of Ni which is nonsplit in N such that the primes p 1, ... , p,s _r
of K lying below X31, ... ,93, -,- are all distinct, and do not belong to S. This
is possible by (3.7). W e now show that the set T = ( p i,. . . ,ps_r) realizes
the group A = L*n fl Ks as the kernel of Ks -- 1 lpeT K;/Kpn.

Ni is the decomposition field of N 1K at the unique prime q3 above
Ti, for i = 1, ... , s - r. Indeed, this decomposition field Zi is contained
in Ni because 'li is nonsplit in N:- On the other hand, the prime pi
is unramified in N, because by chap. V, (3.3), it is unramified in every
extension K (n u_), u E K S. The decomposition group G (N I Zi) Q G (N I Ni )
is therefore cyclic, and necessarily of order n since each element of G (N I K)
has order dividing n. This shows that Ni = Zi. -

From L= fi_" Ni it follows that L I K is the maximal subextension of
N I K in which the primes p l, ... , ps_,- split completely. For X E Ks we
therefore have

XEAK( )cL Kp;(f/x)=Kp, i=1,...,s-r,
XEKpjt, i=1,...,s-r.

This shows that A is the kernel of the map Ks fl;_ Kit/Kp*n 11

(4.2) Theorem. Let T be a set of places as in (4.1), and let

CK(S,T) = IK(S,T)K*/K*,

where
I K (S, T) = fl Kp'1 x F1 Kp x fi Up.

pCS peT p¢SUT

Then one has

NLIKCL ? CK(S,T) and (CK : CK(S,T)) _ (L : K].

In particular, if L IK is cyclic, then NLIKCL = CK (S, T).

Remark: It will follow from (5.5) that AI KCL = CK(S,T) also holds in
general.

For the proof of the theorem we need the following
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(4.3) Lemma. IK(S,T) n K* = (KSUT)R

Proof: The inclusion (KSUT)n C- IK(S,T) n K* is trivial. Let y E
IK(S,T) n K*, and M = K(" y). It suffices to show that NMIKCM = CK,
for then (3.6) implies M = K, hence y E K*" n IK(S,T) c (KSUT)n Let
[a] E CK = IKK*/K*, and let a E IK be a representative of the class [a].
The map

KS fl U,/Un

is surjective. For if . denotes its kernel, then obviously K*" n A = (KS)n,
and dK*n/K*n = d/(KS)". From (1.1) and Kummer theory, we therefore
get

s __ #KS/(KS)n nS#(K /d) #d/(KS)" #G(LIK) - n

This is also the order of the product because by chap. II, (5.8), we have
#U pI U = n since p f n. We thus find an element x e KS such that
cep = xup, up E Up, for P E T. The idele a' = ax-1 belongs to the same
class:as a, and we show that a' E NMIKIM. By (3.2), this amounts to
checking that every component a' is a norm from MTIKp. For P E S this
holds because y E K*". Hence we have MT = Kp for p c T since a' = u'
is a n-th power. For p S U T it holds because ap is a unit and MTIK. is
unramified (see chap. V, (3.3)). This is why [a] E NMIKCM, q.e.d.

Proof of theorem (4.2): The identity (CK : CK (S, T)) = [L : K] follows
from the exact sequence

1 - IKUT nK*/IK(S,T)nK* -> jKUTIIK(S,T)
IKUT K*11K (S, T )K* . 1.

Since IKuTK* = IK, the order of the group on the right is
(IKUTK* : IK(S,T)K*) = (IKK*/K* : IK(S,T)K*/K*)

= (CK : CK (S, T)) .

The order of the group on the left is

(IKUT n K* : IK(S,T) n K*) = (KSUT : (KSUT)n) = n2s-r

because #(S U T) = 2s - r, and t c KSUT In view of chap. II, (5.8), the
order of the group in the middle is

2

(IKUT : IK(S,T)) = pfl (Kr : Kin) = pfl n InIp t = n'S.
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Altogether this gives

n2s
(CK : CK (S, T)) = nzs = nr = [L : K] .

We now show the inclusion CK (S, T) c NLIKCL. Let a E IK (S, T).
In order to show that a E NLI K IL all we have to check, by (3.2), is again
that every component ap is a norm from LplKp. For p e S this is true
because ap E K*" is an n-th power, hence a norm from Kp (" p) (see
chap. V, (1.5)), so in particular also from LpIKp. For P E T it holds because
(4.1) gives A C Kp", and thus Lq3 = K. Finally, it holds for p 0 S U T
since ap is a unit and LT I Kp is unramified (see chap. V, (3.3)). We therefore
have IK(S>T) c NLIKIL, i.e., CK(S,T) C NLIKCL.

Now if L IK is cyclic, i.e., if r = 1, then from (3.6),

[L:K]<WK :NLIKCL)<(CK:CK(S,T)) =[L:K],
hence NLIKCL = CK(S,T).

Now that we have an explicit picture in the case of a Kummer field, the
result we want follows also in complete generality:

(4.4) Theorem (Global Class Field Axiom). If L IK is a cyclic extension
of algebraic number fields, then

#H`(G(LIK),CL) [L : K] fori =-0,
1 fori =-1.

Proof: Since h(G(LIK),CL) _ [L : K], it is clearly enough to show that
#H°(G(LIK),CL) I [L : K]. We will prove this by induction on the degree
n = [L : K]. We write for short H°(L IK) instead of H°(G(L IK), CL). Let
M I K be a subextension of prime degree p. We consider the exact sequence

CM/NLIMCL N"'I CK/NLIKCL CK/NMIKCM -- 1,

i.e., the exact sequence

H°(LIM) H°(LIK) --* H°(MIK) 1.

If p < n, then #H°(LIM) I [L : MI, #H°(MIK) I [M : K] by the induction
hypothesis, hence #H°(LIK) I [L : M][M : K] = [L : K].-

Now let p = n. We put K' = K(µp) and L' = L(ip). Since
d = [K' : K] I p - 1, we have G(LIK) = G(L'IK'). L'IK' is a cyclic
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Kummer extension, so by (4.2), #H°(L' I K') = [L' : K'] = p. It therefore
suffices to show that the homomorphism

(*) H°(L I K) H°(L' I K')

induced by the inclusion CL CL is injective. H°(L I K) has expo-
nent p, because for x E CK we always have xP = NLIK (x). Taking
d = [K: K]-th powers on H°(L I K) is therefore an isomorphism. Now
let x = x mod NLIKCL belong to the kernel of (*). We write x = yd,
for some y = y mod NLIKCL. Then y also is in the kernel of (*),
i.e., y = NL'IK'(z'), Z' E CL', and we find:

Yd = NK'IK(Y) = NL'IK(Z') = NLIK(NL'IL(Z')) E NLIKCL.

Hencex=yd=1.

An immediate consequence of the theorem we have just proved is the
famous Hasse Norm Theorem:

(4.5) Corollary. Let L I K be a cyclic extension. An element x E K* is a
norm if and only if it is a norm locally everywhere, i.e., a norm in every
completion LTIK, (gllp).

Proof: Let G = G(L J K) and G = G (LT I K,). The exact sequence

1-*L"-AIL-) CL±1
of G -modules gives, by chap. IV, (7.1), an exact sequence

H-'(G, CL) ) H((G,L*) ) H°(G,IL).
By (4.4), we have H-t(G,CL) = 1, and from (3.2) it follows that
H°(G, IL) _ ®P H°(G p, L*). Therefore the homomorphism

K*INLIKL* K*1NL1,IK,L-
P

is injective. But this is the claim of the corollary.

It should be noted that cyclicity is crucial for Hasse's norm theorem. In
fact, whereas it is true by (3.2) that an element x E K* which is everywhere
locally a norm, is always the norm of some idele a of L, this need not be
by any means a principal idele, not even in the case of arbitrary abelian
extensions.
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Exercise 1. Determine the norm group NLIKCL for an arbitrary Kummer extension
in a way analogous to the case treated in (4.2) where G (L I K) - (7L/ p°7G)T .

Exercise 2. Let c be a primitive m-th root of unity. Show that the norm group
NQ(r)IQCQ equals the ray class group mod m= (m) in CQ.

Exercise 3. An equation x2 - ay2 = b, a, b E K*, has a solution in K if and only if
it is solvable everywhere locally, i.e., in each completion K.

Hint: x2 - ay2 = NK(.,)IK(x -,`y) if a V K*2.

Exercise 4. If a quadratic form aixi + represents zero over a field K with
more than five elements (i.e., atx + 0 has a nontrivial solution in K),
then there is a representation of zero in which all x; # 0. If

Hint: If 0, b # 0, then there are non-zero elements a and such that
aa2 + b82 = A. To prove this, multiply the identity

(t - 1)2 4t
(t+1)2 + (t+1)2 1

by A and insert t = bye/a, for some element y 0 0 such that t ±1. Use
this to prove the claim by induction.

Exercise 5. A quadratic form ax2 + by2 + cz2, a, b, c c K*, represents zero if and
only if it represents zero everywhere locally.
Remark: In complete generality, one has the following "local-to-global principle":

Theorem of Minkowski-Hasse: A quadratic form over a number field K represents
zero if and only if it represents zero over every completion K.

The proof follows from the result stated in exercise 5 by pure algebra (see [113]).

§ 5. The Global Reciprocity Law

Now that we know that the idele class group satisfies the class field axiom,
we proceed to determine a pair of homomorphisms

(GQ-') Z, CQ-v) 2)

obeying the rules of abstract class field theory as developed in chap. IV,
§ 4. For the Z -extension of Q given by d, we have only one choice. It is
described in the following

(5.1) Proposition. Let Q IQ be the field obtained by adjoining all roots of
unity, and let T be the torsion subgroup of G(SQ IK) (i.e., the group of all
elements of finite order). Then the fixed field QIQ of T is a i-extension.
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Proof: Since S2 = U,,,1 Q(µn), we find

G(S2IQ) = G(Q(tn)IQ) = (7G/127L)* _ *.
n n

But 7L = FI, Zp, and ZP = 7L p x 7L/(p - 1)Z for p 2 and
7G2 = Z2 x Z/2Z. Consequently,

G(521Q) = 7L* = 7L x f, where T = fl 7L/(p - 1)Z x 7L/2Z.
P02

This shows that the torsion subgroup T of G(521Q) is isomorphic
to the torsion subgroup of T. Since the latter contains the group
(@p't27L/(p - 1)7L ® 7L/27L, we see that the closure T of T is isomorphic
to T. Now, if is the fixed field of T, this implies that G(41Q)
G(S21Q)/T - 7L.

Another description of the 7L-extension 5IQ is obtained in the following
manner. For every prime number p, let S2p IQ be the field obtained by
adjoining all roots of unity of p-power order. Then

G(SpIQ) = IFm (Z/p°7L)* = Zp
V L)

and Z , 7L1, x 7L/(p - 1)Z for p 54 2 and Z2 = Z2 x 7L/27L. The torsion
subgroup of ZP is isomorphic to 7L/(p - 1)7L, resp. 7L/27Z, and taking its
fixed field gives an extension (P)IQ with Galois group

G(Q(P)IQ) = 7Lp

The 2-extension Q IQ is then the composite Q = j1P Q(P)

We fix anisomorphism G (Q I Q) = Z. There is no canonical choice as in
the case of local fields. However, the reciprocity law will not depend on the
choice. Via G (Q Q) = Z, we obtain a continuous surjective homomorphism

d:GQ -+Z
of the absolute Galois group GQ = G(QIQ). With this we continue as in
chap. IV, § 4, choosing k Q as our base field. If K IQ is a finite extension,
then we put fK = [K fl Q : Q and get a surjective homomorphism

dK= 1d:GK

which defines the Z-extension K = KQ of K. K I K is called the cyclotomic
Z-extension of K. We denote again by coK the element of G (K I K) which is
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mapped to 1 by the isomorphism G(K I K) = Z, and by coLIK the restriction
cPK I L if L I K is a subextension of K 1 K. The automorphism cOL I K must not be
confused with the Frobenius automorphism corresponding to a prime ideal
of L (see § 7).

For the GQ -module A, we choose the union of the idele class groups
CK of all finite extensions K IQ. Thus AK = CK. The henselian valuation
v : CQ -+ i will be obtained as the composite

CQ [ ,O G(&IQ) 2,

where the mapping [ , d IQ] will later turn out to be the norm residue symbol
( , d IQ) of global class field theory (see (5.7)). For the moment we merely
define it as follows.

For an arbitrary finite abelian extension L I K, we define the homomor-
phism

[ LIK] : IK - G(LIK)
by

[a, L I K] = flap, Lp I Kp),
p

where Lp denotes the completion of L with respect to a place P3Ip,. and
(ap, L p I Kp) is the norm residue symbol of local class field theory. Note that
almost all factors in the product are 1 because almost all extensions L p I Kp
are unramified and almost all ap are units.

(5.2) Proposition. If L I K and L' 1 K' are two abelian extensions of finite
algebraic number fields such that K C_ K' and L C L', then we have the
commutative diagram

IK' [ L G(L'IK')

I[ ,LK]) G(LIK).

Proof: For an id6le a = (asp) E IK, of K', we find by chap. IV, (6.4), that

(aT,L' I K') IL, = (NK/IK,(aT),LpIKp) , (1Ip),
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and (2.2) implies

[NK'IK(a),LIK] fl(NK'IK(a)r,LpIKp) = f fl(NK' IK,(ap),LpIKp)
p p TIP

` (aT,L'I K')IL = [a,L'IK']IL.

If L I K is an abelian extension of infinite degree, then we define the
homomorphism

[ LIK] : IK -± G(LIK)
by its restrictions [ , L I K] I L' := [ , L' I K] to the finite subextensions L'
of LIK. In other words, if a E IK, then the elements [a, L' I K] define,
by (5.2), an element of the projective limit l,im G(L'IK), and [a,LIKI is

L'
precisely this element, once we identify G(LIK) = G (L' I K ). Again
one has the equation

[a, LI K] = flap, Lp I Kp) ,
p

where LP does not denote the completion of L with respect to a place
above p, but rather the localization, i.e., the union of the completions
L' IKp of all finite subextensions (see chap. II, § 8). Then LpIKp is Galois,
G (L p I Kp) _c G (LIK), and the product fJp (ap, L p I Kp) converges in the
profinite group to the element [a, L I K]. Indeed, if L' I K varies over the
finite subextensions of LIK, then the sets SL' _ [p I (up, L' IKp) 11 are
all finite, so that we may write down the finite products

011 = fl (ap,LpIKp) E G(LIK).
rESL'

They converge to [a, LIK], for if [a, L I K ] G (L I N) is one of the fundamental
neighbourhoods (i.e., N I K is one of the finite subextensions of L I K), then

UL' E [a,LIK]G(LIN)
for all L' D N because

QL' IN = JJ(ap,NpIKp) = [a,NIK] = [a,LIK] IN
p

This shows that [a, L I K] is the only accumulation point of the family {oaL' ).

It is clear that proposition (5.2) remains true for infinite extensions L
and L' of finite algebraic number fields K and K'.
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(5.3) Proposition. For every root of unity and every principal idele a c K
one has

[a, 1.

Proof: By (5.2), we have Hence
we may assume that K = Q. Likewise we may assume that has prime
power order 2. Now let a E Q*, let vP be the normalized exponential
valuation of Q for p oo and write a = uppvP(). For p ; Z,oo,
Qp I Qp is unramified and (p, Q p I Q p) is the Frobenius automorphism
cop : -a P. From chap. V, (2.4), we thus get

pvP(a) forp # t, oo,
`P with np = up for p = f,

sgn(a) for p = oo.

Hence

where a
P

flnP = sgn(a) 11 PvP(a)ug
i = sgn(a) n puP(a)a-l = 1.

P pol, oo P__
-

Since the extension KIK is contained in the field of all roots of unity
over K, the proposition implies

[a, K I K] = 1

for all a E K*. The homomorphism KIK ] : IK -f G (KIK) therefore
induces a homomorphism

[ ,KIK] :CK -- G(KIK),
and we consider its composite

VK :CK ) Z

with dK : G (KIK) -* Z. The pair (dK, vK) is then a class field theory, for
we have the

(5.4) Proposition. The map vK : CK - 7L is surjective and is a henselian
valuation with respect to dK.
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Proof : We first show surjectivity. If L I K is a finite subextension of k I K,
then the map

[ ,LIK]=fl( ,LVIKV):IK-> G(LIK)
p

is surjective. Indeed,, since (,LpIKp) Kp G(LPIKp) is surjective,
[IK,LIK] contains all decomposition groups G (L p I Kp). Thus all p split
completely in the fixed field M of [IK,LIK]. By (3.8), this implies
that M = K, and so [I K ,LIK ] = G (L K) . This yields furthermore that
UK, KIK] = [CK, KIK] is dense in G(K I K). In the exact sequence

l -±1
(see § 1) the group CK is compact by (1.6), and we obtain a splitting,
if we identify IR+ with the group of positive real numbers in any infinite
completion K. Thus CK = Co x R. Now, [I[8+,KIK] = 1, for if
x E R+, then [x, k I K] I L = [x, L I K] = 1 for every finite subextension
LIK of KIK, because we may always write x = y° with y E R+
and n = [L : K]. Therefore [CK,KIK] = [CK,KIK] is a closed, dense
subgroup of G(KIK) and therefore equal to G(KIK). This proves the
surjectivity of VK = dK o [ , KIK].

In the definition of a henselian valuation given in chap. IV, (4.6), condition
(i) is satisfied because VK (CK) = Z, and condition (ii) follows from (5.2)
because for every finite extension L I K we have the identity

VK(NLIKCL) = VK(NLIKIL) = dK[NLIKIL,KIK]

= .fLIKdL[IL, LI L] = fLIKVL(CL) = .fLIK2.

In view of the fact that the idele class group CK satisfies the class field
axiom, the pair

(dQ:GQ-+Z, vQ:CQ -+ 7L)
constitutes a class field theory, the "global class field theory". The above
homomorphism VK = dK o [ , K I K] : CK for finite extensions K IQ,
satisfies the formula

VK fKdQ0[ QIQ]oNKIQ fKVQoNKIQ

and is therefore precisely the induced homomorphism in the sense of the
abstract theory in chap. IV, (4.7).

As the main result of global class field theory we now obtain the Artin
reciprocity law:
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(5.5) Theorem. For every Galois extension L I K of finite algebraic number
fields we have a canonical isomorphism

rLIK : G(LIK)ab -+ CKINLIKCL

The inverse map of rLIK yields a surjective homomorphism

( , LIK) : CK -+ G(LIK)ab
with kernel NLI KCL. The map ( LIK) is called the global norm residue
symbol. We view it also as a homomorphism IK --* G(L I flab.

For every place p of K, we have on the one hand the embedding
G (L p I Kp) -+ G (L I K), and on the other the canonical injection

which sends ap E K* to the class of the idele
(ap) _(...,1,1,1,ap,1,1,1, ...).

These homomorphisms express the compatibility of local and global class
field theory, as follows.

(5.6) Proposition. If L I K is an abelian extension and p is a place of K,
then the diagram

Kp ( G(LpIKp)

i
CK ( G(LIK)

is commutative.

I

Proof: We first show that the proposition holds if L IK is a subextension of
KIK_, or if L = K(i), i = , and pIoo. Indeed, the two maps [ ,KIK
( , KIK) : IK -3 G(K IK) agree because from chap. IV, (6.5), we have

dK c( ,KIK)=vK =dK0[ ,KIK].
Thus, if L I K is a subextension of k I K and a = (ap) E IK, then

(a, L J K) = [a, L J K] = flap, Lp (Kp) .
p

In particular, for ap E Kp we have the identity

((ap),LIK) = (ap,LpIKp),
which shows that the diagram is commutative when restricted to the finite
subextensions of K IK.



X
2
0

11
4

try
'-n CA

D

c
a
)

R.3

392 Chapter Vl. Global Class Field Theory

On the other hand, let L = K(i), pI oo, and Lp 0 Kp. Then Kp = I[8*,
R+ is the kernel of (, Lp I Kp), and (-1, Lp I Kp) is complex conjugation in
G(LpIKp) = G(CIR). Thus, all we have to show is that ((-1),LIK) 1.
If we had ((-1),LIK) = 1, then the class of (-1) would be the norm of a
class of CL, i.e., (-1)a = NLK(a) for some a E K* and an idele a E IL.
This would mean that a = NLqKq(aq) for q p and -a = NLpI Kp(ap), i.e.,
(a,L41K4) = 1 for q p and (-a,LpIKp) = 1. By (5.3), we would have
1 = [a,LIK] = fJq(a,LqIKq) = (a,LpIKp), so that (-1,LpIKp) = 1, and
therefore -1 E NL,IKp(L'P) = NCIRC* = R+, a contradiction.

We now reduce the general case to these special cases as follows. Let
L' J K' be an abelian extension, so that K C K', L C L. We then consider
the diagram

G(L' I Kp) Kp*/NLpIK' Lp

G(Lp I Kp) Kp INLplKpLp

l
G(L' I K') - CK- /NL, IK, CL,

G(L I K) ' CK/NLJKCL

where L. = KpL, Kp = KOK', L' = KL'. In this diagram, the top and
bottom are commutative by chap. IV, (6.4), and the sides are commutative
for trivial reasons. If now L' 1 K' is one of the special extensions for which
the proposition is already established, then the back diagram is commutative,
and hence also the front one, for all elements of G (LO I Kp) in the image of
G(L' IKp) G(L0IKp). This makes it clear that it is enough to find, for
every a E G (L p I Kp), some special extension L' I K' such that a lies in the
image of G(L' IKp). It is even sufficient to do this only for all U of prime
power order, because they generate the group. Passing to the fixed field of a
we may assume moreover that G (L I K) is generated by a.

When p I oo and L p Kp,i.e.,Kp=11,Lp=C,weputL'=L(i)9U,
and choose for K' the fixed field of the restriction of complex conjugation
to L'. Then L' = K(i) and Kp = R, LP = C, so the mapping
G(L,f K,) _+ G(LOIKp) is surjective.

When p t oo, we find the extension L' I K' as follows. Let a be of p-power
order. We denote by K I K , resp. L L , the Zr -extension contained in K I K ,
resp. L I L, and consider the field diagram
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/LP
/LP

L I

kv

K K

with localizations Kp = KpK, Lp = L,L (all fields are considered to lie in
a common bigger field). We may now lift v E G (L p I Kp) = G (L I K) to an
automorphism 6 of L, such that
(1) & E G(LpIKp),
(2)6IK =cp°KIK for some n EN.

Indeed, since Kp = KpK ; Kp, the group G(KpIKP) 1, and thus is
of finite index if viewed as subgroup of G (K I K) = 7L,,. It is therefore
generated by a natural power i/r = c K IK of Frobenius cp K K E G (K I K) . As

in the proof of chap. IV, (4.4), we may then lift a to a a E G (L p I Kp) such
that alg, =+(rm,m EN,sothat &IK =kVIfIK.

We now take the fixed field K' of a I L, and the extension L' = K'L. As
in chap. IV^(4.5), conditions (ii) and (iii), it then follows that [K' : K] < cx
and K' = L. L' I K' is therefore a subextension of k' I K, and a is the image
of a l L p under G (L' I K) -+ G (L p I Kp). This finishes the proof.

(5.7) Corollary. If L I K is an abelian extension and a = (ap) E IK, then
(a,LIK) = II(ap,LpIKp)

p

In particular, for a principal id6le a E K' we have the product formula
fJ(a,LpIKp) = 1.
p

Proof: Since IK is topologically generated by the ideles of the form
a = (ap) , ap E Kp , it is enough to prove the first formula for these
ideles. But this is exactly the statement of (5.6):

(a,LIK) = ((ap),LIK) = (ap,LIKp) = f(aq,LgIKq).

q

The product formula is a consequence of the fact that (a, L I K) depends only
on the id6le class a mod K".
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Identifying Kp with its image in CK under the map ap I-> (ap), we obtain
the following further corollary, where we use the abbreviations N = NLIK
and NP = NL p I Kp ,

(5.8) Corollary. For every finite abelian extension one has
NCLnK*=NPL;.

Proof: For Xp E NpL we see from (5.6) that ((xp),LIK) = (xp,LpIKp)
= 1. Thus the class of (xp) is contained in NCL. Therefore NpL* C NCL.
Conversely, let ff E NCL n Kp K. Then ii is represented on the one
hand by a norm ideae a = NP, P E IL, and on the other hand
by an idele (Xp), xp E K. This gives (xp)a = NP with a E K*.
Passing to components shows that a is a norm from LglKq for every
q 0 p, and the product formula (5.7) shows that a is also a norm
from LpIKp. Therefore xp E NFL*, and this proves the inclusion
NCL n K* S; NpL*.

Exercise 1. If DK is the connected component of the unit element of CK, and if
K°nIK is the maximal abelian extension of K, then CK/DK = G(K°bIK).
Exercise 2. For every place p of K one has Kpb = K°bK
Hint: Use (5.6) and (5.8).
Exercise 3. Let p be a prime number, and let MP I K be the maximal abelian p-
extension unramified outside of (p I p). Further, let H I K be the maximal unramified
subextension of Mp I K in which the infinite places split completely. Then there is an
exact sequence

1 - G(MpIH) -* G(MIK) -3 CIK(p) -+ 1,
where C1K(p) is the p-Sylow subgroup of the ideal class group CIK, and there is a
canonical isomorphism

GIMP I H) - rI Uptt/(II Up't n f),
PIP PIP

where k is the closure of the (diagonally embedded) unit group E = oK in fPIP Up.

Exercise 4. The group f (p) := E fl H PIP Up1t is a Zp -module of rank
rp (E) := rankzp (9(p)) = [K : Q] - rankZP G (Mp I K). rp (E) is called the p-adic
unit rank.
Problem: For the p-adic unit rank, one has the famous Leopoldt conjecture:

rp(E)=r+s-1,
where r, resp. s, is the number of all real, resp. complex, places; in other words,

rankz G(MpIK) = s + 1.
The Leopoldt conjecture was proved for abelian number fields K IQ by the American
mathematician ARMAND BRUMER [22]. The general case is still open to date.
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As in local class field theory, the reciprocity law provides also in global
class field theory a complete classification of all abelian extensions of a finite
algebraic number field K. For this it is necessary to view the idele class
group CK as a topological group, equipped with its natural topology which
the valuations of the various completions Kp impress upon it (see § 1).

(6.1) Theorem. The map

L h-± NL = NLIKCL '

is a 1-1-correspondence between the finite abelian extensions L I K and the
closed subgroups of finite index in CK. Moreover one has:

LI C L2 (AML, _ML2, ML1L2 =ML, nNL2, NL,nL2 =NL,NL2.
The field L I K corresponding to the subgroup Al of CK is called the class
field of Al. It satisfies

G(LIK) = CK/M.

Proof: By chap. IV, (6.7), all we have to show is that the subgroups N of CK
which are open in the norm topology are precisely the closed subgroups of
finite index for the natural topology.

If the subgroup Al is open in the norm topology, then it contains a
norm group NLIKCL and is therefore of finite index, because from (5.5),
(CK : NLI KCL) = #G(LIK)ab. To show that Al is closed it is enough to
show that NL IK CL is. For this, we choose an infinite place p of K and
denote by I'K the image of the subgroup of positive real numbers in K.
under the mapping K* CK. Then I'K is a group of representatives
for the homomorphism fl : CK -+ R with kernel CK (see § 1), i.e.,
CK = CK x I'K. By the same token, 1'K is a group of representatives for the
homomorphism IR : CL R. We therefore get

NLIKCL = NLIKCL X NLIKFK = NLIKCL x fK = NLIKCL X TK.

The norm map is continuous, and CL is compact by (1.6). Hence NLIKCL is
closed. Since FK is clearly also closed in CK, we get that NLIKCL is closed.

Conversely let Al be a closed subgroup of CK of finite index. We have
to show that Al is open in the norm topology, i.e., contains a norm group
NL I K CL . For this we may assume that the index n is a prime power. For if
n = p pr' , and N c CK is the group containing Al of index p°' , then
Al = M, and if the .N are open in the norm topology, then so is M.
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Now let J be the preimage of N with respect to the projection IK - CK.
Then J is open in IK because N is open in CK (with respect to the natural
topology). Therefore J contains a group

UK=11{1}x 11 Up,
pES pS

where S is a sufficiently big finite set of places of K containing the
infinite ones and those primes that divide n, such that IK = IKK*. Since
(IK : J) = n, J also contains the group HpEs Kp" x fl (1), and hence
the group

IK (S) = rj Kp'2 x fl Up.
pES p¢S

Thus it is enough to show that CK (S) = IK (S)K*/K* C N contains a norm
group. If the n-th roots of unity belong to K, then CK(S) = NLIKCL With
L = K(R KS ), because of the remark following (4.2). If they do not belong
to K, then we adjoin them and obtain an extension K'IK. Let S' be the set
of primes of K' lying above primes in S. If S was chosen sufficiently large,
then, IK' = IK'K'* and CK'(S') = NL'IK'CL', with L' = K'(/k), by
the above argument. Using chap. V, (1.5), this gives on the other hand that
NK'IK (IK' (S')) c IK (S), so that

NL'IKCL' = NK'IK(NLIIK'CL,) = NK'JK(CK'(S')) C CK(S).

This finishes the proof.

The above theorem is called the "existence theorem" of global class field
theory because its main assertion is the existence, for any given closed
subgroup N of finite index in CK, of an abelian extension L I K such that
NLIKCL = N. This extension L is the class field for N. The existence
theorem gives a clear overview of all the abelian extensions of K once we
bring in the congruence subgroups CK of CK corresponding to the modules
m = fl, p";, (see (1.7)). They are closed of finite index by (1.8), and they
prompt the following definition.

(6.2) Definition. The class field KtIK for the congruence subgroup CK is
called the ray class field mod m.

The Galois group of the ray class field is canonically isomorphic to the
ray class group mod m:

G(K'IK) = CK/Cg.
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One has
mom Km C Km

because clearly CK 2 Cr'. Since the closed subgroups of finite index in CK
are by (1.8) precisely those subgroups containing a congruence subgroup
CK , we get from (6.1) the

(6.3) Corollary. Every finite abelian extension L I K is contained in a ray
class field KmIK.

(6.4) Definition. Let L K be a finite abelian extension, and let NL =
NL K CL. The conductor f of L I K (or of AlL) is the gcd of all modules m
such that L C Km (i.e., CK C NL).

K f I K is therefore the smallest ray class field containing L I K. But it is
not true in general that m is the conductor of KmIK. In chap. V, (1.6), we
defined the conductor f p of a p -adic extension L 0 I Kp for a finite place p, to
be the smallest power fp = p" such that UK _C NLPIKPL*. For an infinite
place p we define f p = 1. Then we view f as the replete ideal f fl , p° and
obtain the

(6.5) Proposition. If f is the conductor-of-the abelian extension L I K, and f p
is the conductor of the local extension L p I Kp, then

f = JIfp.
p

Proof: Let Al = NLIKCL, and let m = fp p"P be a module (np = 0
for p oo). One then has

and forallp.
p

So to prove f = r[p fp, we have to show the equivalence

CK forallp.
It follows from the identity Al fl Kp = NL* (see (5.8)):

CM CJVI(aEIK ii EJV) for of ElK
(up-1modp'P=(ap)ENfKp=NpL*) forallp
(up E Up(RP) = ap E NpLp) Up00 C NpLp fplpn°.
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398 Chapter VI. Global Class Field Theory

By chap. V, (1.7), the local extension LpIKp, for a finite prime p, is
ramified if and only if its conductor f p is 54 1. This continues to hold also for
an infinite place p, provided we call the extension L0IKp unramified in this
case, as we did in chap. M. Then (6.5) yields the

(6.6) Corollary. Let L IK be a finite abelian extension and f its conductor.
Then:

p is ramified in L P I f

In the case of the base field Q, the ray class fields are nothing but the
familiar cyclotomic fields :

(6.7) Proposition. Let m be a natural number and m = W. Then the ray
class field mod m of Q is the field

Qm = Q(Am)
of m-th roots of unity.

Proof: Let m = FjpgPoo p"p. Then 16 = HPMAPoo
Upnp) x R+. Let

np)m = m' p' P . Then UJ is certainly contained in the norm group
of the unramified extension Qp (µ,,,,) I Q p, but also in the norm group
of Qp(Iip,,p)IQp, according to chap. V, (1.8). This means, by §3, that every
id6le in I is a norm of some idele of Q(µm). Thus C' C NCQ(N,,, ). On the
other hand, CQ/C = (Z/mZ)* by (1.10), and therefore

(CQ : Cn) (CQ : NCQ(un,)) ,

so that C' = NCQ(N,m), and this proves the claim. D
J

According to this proposition, one may view the general ray class fields
KmIK as analogues of the cyclotomic fields Q(µ,,,)IQ. Nonetheless, they
are not made to take over the important role of the latter because all we know
about them is that they exist, but not how to generate them. In the case of
local fields things were different. There the analogues of the ray class fields
were the Lubin-Tate extensions which could be generated by the division
points of formal groups - a fact that carries a long way (see chap. V, § 5).
This local discovery does, however, originate from the problem of generating
global class fields, which will be discussed at the end of this section.

Note in passing that the above proposition gives another proof of the
theorem of Kronecker and Weber (see chap. V, (1.10)) to the effect that
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every finite abelian extension L I Q is contained in a field 0 (µ,,,) I Q, because
by (1.8) the norm group NLIQCL lies in some congruence subgroup CQ,
m = (m), so that L C Q(µm).

Among all abelian extensions of K, the ray class field mod 1 occupies a
special place. It is called the big Hilbert class field and has Galois group

.G(K'IK) - Cl'
By (1.11), the group C11 is linked to the ordinary ideal class group by the
exact sequence

R*/R* - CIK - CIK 1.
p real

The big Hilbert class field has conductor 1 and may therefore be
characterized by (6.6) in the following way.

(6.8) Proposition. The big HiIbert class field is the maximal unramified
abelian extension of K.

Since the infinite places are always unramified, this means that all prime
ideals are unramified. The Hilbert class field, or more precisely, the "small
Hilbert class field", is defined to be the maximal unramified abelian extension
H I K in which all infinite places split completely, i.e., the real places stay real.
It satisfies the

(6.9) Proposition. The Galois group of the small Hilbert class field H I K is
canonically isomorphic to the ideal class group:

G(HIK) CIK .

In particular, the degree [H : K] is the class number hK of K.

Proof: We consider the big Hilbert class field K 11 K and, for every infinite
place p, the commutative diagram (see (5.6))

* ,K''IK,) 'Kp > G(KIpIK

IK/1KK*( G(K11K).
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The small Hilbert class field HIK is the fixed field of the subgroup G,
generated by all G (K' I Kp) , p I oo. Under (, K t I K) this is the image of

fl Kp) I' K*/Ij K* = IK K*/IKK*,
plc

where Is' = j-jpl. Kp x Flpl Up. Therefore by (1.3),

G(H I K) = G(K' I K)/G, = 1K/IK°°K* = ClK . El

Remark: The small Hilbert class field is in general not a ray class field
in terms of the theory developed here. But it is in many other textbooks
where ray class groups and ray class fields are defined differently (see for
instance [1071). This other theory is obtained by equipping all number fields
with the Minkowski metric

(x,Y)K=>2a,XVYr (tEHom(K,C)),

ar = 1 if t = i, a, = i if r T. A ray class group can then be attached
to any replete module

m=flpnv ,

p

where n V Z, n > 0, and n 0 or = 1 if oo. The U(' attachedp p- , p= pI groups p
to the metrized number field (K, ( , )K) are defined by

1+p11p, for np>0,and Up for np=0,if pfoo,
U(nv) R*, if p is real and np = 0,

p - ][8+, ifpisreal andnp=1,
C* = Kp , if p is complex.

The congruence subgroup mod m of (K, (, ) K) is then the subgroup
CK = IKK*/K* of CK formed with the group

IK=Iju(nc)
p

p

and the factor group CK/CK is the ray class group mod in. The ray class
field mod m of (K, ( , )K) is again the class field of K corresponding to
the group CK C CK. As explained in chap. III, § 3, the infinite places p have
to be considered as ramified in an extension L IK if Lp ; K. Likewise,
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§ 6. Global Class Fields 401

the conductor of an abelian extension L I K, i.e., the gcd of all modules
m = fIp p"P such that CK C NLIKCL, is the replete ideal

f=fIfp,
p

where now for an infinite place p, we have fp = pnP with np = 0 if Lp = Kp,
and np = 1 if Lp Kp. Corollary (6.6) then continues to hold: a place p is
ramified in L if and only if p occurs in the conductor f.

This entails the following modifications of the above theory, as far as ray
class fields are concerned. The ray class field mod 1 is the small Hilbert
class field. It is now the maximal abelian extension of K which is unramified
at all places. The big Hilbert class field is the ray class field for the module
m = ]-[p,,. p. In the case of the base field Q, the field of m-th roots
of unity is the ray class field mod mpg, where p,,, is the infinite place. The
ray class field for the module m becomes the maximal real subextension
Q( + -1), which was not a ray class field before. This is the theory one
finds in the textbooks alluded to above. It corresponds to the number fields
with the Minkowskimetric. The theory of ray class fields according to the
treatment of this book is forced upon us already by the choice of the standard
metric (x, y) xTy r on KR taken in chap. I, § 5. It is compatible with the
Riemann-Roch theory of chap. III, and has the advantage of being simpler.

Over the field Q, the ray class field mod (m) can be generated, according
to (6.7), by the m-th roots of unity, i.e., by special values of the exponential
function e2"`Z. The question suggested by this observation is whether one
may construct the abelian extensions of an arbitrary number field in a
similarly concrete way, via special values of analytic functions. This was
the historic origin of the notion of class field. A completely satisfactory
answer to this question has been given only in the case of an imaginary
quadratic field K. The results for this case are subsumed under the name
of Kronecker's Jugendtraum (Kronecker's dream of his youth). We will
briefly describe them here. For the proofs, which presuppose an in-depth
knowledge of the theory of elliptic curves, we have to refer to [96] and [28].

An elliptic curve is given as the quotient E = C/P of C by a complete
lattice F = Zw1 + 7Gur, in C. This is a torus which receives the structure of
an algebraic curve via the Weierstrass p-function

P W = bar (z) = - + wE L (z i cot ]'
where F' = F -, {0}. p (z) is a meromorphic doubly periodic function, i.e.,

p (z + w) = p (z) for all w E r,
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and it satisfies, along with its derivative p'(z), an identity

p'(z)2 = 4do (z)3 - g2b'a (z) - 93

The constants 92,93 only depend on the lattice P. and are given by
92 = 92 (r) = 60 1a , 93 = 93 (f') = 140 - . p and p' may
thus be interpreted as functions on cC/f'. If one takes away the finite set
S c cC/f' of poles, one gets a bijection

cC/f N S --> { (x, y) E C21 y2 = 4x3-g2x-$3} , z r- (p (z), bo'(z)) ,

onto the affine algebraic curve in C2 given by the equation y2 =
4x3 - g2x - $3. This gives the torus cC/T the structure of an algebraic
curve E over C of genus 1. An important role is played by the j-invariant

263383 3 3 2j(E)=j(r`)= A
with 4=g2-27g3.

It determines the elliptic curve E up to isomorphism. Writing generators
W1,602 off in such an order that r = &)I/o).2 lies in the upper half-
plane 1111, then j (E) becomes the value j(z) of a modular function, i.e.,
of a holomorphic function j on I which is invariant under the substitution

E SL2(Z).H ar+d for every matrix (a
d )

Now let K c_ cC be an imaginary quadratic number field. Then the ring
OK of integers forms a lattice in C, and more generally, any ideal a of OK
does as well. The tori C/a constructed in this way are elliptic curves with
complex multiplication. This means the following. An endomorphism of an
elliptic curve E = C / f is given as multiplication by a complex number z
such that zf c_ 1'. Generically, one has End(E) = Z. If this is not the case,
then End(E) ® Q is necessarily an imaginary quadratic number field K,
and one says that this is an elliptic curve with complex multiplication. The
curves C/a are obviously of this kind.

The consequences of these analytic investigations for class field theory
are the following.

(6.10) Theorem. Let K be an imaginary quadratic number field and a an
ideal of OK. Then one has:

(i) The j -invariant j (a) of C/a is an algebraic integer which depends only
on the ideal class .fi of a, and will therefore be denoted by j (R).

(ii) Every j (a) generates the Hilbert class field over K.
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(iii) If a1, ..., ah are representatives of the ideal class group CIK, then the
numbers j (a1) are conjugate to one another over K.

(iv) For almost all prime ideals p of K one has

pp.l (a) = I (p-la),

where rpp E G(K (j (a)) IK) is the Frobenius automorphism of a prime ideal 93
of K (j (a)) above p.

Note that for a totally imaginary field K there is no difference between
big and small Hilbert class field. In order to go beyond the Hilbert class field,
i.e., the ray class field mod 1, to the ray class fields for arbitrary modules
m 0 1, we form, for any lattice F C C, the Weber function

-235 9293 &r(z), if $293 , 0,

rr(z) _ -2936 a Pr(z), if 92 = 0,

2834

a
L2 2Pr (z) , if 93 = 0 .

,
,

Let A E C1K be an ideal class chosen once and for all. We denote by .fi.* the
classes in the ray class group C1 = JK /P which under the homomorphism

Clg - CIK
are sent to the ideal class (m)A-1. Let a be an ideal in A, and let b be an
integral ideal in A*. Then abm-1 = (a) is a principal ideal. The value ra(a)
only depends on the class A*, not on the choice of a, b and a. It will be
denoted by

-c (A*) = ra(a)-

With these conventions we then have the

(6.11) Theorem. (i) The invariants r(. ), r(.q), ..., for a fixed ideal
class S, are distinct algebraic numbers which are conjugate over the
Hilbert class field K I = K (j (.fit)).

(ii) For an arbitrary .fi*, the field K (j (.Ft), t (.*)) is the ray class field mod m
over K :

Km = K (j (J), r(A*)) .
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Exercise 1. Let K' K be the big, and H I K the small Hilbert class field. Then
G(KIIH) = (Z /2Z)'-', where r is the number of real places, and 2' _ (o` : o+).

Exercise 2. Let d > 0 be squarefree, and K = Q(,/d-). Let s be a totally
positive fundamental unit of K. Then one has [K' : HI = 1 or = 2, according as
NKIQ(s)=-for=1.
Exercise 3. The group (CK)" = (IK)"K*/K* is the intersection of the norm groups
NLIKCL of all abelian extensions L I K of exponent n.

Exercise 4. (i) For a number field K, local Tate duality (see chap. V, § 1, exercise 2)
yields a non-degenerate pairing
(*) EtH'(Kp,Z/nZ) x IIH1(Kpjt,,) --> Z/nZ

P p

of locally compact groups, where the restricted products are taken with respect to
the subgroups H,,.(Kp,Z/nZ), resp. For X = (Xp) in the first and
a = (a',) in the second product, it is given by

(X,a) =
P

(ii) If is a finite extension, then one has a commutative diagram

L[H'(LT,Z/n7G) x

II

IIH'(Kp,Z/nZ) x J]H'(Kp,A,,) -> Z/nZ.
p p

(iii) The images of
H' (K, Z/nZ) - ]J H' (Kp, Z/n7Z)

p

and

H' (K, w») -* II H' (K,, !-L")
p

are mutual orthogonal complements with respect to the pairing (*).

Hint for (iii): The cokernel of the second map is CK/(CK)", and one
has H'(K,7G/nZ) = Hom(G(LIK),Z/nZ), where LIK is the maximal abelian
extension of exponent n.

Exercise 5 (Global Tate Duality). Show that the statements of exercise 4 extend to
an arbitrary finite GK -module A instead of Z/nZ, and A' = Hom(A,K") instead
of p.".

Hint: Use exercises 4-8 of chap. IV, § 3, and exercise 4 of chap. V, § 1.
Exercise 6. If S is a finite set of places of K, then the map

H' (K, Z/nZ) -- II H' (K ,, Z/nZ)
pFS

is surjective if and only if the map
H'(K,Nn) -+ Il H'(Kp,A,,)

PVS
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is injective. This is the case in particular if either the extension K (97V) I K is cyclic,
n = 2"m, (m, 2) = 1, or if S does not contain all places p 12 which are nonsplit in
K(I.c2") (see § 1, exercise 2).

Exercise 7 (Theorem of GRUNWALD). If the last condition of exercise 6 is satisfied
for the triple (K, n, S), then, given cyclic extensions L,, I Kp for P E S, there always
exists a cyclic extension L I K which has L p I Kp as a completion for p E S, and
which satisfies the identity of degrees

[L : K] = scm{[Lp : Kp]]
(see also [10], chap. X, §2).

Note: Let G be a finite group of order prime to #ji(K), let S be a finite set of
places, and let L p I Kp, p c S, be given Galois extensions whose Galois groups G.
can be embedded into G. Then there exists a Galois extension L I K which on the
one hand has Galois group isomorphic to G, and which on the other hand has the
given extensions LplKp as completions (see [109]).

§ 7. The Ideal-Theoretic Version of Class Field Theory

Class field theory has found its ideae-theoretic formulation only after it
had been completed in the language of ideals. From the very start, it was
guided by the desire to classify all abelian extensions of a number field K.
But at first, instead of the ideae class group CK, there was only the ideal
class group CIK at hand to do this, along with its subgroups. In terms of
the insights that we have gained in the preceding section, this means the
restriction to the subfields of the Hilbert class field, i.e., to the unramified
abelian extensions of K. If the base field is Q, this restriction is of course
radical, for Q has no unramified extensions at all by Minkowski's theorem.
But over Q, we naturally encounter the cyclotomic fields Q (µ,,,) IQ with
their familiar isomorphisms G(Q(µm) IQ) = (Z/mZ)*. HEINRICH WEBER
realized, as was already mentioned, that the groups CIK and (Z/nIZ)* are -
with a grain of salt - only different instances of a common concept, that of
a ray class group, which he defined in an ideal-theoretic way as the quotient
group

CIK - JK/UK
of all ideals relatively prime to a given module m, by the principal ideals (a)
with a = 1 mod in, and a totally positive. He conjectured that this group
Clm, along with its subgroups, would do the same for the subextensions
of a "ray class field" K'nIK (which at first was only postulated to exist)
as the ideal class group CIK and its subgroups did for the subfields of the
Hilbert class field. Moreover, he stated the hypothesis that every abelian
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406 Chapter VI. Global Class Field Theory

extension ought to be captured by such a ray class field, as was suggested
by the case where the base field is Q, whose abelian extensions are all
contained in cyclotomic fields Q(µ,,,)IQ by the Kronecker-Weber theorem.
After the seminal work of the Austrian mathematician PHrrrrP FURTWANGLER
[44], these conjectures were confirmed by the Japanese arithmetician TErn
TAKAGI (1875-1960), and cast by EMIL ARTIN (1898-1962) into a definite,
canonical form.

The idele-theoretic language introduced by CHEVALLEY brought the
simplification that the idele class group CK encapsulated all abelian
extensions of L I K at once, avoiding choosing a module' m every time
such an extension was given, in order to accommodate it into the ray class
field KTtI I K, and thereby make it amenable to class field theory. The classical
point of view can be vindicated in terms of the id6le-theoretic version
by looking at congruence subgroups CK in CK, which define the ray class
fields K' I K. Their subfields correspond, according to the new point of view,
to the groups between CK and CK, and hence, in view of the isomorphism

CKICK = ClK ,

to the subgroups of the ray class group Cl.K

In what follows, we want to deduce the classical, ideal-theoretic version
of global class field theory from the id81e-theoretic one. This is not only an
obligation towards history, but a factual necessity that is forced upon us by
the numerous applications of the more elementary and more immediately
accessible ideal groups.

Let L I K be an abelian extension, and let p be an unramified prime
ideal of K and j3 a prime ideal of L lying above p. The decomposition
group G(LTIKp) c G(LIK) is then generated by the classical Frobenius
automorphism

(pp = (gyp, Lq3 IKp),

where 7rp is a prime element of Kp. As an automorphism of L, cpp is
obviously characterized by the congruence

rppa - aq mod 3 for all a E oL

where q is the number of elements in the residue class field of p. We put

LIK
IPp =: (

p
).
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Now let m be a module of K such that L lies in the ray class field mod in.
Such a module is called an module of definition for L. Since by (6.6) each
prime ideal p f m is unramified in L, we get a canonical homomorphism

(LIK) : JP -) G(LIK)
from the group JK of all ideals of K which are relatively prime to m by
putting, for any ideal a = flp p'pp:

(LI
K) - Fj

) 1 ,1 \ )up.a
( LIK) is called the Artin symbol. If P E JP is a prime ideal and irp a prime
element of Kp, then clearly

LIK
(

p
)=((np),LIK),

if (nrp) E CK denotes the class of the ideae (... , 1, 1, 7rp, 1, 1, ...).

The relation between the idele-theoretic and the ideal-theoretic formulation
of the Artin reciprocity law is now provided by the following theorem.

(7.1) Theorem. Let L IK be an abelian extension, and let m be a module of
definition for it. Then the Artin symbol induces a surjective homomorphism

(LIK) : CIK - G(LIK)
with kernel H'/PP, where H°` = (NLIK JL)PK , and we have an exact
commutative diagram

1 -+NLIKCL CK
(.LIK) , G(LIK) -) 1

I I (LIK)
id

1 Hm/PK ClK G(LIK) - 1.

Proof: In § 1, we obtained the isomorphism ( ) : CK/CK -+ CIK = JK /PK
by sending an idele a = (ap) to the ideal (a) = Hpf,,pLp("p). This
isomorphism yields a commutative diagram

CK/CK ( ,LIK)) G(LIK)

()I lid

f > G(LIK),
and we show that f is given by the Artin symbol.
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Let p be a prime ideal not dividing m, zr, a prime element of Kp,
and c E CKICK the class of the ideae (irp) _ (... , 1, 1,Trp, 1, 1, ...). Then
(c) = p mod PK and

f((c)) =(c,LIK)=((np),LIK) =().
This shows that f : JK I PK --) G(LIK) is induced by the Artin symbol
( L j K) : JK -* G (LIK) , and that it is surjective.

It remains to show that the image of NLIKCL under the map
( ) : CK -> JP/PP is the group H'IP'. We view the module
m = fl ,0 pnp as a module of L by substituting for each prime ideal p
of K the product p = FIT,, 3euIn. As in the proof of (1.9), we then get
CL = ILm)L*IL*, where IL) = (a E IL I Up E for lImoo}. The
elements of

NLIKCL = NLIK(ILm))K*/K*

are the classes of norm ideles NLIK(a), for a E ILW. As

NLIK(a)p = 11 NL,IKP(ap)
Tip

(see (2.2)), and since vp(NLV IK,(ap)) = f, Ipvs (asp) (see chap. III, (1.2)),
the ideae NL I K (a) is mapped by () to the ideal

7(NLIK(a)) = 11 11 p1 v NLIK( II f3Uv(a )).
pfoo Tip 3{co /

Therefore the image of NLIKCL under the homomorphism () : CK -f
JK/PK is precisely the group (NLIKJL )PK/PK, q.e.d.

(7.2) Corollary. The Artin symbol (LnK) , for a E JK, only depends on
the class a mod PK. It defines an isomorphism

(LIK) : JK/Hm -, G(LIK).

The group Hm = (NLIK JL)PK is called the "ideal group defined mod m"
belonging to the extension LIK. From the existence theorem (6.1), we see
that the correspondence L r- HI is 1-1 between subextensions of the ray
class field mod m and subgroups of JK containing P.

The most important consequence of theorem (7.1) is a precise analysis
of the kind of decomposition of any unramified prime ideal p in an abelian
extension L I K K. It can be immediately read off the ideal group H m C JK
which determines the field L as class field.
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(7.3) Theorem (Decomposition Law). Let L I K be an abelian extension of
degree n, and let p be an unramified prime ideal. Let m be a module of
definition for L IK that is not divisible by p (for instance the conductor), and
let Hm be the corresponding ideal group.

If f is the order of p mod H' in the class group JK /H', i.e., the smallest
positive integer such that

pf E Hm,

then p decomposes in L into a product

p=T,...93,.

of r = n1 f distinct prime ideals of degree f over p.

Proof: Let p = T, . q3, be the prime decomposition of p in L. Since
p is unramified, the q3i are all distinct and have the same degree f. This
degree is the order of the decomposition group of 43 j over K, i.e., the order
of the Frobenius automorphism V. = (Lp ) . In view of the isomorphism
JK/Hm = G(LIK), this is also the order of p mod Hm in JP/H'. This
finishes the proof.

The theorem shows in particular that the prime ideals which split
completely are precisely those contained in the ideal group Ht, if f is
the conductor of L I K.

Let us highlight two special cases. If the base field is K = Q and we look
at the cyclotomic field Q(p,,,,)IQ, the conductor is the module m = (m),
and the ideal group corresponding to Q(/.s,,,,) in JJ is the group As
JQ /PQ = (Z/mZ)* (see (1.10)), we obtain for the decomposition of
rational primes p f m, the law which we had already deduced in chap. I,
(10.4), and in particular the fact that the prime numbers which split completely
are characterized by

p-1modm.

In the case of the Hilbert class field LIK, i.e., of the field inside the
ray class field mod 1 in which the infinite places split completely, the
corresponding ideal group H C_ JK = JK is the group PK of principal ideals
(see (6.9)). This gives us the strikingly simple

(7.4) Corollary. The prime ideals of K which. split completely in the Hilbert
class field are precisely the principal prime ideals.
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Another highly remarkable property of the Hilbert class field is expressed
by the following theorem, known as the principal ideal theorem.

(7.5) Theorem. In the Hilbert class field every ideal a of K becomes a
principal ideal.

Proof: Let K1 IK be the Hilbert class field of K and let K21 K1 be the Hilbert
class field of K1. We have to show that the canonical homomorphism

JKIPK - > JK1IPK1
is trivial. By chap. IV, (5.9), we have a commutative diagram

JK1IPKI = CKIINKZIK,CK2 = G(K21KI)
Ti IVer

JK/PK = CKINKIIKCK1 G(KI I K),

where i is induced by the inclusion CK c CKI. It is therefore enough to
show that the transfer

Ver : G(KI IK) -± G(K21 K1)
is the trivial homomorphism. Since KI IK is the maximal unramified abelian
extension of K in which the infinite places split completely, i.e., the maximal
abelian subextension of K21K, we see that G(K21K1) is the commutator
subgroup of G(K2IK). The proof of the principal ideal theorem is thus
reduced to the following purely group-theoretic result.

(7.6) Theorem. Let G be a finitely generated group, G' its commutator
subgroup, and G" the commutator subgroup of G. If (G : G') < oo, then
the transfer

Ver : G/G' -- G'/G"
is the trivial homomorphism.

We give a proof of this theorem which is due to ERNST WITT [141]. In the
group ring Z[Q] = {EveG n, o- I n, E Z), we consider the augmentation
ideal IG, which is by definition the kernel of the ring homomorphism

Z[G] - Z, En,cr Y'na.
or Cr

For every subgroup H of G, we have IH C IG, and {r - 1 I T E H, t 1}
is a Z-basis of IH. We first establish the following lemma, which also has
independent interest in that it gives an additive interpretation of the transfer.
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(7.7) Lemma. For every subgroup H of finite index in G, one has a
commutative diagram

GIG' Ver , H/H'

S (IH + IGIH)IIGIH,

where the homomorphisms 8 are induced by or i-k SQ = Q - 1, and the
homomorphism S is given by

S(x mod IG) = x > p mod IGIH,
pER

for a system of representatives of the left cosets R E) 1 of G/H.

Proof : We first show that the homomorphism

(*) H/H' (IH + IGIH)IIGIH

induced by r H Sr = r - 1 has an inverse. The elements pSr, r E H,
r ; 1, p E R, form a 7G-basis of IH + IGIH. Indeed, it follows from

pSr=Sr+SpSr
that they generate IH + IG IH, and if

0 = r np,rpSr = r np,r(Pr - P) = i np,rpr - F_ (Enp,r)P,
P,r p,r P.r P r

then we conclude that np, r = 0 because the pr, p are pairwise distinct.
Mapping pSr to r mod H', we now have a surjective homomorphism

IH+IGIH -* H/H'.
It sends S(pr')Sr E IGIH to r'rr'-tr-' = 1 mod H' because 8(pr)8r =
pS(r'r) - PST' - Sr. It thus induces a homomorphism which is inverse to

8 2(*). In particular, if H = G, we obtain the isomorphism GIG' IG/Ic.
The transfer is now obtained as

Ver(Q mod G') = f j orp mod H',
pER

where vp E H is defined by 6p = p'Up, p' E R. Ver thus induces the
homomorphism

/IS : IGG - (IH + IGIH)/IGIH
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given by S(SU mod IG) = EpER SUP mod IGIH. From Up = p'Up follows
the identity

Sp+(SU)p=SQp+Sp'+Sp'SUp.
Since p' runs through the set R if p does, we get as claimed

(SU)p =- SU E p mod IGIH -S(Sp mod lG) Sup= F
PER pER pER

Proof of theorem (7.6): Replacing G by GIG", we may assume that
G" = {1}, i.e., that G' is abelian. Let R E) 1 be a system of representatives
of left cosets of G/G', and let U1, ... , Un be generators of G. Mapping
ei = (0, . . . , 0, 1, 0, ... , 0) E 7L" to Ui, we get an exact sequence

0)Z f) Z" )GIG' . 1,

where f is given by an n x n-matrix (mik) with det(mik) = (G :G').
Consequently,

7R

1 1 cr l ik Tk = 1 with Tic c G'.
i-1

The formulae 8(xy) = 3x+6y+3x5y, 3(x-1) _ -(.x)x-1 yield by iteration
that

n nm,k
S 11 u1 rk) = F- (30ri)1-Lik = 0,

i=1 i=1

where ,uik - mik mod IG. In fact, the tk are products of commutators of the
Qi and Qi-1. We view (µik) as a matrix over the commutative ring

7L[G/G'] = Z[G]/Z[G]IG',
which gives a meaning to the determinant µ = det(µik) E 7L[G/G']. Let (a.kj)
be the adjoint matrix of (µik). Then

(Svj)µ = >(SUi)µikXkj = 0 mod IGZ[G]IG',
i,k

so that (5U)µ - 0 mod IGZ[G]IG' = IGIG' for all U. This yields

µ = r p mod Z[G]IG'.
pER

For if we put µ = > PER npp, where ;5 = p mod G', then for all v E GIG',

UI.c=rnpup=Fnpp.
P P
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This implies that all n p are equal, hence µ = m >pER p mod 7L[G]IG', and
as

µ-det(mik)-(G:G')-m(G:G')mod 'G,
we even have m = 1. Applying now lemma (7.7), we see that the transfer is
the trivial homomorphism since

S(Sv mod I) - 80-G p = (8Q)µ - 0 mod IGIG'.
pER

A problem which is closely related to the principal ideal theorem and
which was first put forward by PWLJPP FuR7wANGLER is the problem of the
class field tower. This is the question whether the class field tower

K=KocK1 cK2CK3C...,
where Ki+t is the Hilbert class field of Ki, stops after a finite number of
steps. A positive answer would have the implication that the last field in the
tower had class number 1 so that in it not only the ideals of K, but in fact all
its ideals become principal. This perspective naturally generated the greatest
interest. But the problem, after withstanding for a long time all attempts to
solve it, was finally decided in the negative by the Russian mathematicians
E.S. GOLOD and I.R. SAFAREVt6 in 1964 (see [48], [24]).

Exercise 1. The decomposition law for the prime ideals p which are ramified in an
abelian extension L I K can be formulated like this. Let f be the conductor of L K,
H f c JK the ideal group for L, and Hp the smallest ideal group containing H of
conductor prime to p.

If e = (Hp : Hf) and pf is the smallest power of p which belongs to Hp, then
h = (93, ... f3r)e,

where the 93i are of degree f over K, and r = of , n = [L : K].

Hint: The class field for H. is the inertia field above p.

The following exercises 2-6 concern a non-abelian example of E. ART/N.

Exercise 2. The polynomial f (X) = X5 - X + I is irreducible. The discriminant of
a root a (i.e., the discriminant of 9L [a]) is d = 19. 151.

Hint: The discriminant of a root of X5 + aX + b is 55b4 + 28a5.
Exercise 3. Let k = Q(a). Then Z[a] is the ring ok of integers of k.
Hint: The discriminant of Z[a] equals the discriminant of Ok because on the
one hand, both differ only by a square, and on the other hand, it is squarefree.
The transition matrix from 1, a, ..., &' to an integral basis w1, ... , co" of Ok is
therefore invertible over Z.
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Exercise 4. The decomposition field K IQ of f (X) has as Galois group the symmetric
group C75, i.e., it is of degree 120.

Exercise 5. K has class number 1.

Hint: Show, using chap. I, §6, exercise 3, that every ideal class of K contains an
ideal a with 071(a) < 4. If 071(a) zA 1, then a has to be a prime ideal p such that
01(p) = 2 or 3. Hence Ok/p = 7L/27L or = 7L/37Z, so f has a root mod 2 or 3,
which is not the case.

Exercise 6. Show that K I Q(.,/19 151) is a (non-abelian!) unramified extension.

Exercise 7. For every Galois extension L I K of finite algebraic number fields, there
exist infinitely many finite extensions K' such that L fl K' = K, and such that
L K' I K' is unramified.

Hint: Let S be the set of places ramified in LIK, and let LO = Kp(ap). By the
approximation theorem, choose an algebraic number a which, for every p E S, is
close to a,, when embedded into Kp. Then Kp(ap) c Kp(a) by Krasner's lemma,
chap. II, § 6, exercise 2. Put K' = K (a) and show that L K' I K' is unramified. To
show that a can be chosen such that L fl K' = K use (3.7), and the fact that G (L I K)
is generated by elements of prime power order.

§ 8. The Reciprocity Law of the Power Residues

In class field theory Gauss's reciprocity law meets its most general and
definite formulation. Let n be a positive integer > 2 and K a number field
containing the group /L,, of n-th roots of unity. In chap. V, § 3, we introduced,
for every place p of K, the n-th Hilbert symbol

C-P KP*xK** An.

It is given via the norm residue symbol by

P(a, K,( )IKp) a, b)

These symbols all fit together in the following product formula.

(8.1) Theorem. For a, b E K* one has
fl(a,b)=1.
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Proof: From (5.7), we find

{fl(a b)]./ [fl(a,Kp('v/)IKp)]/=(a,K( )IK)Y= ,

and hence the theorem.

In chap. V, § 3, we defined the n-th power residue symbol in terms of the
Hilbert symbol:

pl pal'
where p is a prime ideal of K not dividing n, a E Up, and 7r is a prime
element of Kp. We have seen that this definition does not depend on the
choice of the prime element 7r and that one has

(a)=1 a - cr"modp,

and more generally

(9-')I' mod p, q =IR(p)

(8.2) Definition. For every ideal b = flp°n prime to n, and every
number a prime to b, we define the n-th power residue symbol by

(a) =j(7)v,.

Here(a) I when 0.

The power residue symbol (a) is obviously multiplicative in both
arguments. If b is a principal ideal (b), we write for short

b b
We now prove the general reciprocity law for the n-th power residues.

(8.3) Theorem. If a, b (2 K* are prime to each other and to n, then

()\a)-1 II (ab)b
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Proof: If p is prime to bnoo, then we have
(byt,(a)

=
(7rb)Up(Q) - (apb)V

where zr is a prime element of Kp. For if we put a = u7rvp(a) , then (p b) = 1
because u, b c U. For the same reason, we find

a,b( ) = 1 for p prime to abnoo.

(8.1) then gives

T7 )-1
pl 1

(a
)Up(b)pfj (b

)-Lp(Q)

Ij
(b)

(ab _pH
(a) pH (a lj

H
b) ( bpa) ptH ( bpa) pH (apb

al
)

Here p I (b) means that p occurs in the prime decomposition of (b).

Gauss's reciprocity law, for which we gave an elementary proof using
the theory of Gauss sums in chap. I, (8.6), in the case of two odd prime
numbers p, 1, is contained in the general reciprocity law (8.3) as a special
case. For if we substitute, in the case K = Q, n = 2, into formula (8.3) the
explicit description (chap. V, (3.6)) of the Hilbert symbol (!-'-b) for p = 2
and p = oo, we obtain the following theorem, which is more general than
chap. I, (8.6).

(8.4) Gauss's Reciprocity Law. Let K = Q, n = 2, and let a and b be
odd, relatively prime integers. Then one has

l a-I b-1 sgna-I sgnb-I

(b)(a) - (-1)z 2

and for positive odd integers b, we have the two "supplementary theorems"

l (b1)=(-1)bz

(b)

For the last equation we need again the product formula:

b
i1 .(

2
) n12 p2)vP(b) n(bp2)

=(226)(200b

) = (-1) bzz
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The symbol (b) is called the Jacobi symbol, or also the quadratic
residue symbol (although, for b not a prime number, the condition that the
symbol (a) = 1 is no longer equivalent to the condition that a is a quadratic
residue modulo b).

In the above formulation, the reciprocity law allows us to compute simply
by iteration the quadratic residue symbol (6) , as is shown in the following
example:

2 2 6365
C

40077
/ = \ 40077 I \ 40067 7 / - \ 40077 / \ 40077 / -

(40077)
6365

704 4 3 11

6365 / -
(6365)

/ 887 / - \ 1887) \ 1887 I - - (111

1/
-\112 3 3 11 2

1\ 1I=( 11 -\31 3

Class field theory originated from Gauss's reciprocity law. The quest
for a similar law for the n-th power residues dominated number theory
for a long time, and the all-embracing answer was finally found in Artin's
reciprocity law. The above reciprocity law (8.3) of the power residues now
appears as a simple and special consequence of Artin's reciprocity law. But
to really settle the original problem, class field theory was still lacking the
explicit computation of the Hilbert symbols (apb) for pmnoo. This was
finally completed in the 1960s by the mathematician HELMUr BRUCKNER, see
chap. V, (3.7).
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Chapter VII

Zeta Functions and L-series

§ 1. The Riemann Zeta Function

One of the most astounding phenomena in number theory consists in the
fact that a great number of deep arithmetic properties of a number field are
hidden within a single analytic function, its zeta function. This function has
a simple shape, but it is unwilling to yield its mysteries. Each time, however,
that we succeed in stealing one of these well-guarded truths, we may expect to
be rewarded by the revelation of some surprising and significant relationship.
This is why zeta functions, gs well as their generalizations, the L-series,
have increasingly molted to the foreground of the arithmetic scene, and today
are more than ever the focus of number-theoretic research. The fundamental
prototype of such a function is Riemann's zeta function

1

con=1 n

where s is a complex variable. It is to this important function that we turn
first.

(1.1) Proposition. The series (s) n is absolutely and uniformly
convergent in the domain Re(s) > 1 + S, for every S > 0. It therefore
represents an analytic function in the half-plane Re(s) > 1. One has Euler's
identity

P 1_p_S(S) = II 1

where p runs through the prime numbers.

Proof: For Re(s) = Q > 1+6, the series E'
1

I 1/ns I =F' 1 1/n° admits
the convergent majorant E', 1/n1+a, i.e., c(s) is absolutely and uniformly
convergent in this domain. In order to prove Euler's identity, we remind
ourselves that an infinite product f n° 1 a,, of complex numbers an is said to
converge if the sequence of partial products Pn = a1 . an has a nonzero
limit. This is the case if and only if the series >0 1log an converges, where
log denotes the principal branch of the logarithm (see [2], chap. V, 2.2). The
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product is called absolutely convergent if the series converges absolutely.
In this case the product converges to the same limit even after a reordering
of its terms a,,.

Let us now formally take the logarithm of the product

p 1- p_SE(s)=] 1

We obtain the series
° O 1logE(s) _ >2 >2 -

p n=1 npns
It converges absolutely for Re(s) = a > 1 + S. In fact, since pns p"
p(1+8)n, one has the convergent majorant

°O 1 n 1 1

pt+s) p1+s_1 <2>2p1+s'

This implies the absolute convergence of the product
00

E(s)=f 1-1 s
P P- p n=1 P

In this product we now expand the product of the factors

1 1 1

1 - P- P P
for all prime numbers pl, ... , p, < N, and obtain the equality

1 00 1 1-p<N 1
-P_S (P1t ...Pr')s sn n

where >2' denotes the sum over all natural numbers which are divisible only
by prime numbers p < N. Since the sum ' contains in particular the terms
corresponding to all n < N, we may also write

1 1 ,1
H 1 =>ns+>ns'

p<N P-4 <N n>N

Comparing now in (*) the sum >2' with the series c(s), we get

1 s(<) r 1() <> 'p:SN
1 _ p_s N ns

pifn
n>N n1+3

where the right hand side goes to zero as N -+ oo because it is the remainder
of a convergent series. This proves Euler's identity.
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Euler's identity expresses the law of unique prime factorization of natural
numbers in a single equation. This already demonstrates the number-theoretic
significance of the zeta function. It challenges us to study its properties more
closely. By its definition, the function is only given on the half-plane
Re(s) > 1. It does, however, admit an analytic continuation to the whole
complex plane, with the point s = 1 removed, and it satisfies a functional
equation which relates the argument s to the argument 1 - s. These crucial
facts will be proved next. The proof hinges on an integral formula for the
zeta function (s) which arises from the well-known gamma function. This
latter is defined for Re(s) > 0 by the absolutely convergent integral

00

r(s) f= e-yy dY
J
0

and obeys the following rules (see [34], vol. I, chap. I).J

(1.2) Proposition'. (i) The gamma function is analytic and admits a
meromorphic continuation to all of C.

(ii) It is nowhere zero and has simple poles at s = -n, n = 0, 1, 2, ..., with
residues (-1)'/n!. There are no poles anywhere else.

(iii) It satisfies the functional equations

1) r(s + 1) = sr(s),
2) r(s)r(1 - s) = n

sin 7rs

3) r(s)r(s + 1) = 2L F (2s) (Legendre's duplication formula).

(iv) It has the special values r(1/2) r(1) = 1, r(k + 1) = k!,
k=0,1,2,....

To relate the gamma function to the zeta function, start with the substitution
y H irn2y, which gives the equation

00
1 /

n'-sI'(s) 2s
= f e-Rn2yys dY

n y
0

Now sum over all n E N and get
00f Y' e-an2YYS d

n0=0 Y
0
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Observe that it is legal to interchange the sum and the integral because

00 00

E f l e
7rn2yys, dy = f dY

n=1 J Y n=1 Y
0 0

Now the series under the integral,

g(y) _ e-"n2y,

n=1

arises from Jacobi's classical theta series

6(z) _ en'in2z = 1+2 enin2z,00
nEZ n=1

i.e., we have g(y) =
2

(0(iy) - 1). The function

Z(s) =
is called the completed zeta function. We obtain the

< co.

(1.3) Proposition. The completed zeta function Z(s) admits the integral
representation

co

Z(S)= 2 f(o(iy) - 1)y2.
Y

0

The proof of the functional equation for the function Z(s) is based on the
following general principle. For a continuous function f : R+ - C on the
group R+ of positive real numbers, we define the Mellin transform to be
the improper integral

00

L(f,s)= f (f(Y)-f(00))Ysdy

0

provided the limit f (oo) = limy-,,,, f (y) and the integral exist. The
following theorem is of pivotal importance, also for later applications.
We will often refer to it as the Mellin principle.
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(1.4) Theorem. Let f, g : R+ -+ C be continuous functions such that I

f(y) = ao + O (e-`y°) , g(y) = bo + O (e-cy°) ,

for y -+ oo, with positive constants c, a. If these functions satisfy the
equation

f (y) = Cykg (y),

for some real number k > 0 and some complex number C # 0, then one has:
(i) The integrals L (f , s) and L (g, s) converge absolutely and uniformly ifs
varies in an arbitrary compact domain contained in (s E C I Re(s) > k).
They are therefore holomorphic functions on {s E C I Re(s) > k}. They
admit holomorphic continuations to C -, (0, k).
(ii) They have simple poles at s = 0 and s = k with residues

Ress_o L (f , s) = -ao, Res5_k L (f , s) = Cbo , resp.
Res3=0 L(g,s) =-bo, Ress_kL(g,s) =C-lao.

(iii) They satisfy the functional equation

L(f,s) =CL(g,k-s).

Remark 1: The symbol V(y) = 0(+/r(y)) means, as usual, that one has
rp(y) = c(y)*(y), for some function c(y) which stays bounded under the
limit in question, so in our case, as y --> oo.

Remark 2: Condition (ii) is to be understood to say that there is no pole
if ao = 0, resp. bo = 0. But there is a pole, which is simple, if ao # 0,
resp. bo 0.

Proof: If s varies over a compact subset of C, then the function e'cyaya,

a = Re(s), is bounded for y > 1 by a constant which is independent of a.
Therefore the condition f (y) = ao + 0 (e-cy°) gives the following upper
bound for the integrand of the Mellin integral L (f , s).

1 (f (y) - ao)ys-t l < B e-cy° y°+1 y-2 < B' y2 ,

for all y > 1, with constants B, B'. The integral fl' (f (y) - ao)y'-t dy

therefore admits the convergent majorant f loo B d y which is independent
Y

of s. It therefore converges absolutely and uniformly, for all s in the compact
subset. The same holds for f°°(g(y) - bo)ys-i dy.
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Now let Re(s) > k. We cut the interval of integration (0, oo) into (0, 1]
and (1, oo) and write

00 t

L (f , s) = f (f (Y) - ao) YS
dy + f (f(Y) - ao) YS

dy
.

Y Y
1 0

For the second integral, the substitution y t-+ 1/y and the equation
f (1/Y) = CYkg(Y) give:

1 00f (f(Y)-ao)YsdY=-ao

s o+f f
( 1

Y)Y_S
d
Y

0 1

00
ao + f k s t Cbo
S

C (g(Y)-bo)Y--dy-k----s

By the above, it also converges absolutely and uniformly for Re(s) k. We
therefore obtain

L(f,s) ao
s +

Cbo
s -k +F(s),

where
00

F (s) = f[fY) - ao)ys + C (g (Y) - bo)Yk-s]
dY

Y

Swapping f and g, we see from g(1/y) = C-1yk f (y) that:
bo

+ C_'aoL(g,s)=- s-k +G(s)
s

where
00

G(s) _ f[(g(y) -bo)Ys +C-1(f(Y) - ao)Yk-s]
dy
Y

The integrals F (s) and G (s) converge absolutely and locally uniformly on
the whole complex plane, as we saw above. So they represent holornorphic
functions, and one obviously has F (s) = CG (k-s). Thus L (f , s) and L (g, s)
have been continued to all of C '. {0, k} and we have L (f, s) = CL(g, k -s).
This finishes the proof of the theorem.

The result can now be applied to the integral (1.3) representing the
function Z(s). In fact, Jacobi's theta function 6(z) is characterized by the
following property.
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(1.5) Proposition. The series

6(z) _ e7rin2z

nGZ

converges absolutely and uniformly in the domain (z E C I Im(z) > 8},
for every E > 0. It therefore represents an analytic function on the upper
half-plane IHI = {z E C I Im(z) > 0}, and satisfies the transformation formula

0(-l/z) = z/i 6(z).

We will prove this proposition in much greater generality in § 3 (see (3.6)),
so we take it for granted here. Observe that if z lies in ill( then so does -1/z.
The square root z/i is understood to be the holomorphic function

h(z) = e21°g2/'

where log indicates the principal branch of the logarithm. It is determined
uniquely by the conditions

h(z)2=z/i and h(iy)=fy- >0 for yElR+.

(1.6) Theorem. The completed zeta function

Z(s)

admits an analytic continuation to C (0, 11, has simple poles at s = 0
and s = 1 with residues -1 and 1, respectively, and satisfies the functional
equation

Z(s) = Z(1 -s).

Proof: By (1.3), we have
0

Z(2s) =

2

J (9(iy) - 1) yS 'y
Y

0

i.e., Z(2s) is the Mellin transform

Z(2s) = L(f,s)
of the function f (y) = 26(iy). Since

26(iy) = 1+2e-"y(1+ E e-n(n -1)y)
n=2



»'
D

426 Chapter VII. Zeta Functions and L-series

one has f (y) = 1 + O (e-"y). From (1.5), we get the transformation formula

f (1/Y) = 2O(-1/iy) = 2Y1/20(iy) = YI,2 f (Y)

By (1.4), L(f , s) has a holomorphic continuation to C (0, 1/2) and simple
poles at s = 0, 1/2 with residues -1/2 and 1/2, respectively, and it satisfies
the functional equation

L(f,s) = L(f,
2

-s).
Accordingly, Z (s) = L (f , s/2) has a holomorphic continuation to C . {0, 1}
and simple poles at s = 0, 1 with residues -1 and 1, respectively, and satisfies
the functional equation

s 1 s
Z(s)=L(f,2)=L(f,2-2)=Z(1-s). El

For the Riemann zeta function itself, the theorem gives the

(1.7) Corollary. The Riemann zeta function (s) admits an analytic
continuation to C N (1), has a simple pole at s = 1 with residue 1 and
satisfies the functional equation

(1 - s) = 2(27r)-'I(s) cos

Proof: Z(s) = has a simple pole at s = 0, but so does
1' (s/2). Hence (s) has no pole. At s = 1, however, Z(s) has a simple pole,
and so does t (s), as r(1/2) = v6F. The residue comes out to be

ResS_1 c(s) = 7r1/2r(1/2)-1 Ress=t Z(s) = 1.
The equation Z(1 - s) = Z(s) translates into

(*) (1 s) =n7_S r(2) (s)-r(`2s)
Substituting (1-s)/2, resp. s/2, into the formulae (1.2), (iii), 2) and 3) gives

r(s)r(l+s) = r(s)'
2 2 2s

1-s 1+s Tt

2 ) r ( 2 cos(Trs/2) '
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and after taking the quotient,

r(2)/r(12
sl =

2S
cos 2 F(s).

Inserting this into (*) now yields the functional equation claimed.

427

At some point during the first months of studies every mathematics student
has the suprise to discover the remarkable formula

1
22 = -Ir

6-in
It is only the beginning of a sequence:

1 4 °° 1 1 6

n4 90
n

, E n6 945
7r , etc.

These are explicit evaluations of the special values of the Riemann zeta
function at the points s = 2k, k c N. The phenomenon is explained via the
functional equation by the fact that the values of the Riemann zeta function
at the negative odd integers are given by Bernoulli numbers. These arise
from the function

F(t) = t et
et-1

and are defined by the series expansion
00 tk

F (t) _ Y Bk -
k=0 k.

Their relation to the zeta function gives them a special arithmetic significance.
The first Bernoulli numbers are

1 1 1 1
BO = 1, BL = 2 , B2 =

6 , B3 = 0, B4 = 30 , B5 = 0, B6 = 42
In general one has B21+1 = 0 for v > 1, because F(-t) = F(t) - t. In the
classical literature, it is usually the function e' t which serves for defining

the Bernoulli numbers. As F (t) =
er

t + t, this does not change anything
except for B L, where one finds -1 instead of i . But the above definition is
more natural and better suited for the further development of the theory. We
now prove the remarkable

(1.8) Theorem. For every integer k > 0 one has

(1-k)=-Bk
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We prepare the proof proper by a function-theoretic lemma. For e > 0
and a E [e, co], we consider the path

Ce, a = (a, e] + Ke + [e, a),

which first follows the half-line from a to e, then the circumference
KE = {z I I z I = s) in the negative direction, and finally the half-line
from s to a:

a

(1.9) Lemma. Let U be an open subset of C that contains the path Cs,a
and also the interior of K. Let G(z) be a holornorphic function on U N {0}
with a pole of order m at 0, and let G(t)t"-'-1 (n E N), for Re(s) > be
integrable on (0; a). Then one has

/a

f G(Z)zns-1 dz = (e2nins _ 1)
J

G(t)tns-1 dt.

CE, a 0

Proof: The integration does not actually take place in the complex plane but
on the universal covering of C*,

X = {(x,a) EC* x R I argx -amod27r}.
z and zs-1 are holomorphic functions on X, namely

z(x a) = x zs-1 (x, a) = e(s-1)(10A Ix!+ia),

and Ce,a is the path
Ce,a =1ea+Ke+lea

where'sa = (a, El x {0}, Ke = {se it J t e [0,2'r}},' a = [s, a) x {2rr}
in X. We now have

G(z)z)u-1 dz = _ ! G(t)tns-1 dt

af
J

G(z)zns-1dz= e27rins f G(t)tns-ldt,

G+-
9
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§ 1. The Riemann Zeta Function 429

f G(z)zns-l dz = -i
J

G(ee-it)Ens-te-it(ns-I)ee-itdt

Ke 0

2n

= -if
0

Since Re(s) > i.e., Re(ns - m) > 0, the last integral I (s) tends to zero
as s -3 0. In fact, one has lim s"sG(ee-`t) = 0. This gives

e->0

a

J G(z)zns-l dz = (e2Jrins _ 1) f G(t)t"s-' dt + I (E),
CE, Q e

and since the integral on the left is independent of e, the lemma follows by
passing to the limit as s -+ 0. _

Proof of (1.8): The function
zkz ez CO

F(z)= ez_1 =>Bk-
k=0

is a meromorphic function of the complex variable z, with poles only at
z = 27ri v, v E Z, v 0. Bk/k is the residue of (k - 1) ! F(z)z-k-I at 0,
and the claim reduces to the identity

Resz.o F(z)z-k-I = 1 f F(z)z-k-'dz = -1(1 - k)
2.7ri (k - 1) !

Izl=e

for 0 < s < 27r, where the circle I z I = s is taken in the positive orientation.
We may replace it with the path -Ce = (-oo, - s] + Ke + [-s, - oo),
which traces the half-line from -oo to -s, followed by the circumference
Ke = (z I Izl = s) in the positive direction, from -e to -e, and finally
the half-line from -e to -oo. In fact, the integrals over (-cc, - s] and
[-e, - oo) cancel each other. We now consider on C the function

r
H(s) = I F(z)zs-' dz

z
l z

-Ce

Here the integrals over (-oo, - s] and [-e, - oo) do not cancel each other
any longer because the function zs-' is multivalued. The integration takes
place on the universal covering X = ((x, a) E C* x R I argx - a mod 2ir}
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of C*, as in (1.9), and z, zs'-t are the holomorphic functions z(x, a) = x,
Zs-t (x, a) = e(s-t)(log Ixl+ia) The integral converges absolutely and locally
uniformly for all s E C. It thus defines a holomorphic function on C, and we
find that

Rest=oF(z)z-k-t = 1H(1 -k).
27r z

Now substitute z H -z, or more precisely, apply the biholomorphic
transformation

rp:X (x,a)i > (-x,a-7r).
Since z o rp = -z and

(zs t o W)(x, a) = zs-t (-x, a - 7r) = e(s-t)(Oog Ixl+ia-i7r)

_ -e -isszS-i(x,a),

we obtain
H(s) _ _e-irrs f F(-z)zs-t dz

f z
CE

where the path CE = rp-t o (-C6) follows the half-line from 00 to s, then the
circumference KE in negative direction from s to s, and finally the half-line
from s to oo. The function

00G(z) = F(-z)z-t =
e-z - 1 - 1 = >2 e-nz

1 - e-z 1 - e-z n=1

has a simple pole at z = 0 so that, for Re(s) > 1, (1.9) yields

H(s) _ -e-"is f G(z)zs-tdz
CE

00 00

dtenis - e-nis) J G(t)ts dt- - -2i sinus f/ G(t)ts-t t
0 0

The integral on the right will now be related to the zeta function. In the
gamma integral

00f
P(s) e-tts

dt
t

0

we substitute t i-+ nt and get

f
o=

e-ntts dt

0
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Summing this over all n E N yields
00

J G(t)ts dt

0

The interchange of summation and integration is again justified because
00

I le nttsl dt
tn=1

0

From this and (1.2), 2), we get

< 00.

27riH(s) = -2i sin2rsP(s) (s) (s),r(1 -s)
Since both sides are holomorphic on all of C, this holds for all s E C. Putting
s = 1 - k we obtain, since F(k) = (k - 1) !,

Rest=o F(z)z_k-I = 1H(1 - k) = - (1 - k)
' q.e.d.

2rri (k - 1) !

Applying the functional equation (1.7) for (s) and observing that
r(2k) _ (2k - 1) !, the preceding theorem gives the following corollary,
which goes back to EuL.ER.

(1.10) Corollary. The values of c(s) at the positive even integers s = 2k,
k = 1, 2, 3, ... , are given by

2n 2k
(2k) = (-1)k_i ( ) B2k2(2k) !

The values (2k - 1), k > 1, at the positive odd integers have been
elucidated only recently. Surprisingly enough, it is the higher K -groups
Ki (Z) from algebraic K-theory, which take the lead. In fact, one has a
mysterious canonical isomorphism

r K4k-I(Z)®R - R.
Z

The image R2k of a nonzero element in K4k_I(Z) ®z Q is called the 2k-th
regulator. It is well-determined up to a rational factor, i.e., it is an element
of R*/Q*, and one has

(2k-1)_-R2kmodQ*.
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This discovery of the Swiss mathematician ARMAND BOREL has had a
tremendous influence on further arithmetical research, and has opened up
deep insights into the arithmetic nature of zeta functions and L-series of the
most general kind. These insights are summarized within the comprehensive
Beilinson conjecture (see [117]). In the meantime, the mathematicians
SPENCER BLOCH and KAZUYA KAro have found a complete description of the
special zeta values (2k - 1) (i.e., not just a description mod Q*) via a new
theory of the Tamagawa measure.

The zeroes of the Riemann zeta function command special attention.
Euler's identity (1.1) shows that one has (s) 0 0 for Re(s) > 1. The gamma
function I' (s) is nowhere 0 and has simple poles at s = 0, - 1, - 2, ... The
functional equation Z(s) = Z(1 - s), i.e.,

rrtS-1 2P((1 - s)/2) (l - s),
therefore shows that the only zeroes of (s) in the domain Re(s) < 0 are
the poles of r(s/2), i.e., the arguments s = -2, - 4, - 6, ... These are
called the trivial zeroes of (s). Other zeroes have to lie in the critical strip
0 < Re(s) < 1, since c(s) 0 for Re(s) > 1. They are the subject of the
famous, still unproven

Riemann Hypothesis: The non-trivial zeroes of c(s) lie on the line
Re(s) = t

2'

This conjecture has been verified for 150 million zeroes. It has immediate
consequences for the problem of the distribution of prime numbers within all
the natural numbers. The distribution function

Jr(x) = #{p prime number < x}

may be written, according to R/EMANN, as the series

ir(x) = R(x) - R(x'),
P

where p varies over all the zeroes of (s), and R (x) is the function

°O 1 (logx)nR(x)=1+>
n=1 n !

On a microscopic scale, the function 7r(x) is a step-function with a highly
irregular behaviour. But on a large scale it is its astounding smoothness
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which poses one of the biggest mysteries in mathematics:

6 000 t

X
10 000 20 000 30 000 40 000 50 000

On this matter, we urge the reader to consult the essay [142] by DON ZAG/ER.

Exercise 1. Let a, b be positive real numbers. Then the Mellin transforms of the
functions f (y) and g(y) = f (ayb) satisfy:

L (.f , s/b) = ba''1bL (g, s)

Exercise 2. The Bernoulli polynomials Bk(x) are defined by
t e('+i)l CIO tk

e' - 1 =F(t)ea` = Bk(x)-1,

so that Bk = Bk(0). Show that
(m)Bkxn,-k

Bm (x) _ k /
k=0

Exercise 3. Bk(x) - Bk(x - 1) = krk-l.
Exercise 4. For the power sum

sk(n) = lk +2
k +3 k + ... + nk

one has
sk(n) =

k + 1
(Bk+i(n) - Bk+1(0))

Exercise 5. Let 0(2z) = e2 2z. Then for all matrices y = (ac
in the group

b)
d

1'0(4)={(a
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one has the formula

where

Chapter VII. Zeta Functions and L-series

raz+bl cz-}d1=I(Y,z)7A(z), zElII,

rcl1(Y,z) _ (d)sd'(cz+d)1/Z.
The Legendre symbol ( d) and the constant Ed are defined by

d(\ (Idll J
(IdI)'

ifc<O,d<0,
otherwise,

(1, if d-lmod 4,
Sd = t i, if d-3mod 4.

Jacobi's theta function O(z) is thus an example of a modular form of weight i
for the group P0(4). The representation of L-series as Mellin transforms of modular
forms, which we have introduced in the case of the Riemann zeta function, is one
of the basic and seminal principles of current number-theoretic research (see [1061).

§ 2. Dirichlet L-series

The most immediate relatives of the Riemann zeta function are the
Dirichlet L -series. They are defined as follows. Let m be a natural number.
A Dirichlet character mod m is by definition a character

X: (Z/mZ)*) S'= {zECCI Izl=1}.
It is called primitive if it does not arise as the composite

(Z/mZ)* ) (Z/m'Z)* S1

of a Dirichlet character X' mod m' for any proper divisor m' I m. In the general
case, the gcd of all such divisors is called the conductor f of X. So X is
always induced from a primitive character X' mod f. Given X, we define
the multiplicative function X : Z -* CC by

X (n mod m) for (n, m) = 1,
10 for (n, m) 1 .

The trivial character X° mod m, X°(n) = 1 for (n, m) = 1, X°(n) = 0 for
(n, m) 1, plays a special role. When read mod 1, we denote it by X = 1.
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§ 2. Dirichlet L-series 435

It is also called the principal character. Considering it in the theory to be
developed now has the effect of subsuming here everything we have done in
the last section. For a Dirichlet character X, we form the Dirichlet L-series

0o x (n)
L(Xs) n,

n=1

where s is a complex variable with Re(s) > 1. In particular, for the principal
character X = 1, we get back the Riemann zeta function c(s). All the results
obtained for this special function in the last section can be transferred to
the general L-series L(X, s) using the same methods. This is the task of the
present section.

(2.1) Proposition. The series L(X, s) converges absolut.,ly and uniformly in
the domain Re(s) > 1 + 8, for any 8 > 0. It therefore represents an analytic
function on the half-plane Re(s) > 1. We have Euler's identity

L(X,s)
P I - X (p)p-s

In view of the multiplicativity of X and since I X (n) I < 1, the proof is
literally the same as for the Riemann zeta function. Since, moreover, we will
have to give it again in a more general situation in § 8 below (see (8.1)), we
may omit it here.

Like the Riemann zeta function, Dirichlet L -series also admit an analytic
continuation to the whole complex plane (with a pole at s = 1 in the case
X = X°), and they satisfy a functional equation which relates the argument s
to the argument I - s. This particularly important property does in fact hold
in a larger class of L-series, the Hecke L-series, the treatment of which
is an essential goal of this chapter. In order to provide some preliminary
orientation, the proof of the functional equation will be given here in the
special. case of the above L-series L(X,s). We recommend it for careful
study, also comparing it with the preceding section.

The proof again hinges on an integral representation of the function
L (X, s) which has the effect of realizing it as the Mellin transform of a
theta series. We do, however, have to distinguish now between even and odd
Dirichlet characters X mod m. This phenomenon will become increasingly
important when we generalize further. We define the exponent p c: (0,;1)
of X by

X(-i) = (-1)px(1).
Then the rule n n

X ((n)) = X (n) (In
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defines a multiplicative function on the semigroup of all ideals (n) which are
relatively prime to m. This function is called a Gr6f3encharakter mod m.
These Grbj3encharaktere are capable of substantial generalization and will
play the leading part when we consider higher algebraic number fields
(see §7).

We now consider the gamma integral
00

T'(X,s)=Ts+p e-Yy(s+P)12d
2 J Y

0

Substituting y 1-+ rrn2y/m, we obtain
00

)2L r(X,s)n = JnPe_rn2Y/rny(s+P)/2.;)±.m -1
Y

0

We multiply this by X (n), sum over all n E N, and get

s±e 00

(*) (1) 2 T' (X, s)L(X, s) = f E X (n)nP e-sn2Y/my(s+p)!2 d
n=1 y

0

Here, swapping the order of summation and integration is again justified,
because

00

IX(n)nPe-irn2Y/my(s+P)/2I d
00

n=t
If

Y
0

(m
(Re(s)+P)/2r Re(s)+p

oo.1r) 2

The series under the integral (*),

g(y) = E X (n)nP e-nn2Yl ni
n=1

arises from the theta series

8(X,z) _ X(n)nPen'in2z/m

nEZ

where we adopt the convention that 00 = 1 in case n = 0, p = 0. indeed,
X(n)nP = X(-n)(-n)P implies that

8(X, z) = X (0) -}- 2r- X (n)nP e'in2z/m00
n=1
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so that g(y) =
z
(0(x, iy) - x(0)) with x(0) = 1, if x is the trivial

character 1, and x(0) = 0 otherwise. When m = 1, this is Jacobi's theta
function

8(Z) = T e7rln2z

nEz

which is associated with Riemann's zeta function as we saw in § 1. We view
the factor ml s/2

L.(X,s) = (-1 r(x,s)n
in (*) as the "Euler factor" at the infinite prime. It joins with the Euler factors
Lp(s) = 1/(1 - x(p)p-') of the product representation (2.1) of L(X,s) to
define the completed L-series of the character x :

A(X,s) = L.(X,s)L(X,s)', Re(s) > 1.
For this function (*) gives us the

(2.2) Proposition. The function A (X, s) admits the integral representation
00

A(x,s)= c(2/ f (8(x,iy)-x(o))y(s+p)l2 yy

0

where c(X) = (ZL)p/2.

Let us emphasize the fact that the summation in the L-series is only over
the natural numbers, whereas in the theta series we sum over all integers.
This is why the factor np had to be included in order to link the L -series to
the theta series.

We want to apply the Mellin principle to the above integral representation.
So we have to show that the theta series 9(x, iy) satisfies a transformation
formula as assumed in theorem (1.4). To do this, we use the following

(2.3) Proposition. Let a, b, IL be real numbers, p > 0. Then the series

eµ(a, b, z) = T, e'ri(a+g)2z+27ribg
gEµZ

converges absolutely and uniformly in the domain Im(z) > 3, for every 3 > 0,
and for z E H, one has the transformation formula

0,,(a, b, - 11z) e-27riab z/t
B b a z).
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This proposition will be proved in § 3 in much greater generality (see (3.6)),
so we take it for granted here. The series BP,(a, b, z) is locally uniformly
convergent in the variables a, b. This will also be shown in § 3. Differentiating
p times (p = 0, 1) in the variable a, we obtain the function

9, (a, b, z) = F (a + g)P e'i(a+s)2z+2rribg
.

8 E(hZ

More precisely, we have

dP
daP 0,,(a, b, z) = (27ri)PzP0, (a, b, z)

dP 27riab p P
daP

e Oil,(-b, a, z) = (21ri) e- 91/u(-b, a, z).

Applying the differentiation dP/ daP to the transformation formula (2.3), we
get the

(2.4) Corollary. For a, b, tc E II8, µ > 0, one has the transformation
formula

9, (a b, - 1/z) = riPe2niab ]-1(z/i)P+70 µ(-b, a, z).

This corollary gives us the required transformation formula for the theta
series 6 (X, a), if we introduce the Gauss sums which are defined as follows.

(2.5) Definition. For n E Z, the Gauss sum r(X,n) associated to the
Dirichlet character X mod m is defined to be the complex number

m-I
r(X,n)

u=O

Forn = 1, we write r(X) = r(X,1).

(2.6) Proposition. For a primitive Dirichlet character x mod m, one has

r(X,n)=X(n)r(X) and Ir(X)I= / .
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Proof: The first identity in the case (n, m) = 1 follows from X (vn) : =
X(n)x(v). When d = (n,m) $ 1, both sides are zero. Indeed, since l, X
is primitive, we may in this case choose an a = 1 mod m/d such that
a # 1 mod m and x (a) 56 1. Multiplying r (X, n) by x (a) and observing that
e2nivan/n: = e2nivn/m gives X(a)r(X,n) = r(x,n), so that r(X,n) 0.
Further, we have

z-1 M-
r(x) 2= r(x)r(x) = r(x)ny

x(v)e-2niv/n: = 'r(X,v)e-2niv/m
v=o v=o

m-Im-I m-1
//

m-I
_ X (1 )

e2ni vlt/n: a-2ni v/m = r X lit) e2ni v(/.c-1)/n,
V=OA--O u=o v=O

The last sum equals m for tL = 1. For j. 0 1, it vanishes because then
= e2'r`(i`-I)/m is an m-th root of unity ; 1, hence a root of the polynomial

Xm-1 -Xnt-1+...+X+1.
X-1

Therefore I r(X)12 =MX(1) = m.

We now obtain the following result for the theta series 9(x, z) .

(2.7) Proposition. If x is a primitive Dirichlet character mod m, then
have the transformation formula

6(x, - 1/z) = 1.rP (X)

where X is the complex conjugate character to x, i.e., its inverse.

we

Proof: We split up the series 0(x, z) according to the classes a mod m,
a=0,1, ...,m-1, and obtain

B(X, z) = L X (n)nP enin2z/m =
nEZ

m-I
E X (a) F (a + g)P eni(a+g)Zz/m
a=0 gEmZ

hence
m-+I

(X, Z) = r' X(a)em(a,0,z/m).
a=0

By (2.4), one has

Bm(a,0, - 1/mz) = im (mz/i)P+z6pm(0,a,mz),
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and this gives

8p O, a mZ = gP eir:&2 +2aiag = 1 e2nian/''np enin2z/m

8E
mp nI Z EZ,

Multiplying this by X (a), then summing over a, and observing that
r(X,n) = X (n)r(X), we find:

B(X, - 1/z) =
1 1 m-1

ipm(mz/i)p+2 r X(a)8jm(0,a,mz)
a=0

1 t z
iPpZP+1(mZ/i)p+z z/n:

nEZ a=0
1

iP (zl i)p+2i(X) E X (n)npeain2z/m

naZ

PWi 0(X, Z).(z/i)p+1

The analytic continuation and functional equation for the function A(X , s)
now falls out immediately. We may restrict ourselves to the case of a
primitive character mod m. For X is always induced by a primitive character
X' mod f, where f is the conductor of X (see p. 434), and we clearly have

L(X,s) (1 -X(P)P-s)L(X ,s),
PI-
Pff

so that the analytic continuation and functional equation of A(X, s) follows
from the one for A(X', s). We may further exclude the case m = 1 (this is not
really necessary, just to make life easy), this being the case of the Riemann
zeta function which was settled in § 1. The poles in this case are different.

(2.8) Theorem. If X is a nontrivial primitive Dirichlet character, then the
completed L-series A(x,s) admits an analytic continuation to the whole
complex plane C and satisfies the functional equation

A(X,s) =W(X)A(y, 1 - s)

with the factor W (X) = iplw. This factor has absolute value 1.
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cProof: Let f( l ( )) = c1 1B( i )
)B( i p/2iana g yy X, =2 y

We have X (0) = X (0) = 0, so that
.X, y), c(X) = ( )

° O z

0(X, iy) = 2 E X (n)nP a-nn yln',
n=1

and therefore f(y) = O(e-"yln')`, and likewise g(y) = O(e-"y/nm).
By (2.2), one has

00

n(X,s) = c(Z) f 0(X,iy)yS2
dy
y

0

We therefore obtain A(X,s) and similarly also A(X,s) as Mellin transforms
A(X,s) = L(f,s') and A(X,s) = L(g,s')

of the functions f (y) and g(y) at the point s' = SS P. The transformation
formula (2.7) gives

( 1 l

C
c(X)r(X) r(X)f

Y 2 B(X, -1/IY) = 2iP YP+se(x>IY) =

Theorem (1.4) therefore tells us that A(X, s) admits an analytic continuation
to all of C and that the equation

=W(X)L(g,p+2 - s+p) W(X)L(g,±)
= W(X)A(X, 1 - s)

holds with W(X) = tpl . By (2.6), we have IW(X) = 1.

The behaviour of the special values at integer arguments of the Riemann
zeta function generalizes to the Dirichlet L -series L (X, s) if we introduce, for
nontrivial primitive Dirichlet characters X mod m, the generalized Bernoulli
numbers Bk, x defined by the formula

m t eat oo tk
Fx (t) _ > X (a) mt - _ E Bk, x .

a=1 e 1 k=O k.
These are algebraic numbers which lie in the field Q (X) generated by the
values of X. Since

n: t e(m-a)t
Fx(-t) _ E X(-1)X(m -a) emt - 1 = X(-1)Fx(t),

a=1

we find (-1)kBk, x = X (-1)Bk, x , so that
Bk,x =0 for k#p mod2,

if p E {0, 1} is defined by X(-1) = (-1)PX(1).



III

co
o

`.b

1C
'

.--

.
O
r

.-.

442 Chapter VII. Zeta Functions and L-series

(2.9) Theorem. For any integer k > 1, one has

L(X,1-k)=-Bk,x

Proof: The proof is the same as for the Riemann zeta function (see (1.8)):
the meromorphic function

m Z eaz 00 zk
Fx (z) = X(a) mz = Bk, x

a=1 e - 1 k=0 k.

has poles at most at z = z °D v E Z. The claim therefore reduces to showing
that

L(X,1 - k)
(1) - r(k) = residue of FX (z)z-k t at z = 0.

Multiplying the equation
00

F(S) 1 - J e-ntts dt
ns t

0

by X(n), and summing over all n, yields
CO

(2) r(s)L(X, s) = fGx(t)t2 dt

0

with the function
co m e-az

(3) Gx (z) _ E X(n)e'2z = E X (a) mz = Fx (-z)z1.n=1 a=1 1 - e-
From the equations (2) and (3) one deduces equation (1) in exactly the same
manner as in (1.8).

The theorem immediately gives that

L(X,1-k)=0 for k#pmod2,
p E (0, 1), x (-I) = (-1)PX (l), provided that X is not the principal
character 1. From the functional equation (2.8) and the fact that L(X, k) 0,
we deduce for k > 1 that

BkL(X,1-k)=- kx¢0 for k-pmod2.
The functional equation also gives the
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(2.10) Corollary. Fork = p mod 2, k > 1, one has
r (X) 2n k Bk, -L(X,k) _ (-1)1+(k-P)/2 _ X .

2iP m k

443

For the values L(X,k) at positive integer arguments k # p mod 2,
similar remarks apply as the ones we made in § 1 about the Riemann zeta
function at the points 2k. Up to unknown algebraic factors, these values are
certain "regulators" defined via canonical maps from higher K-groups into
Minkowski space. A detailed treatment of this deep result of the Russian
mathematician A.A. BEILINSON can be found in [110].

(a+x)t
Exercise 1. Let Fx (t, x) _ a i X (a) en - l The Bernoulli polynomials Bk, x (x)
asssociated to the Dirichlet character X are defined by

tk

Fx(t,x) _ Bk,x(x)-.
k=O k.

Thus Bk,x(0) = Bk,. Show that
k

Bk,x(x) = F (k)B.,Xxk_i
i=0

Exercise 2. Bk, x (x) - Bk, x (x - m) = k Fai X (a) (a + x - m)k-' , k > 0.
Exercise 3. For the numbers Sk,x(v) _ Fo=i X(a)ak, k > 0, one has

Sk'x(v"`) k 1
1(Bk+1,x(vm)-Bk+t,x(0))

Exercise 4. For a primitive odd character X one has

X(a)a#0.
a=i

§ 3. Theta Series

Riemann's zeta function and Dirichlet's L -series are attached to the
field Q. They have analogues for any algebraic number field K, and the
results obtained in § 1 and 2 extend to these generalizations in the same way,
with the same methods. In particular, the Mellin principle applies again,
which allows us to view the L-series in question as integrals over theta
series. But now higher dimensional theta series are required which live on
a higher dimensional analogue of the upper half-plane H. A priori they do
not have any relation with number fields and deserve to be introduced in
complete generality.
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The familiar objects C, R, R*, IEII, 11, log, find their higher dimensional
analogues as follows. Let X be a finite G(CI R) -set, i.e., a finite set with an
involution r H r (r E X), and let n = #X. We consider the n-dimensional
C -algebra

C= C
rEX

of all tuples z = (zt)ZEX, zt E C, with componentwise addition and
multiplication. If z = (zr) E C, then the element z E C is defined to have
the following components:

(Z)i = F F.

We call the involution z z the conjugation on C. In addition, we have
the involutions z i-+ z* and z i-+ *z given by

zi = zt, resp. *Zr = zt.

One clearly has z = *z*. The set

R=[fC]+={zECI z=Z}

forms an n-dimensional commutative R -algebra, and C = R ®R C.
If K is a number field of degree n and X = Hom(K, C), then R is the

Minkowski space KR ( K ®(Q IR) which was introduced in chapter I, § 5.
The number-theoretic applications will occur there. But for the moment we
leave all number-theoretic aspects aside.

For the additive, resp. multiplicative, group C, resp. C*, we have the
homomorphism

Tr:C-*C, Tr(z)_T, zr, resp.
r

N:C*-+ C*, N(z)=11zr.

Here Tr(z), resp. N(z), denotes the trace, resp. the determinant. of the
endomorphism C -+ C, x H zx. Furthermore we have on C the hermitian
scalar product

(x, Y) _ xrYz = Tr(x*y)

It is invariant under conjugation, (x, y) = (x, y), and restricting it yields
a scalar product ( , ), i.e., a euclidean metric, on the IR-vector space R.
If z E C, then *z is the adjoint element with respect to ( , ), i.e.,

(xz, Y) = (x, *zy)
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In R, we consider the subspace

Rt= {x ERIx=x*} =[FIR]+.
r

Thus we find for the components of x = (xr) E R± that xt = xr E R.
If S E R, we simply write x > 8 to signify that xr > S for all r. The
multiplicative group

R+={xER±Ix>0} =[fR+]+
r

will play a particularly important part. It consists of the tuples x = (xr)
of positive real numbers xr such that xT = xr , and it occurs in the two
homomorphisms

R* R+, x=(xr)H Ixl=(Ixrl),
log : R+ : R±, x = (xr) log x = (log xr) .

We finally define the upper half-space associated to the G(C IR)-set X by

H=R}+iR+.
Putting Re(z) = 2 (z + z), Im(z) =

2r
(z - z), we may also write

H={zECIz=z*, Im(z)>0}.
If z lies in H, then so does -1/z, because zz E R+, and Im(z) > 0 implies
Im(-1/z) > 0, since z2Im(-1/z) = -Im(z-tzz) = Im(z) > 0.

For two tuples z = (Zr), p = (pr) E C, the power

zP = (zpr) E Cz

is well-defined by
ZPr = eprlogzr,z

if we agree to take the principal branch of the logarithm and assume that
the zr move only in the plane cut along the negative real axis. The table
H CC DR= R DR+, 1 1:R*-+R*, log: R+ R

H C C J R D R± 2 R+, I log : R+ -- Rf,
shows the analogy of the notions introduced with the familiar ones in the
case n = 1. We recommend that the reader memorize them well, for they
will be used constantly in what follows without special cross-reference. This
also includes the notation

z, z*, *z, Tr, N, ( , ), x > 8, z°.
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The functional equations we are envisaging originate in a general formula
from functional analysis, the Poisson summation formula. It will be proved
first. A Schwartz function (or rapidly decreasing function) on a euclidean
vector space R is by definition a C°°-function f : R --* C which tends to
zero as x oo, even if multiplied by an arbitrary power 1jxilm, m > 0,
and which shares this behaviour with all its derivatives. For every Schwartz
function f, one forms the Fourier transform

= I .f (x) e-vri (x. Y) dx.f (Y)
e

R

where dx is the Haar measure on R associated to ( , ) which ascribes
the volume 1 to the cube spanned by an orthonormal basis, i.e., it is the
Haar measure which is selfdual with respect to ( , ). The improper integral
converges absolutely and uniformly and gives again a Schwartz function f.
This is easily proved by elementary analytical techniques; we refer also
to [98], chap. XIV. The prototype of a Schwartz function is the function

h(x) = e-7r (C'X)

All functional equations we are going to prove depend, in the final analysis,
on the special property of this function of being its own Fourier transform:

(3.1) Proposition. (i) The function h(x) = e-'(",') is its own Fourier
transform.

(ii) If f is an arbitrary Schwartz function and A is a linear transformation
of R, then the function fA(x) = f (Ax) has Fourier transform

TA(Y) = I detAl
f(A-'y),

where to is the adjoint transformation of A.

Proof: (i) We identify the euclidean vector space R with R" via some
isometry. Then the Haar measure dx turns into the Lebesgue measure
dxl ... dx". Since h(x) e-"?, we have h = r[" (e-"X+ so we
may assume n = 1. Differentiating

00

h (Y) = f h (x) e-2;r'xy dx
-00
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in y under the integral, we find by partial integration that

447

00

d - 27rixh(y) = -27ri f xh(x)e- ydx = -2rryl2(y)
d

.

y 0

This implies that h y) = C e-may2 for some constant C. Putting y = 0 yields
C = 1, since it is well-known that f e-lrx2 dx = 1.
(ii) Substituting x H Ax gives the Fourier transform of fA(x) as:

f f(Ax)e-zn'(x,y)dx = r
J

f(x)e-vri (A x.y)I detAI`'dx

1 7ri (x,'1
I de t A l

Jfe_2A_'y dx =
I det A I

T (A- y)

From the proposition ensues the following result, which will be crucial
for the sequel.

(3.2) Poisson Summation Formula. Let P be a complete lattice in R and
let

T'=Ig'E RI (g,g') EZforallgEP)
be the lattice dual to r. Then for any Schwartz function f, one has:

1
E f (g) = vol(r) 8,',

.(g')
Er

where vol(r) is the volume of a fundamental mesh of r.

Proof: We identify as before R with the euclidean vector space R" via some
isometry. This turns the measure dx into the Lebesgue measure dxl dz".
Let A be an invertible n x n-matrix which maps the lattice Z" onto F. Hence
F = AZ" and vol(t) = I det Al. The lattice Z" is dual to itself, and we get
F' = A*7G" where A* = `A-', as

g'EP't= `(An)g'=`n`Ag'EZ for aim E Z"

Ag'E7L" g'E'A'Z".
Substituting the equations

P = AZ", P' = A*Zn, .fA(x) _ .f (Ax), TA (y) = 1 .f (A* y)vol(t)
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into the identity we want to prove, gives

E .f A (n) F_ 1 n ) .
nEZ" nEZ"

In order to prove this, let us write f instead of fA and take the series
g(x) _ T, f(x + k).

kEZ"

It converges absolutely and locally uniformly. For since f is a Schwartz
function, we have, if x varies in a compact domain,

If(x+k)I Ilkll"+l <C
for almost all k E V. Hence g(x) is majorized by a constant multiple of
the convergent series

Ilk11. This argument works just as well for all
partial derivatives of f. So g(x) is a C°°-function. It is clearly periodic,

g (x + n) = g (x) for all n c= 7L" ,

and therefore admits a Fourier expansion

g(x) _ an e2Jri nx

nEZ°

whose Fourier coefficients are given by the well-known formula
l 1

an = - g(x)e-2ni tnz
dxl ... dx".

0 0

Swapping summation and integration gives

an = f...J g(x) e-27r"nx dx = E f- .. J f (x + k) e-2,ritnx dx
f kEz"
0 0 0 0

_ .f (n)
It follows that

E .f (n) = g(0) = E an = E f (n), q.e.d.
nEZ" nEZ" nEZ"

We apply the Poisson summation formula to the functions

ff(a, b,x) = N((x + a)P) e- r(a+x,a+x)+2rri(b,x)

with the parameters a, b E R and a tuple p = (pr) of nonnegative integers,
such that pi E {0, 1) if t = z, and pip? = 0 if r i. Such an element
p E r[i Z will henceforth be called admissible.
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(3.3) Proposition. The function f (x) = fp(a, b, x) is a Schwartz function
on R. Its Fourier transform is

f(Y) = [iTi(P)e2rri(a,b)1-1 fp(-b, a, Y)

Proof: It is clear that ff(a, b,x) is a Schwartz function, because

I fp(a,b,x)I P(x)I
e-r(a+x,a+x),

for some polynomial P (x).
Let p = 0. By (3.1), the function h(x) = e-a(x,x) equals its own Fourier

transform and one has

f(x) = fo(a,b,x) = h(a+x)e2n:(b,x).

We them fore obtain

f(Y) = J h(a+x)e27ri(b,x)Cbri(x,y)dx

RR=

f h (x) e-2;ri(y-b,x-a) dx

= e2si(y-b,a)h(y - b)
= e2' b) e-Jr(Y-b, y-b)+27ri (y, a)

= e-27ri(a,b) fo(-b, a,y).

For an arbitrary admissible p, we get the formula by differentiating p times
the identity

(*) fo(a,b,Y) = e-2ni(a, b)fo('-b,a,Y)

in the variable a. Now the functions are neither analytic in the individual
components aT of a, nor are these independent of each other, when there
exists a couple r 0 T. We therefore proceed as follows. Let p vary over
the elements of X such that p = ;5, and let or run through a system of
representatives of the conjugation classes (r, t ) such that r T. Since
Pr pt = 0, we may choose a in such a way that p- = 0. Then one has

(a+x,a+x)=F_(ap+xP)2+2E(aa+xa)(aa+xQ).
P a

We now differentiate pp times both sides of (*) in the real variable ap, for
all p, and apply pa times the differential operator

a 1 a a
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for all or.. Here we consider ay = o + i no as a function in the real variables
a , nQ ("Wirtinger calculus"). On the left-hand side

fo(a, b, y) e-n(a+x,a+x)+2jri(b, x) e-2ni(x'Y) dx,
>

we may differentiate under the integral. Then, observing that pQ = 0 and

aao ((aa +xa)(a& +xa)) = (aa +xa), we obtain

fJ
fl(-27r(ap + xp)) P'
p F I( -27r (aa + xa)) PO e-' (a+, a+x)+2ai (b, x)-2ni (x, y) dx

a

=N((-27r)P)
J

N((a+x)P)e-1r(a+x,a+x)+21ri(b,x)e-21ri(x,Y)dx

=N((-2,-r)P) fp(a,b,y).
The right-hand side of (*),

e-2ni(a,b)-1r(-b+y,-b+y)+27ri(a,y) = e21ri(a,-b+y)-1r(-b+y,-b+Y)

in view of

(a, -b+y) a0(-by+yp)+E(aa(-ba+yo)+aa(-ba+ya)),
P a

and as pa = 0, becomes accordingly

N ((27ri)P) N((-b + y)P) e-21ri(a,b)fo(-b, a, y)
= N ((27ri )P) e-21ri (a, b) fp(-b, a, y)

Hence
fp(a,b,y) = N(i-P)e-2si(a,b).fp(-b, a, y).

We now create our general theta series on the upper half-space

H={zECIz=z*,Im(z)>0} =R±+iR+.

(3.4) Definition. For every complete lattice I' of R, we define the theta
series

or (Z) _ z E H.
ger

More generally, for a, b E R and any admissible p E F1, Z, we put

9j (a,b z) = F_ N((a+g)P) erz`((a+g)z,a+g)+21ri(b,g)

ger
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(3.5) Proposition. The series Br (a, b, z) converges absolutely and uniformly
on every compact subset of R x R x H.

Proof: Let S E ]R, 8 > 0. For all z E H such that Im(z) > 8, we find
N((a+g)1)e";l(a+g)Z,a+g)+27ri(6. 1)I N((a+g)")I e-" (0+9, 0+9)

Let
fg (a) = N ((a + g)P) e-as(a+g, a+g) (a E R, g E F).

For K C_ R compact, put I fg I K = sup I fg (x) 1. We have to show that
xEK

F- IfgIK < 00,
ger

Let gl, ... , g. be a Z-basis of r, and for g = Ei 1 m; gi E F, let
µg=mWmi1. Furthermore, define Ilxll = (xx), If Ilgll > 4supllxll

I xEK i

then for all a E K:

(a+g,a+g) (Ilall - 1lgll)2
> IIg112 -211ahl IIgli

ll1g112> 1s ?n2> Eµ2,
2 2 i=1 2 9'

where e = Einf 1 E" j(gi , gi) yi yj is the smallest eigenvalue of the matrix

((gi, gj)).

N((a + >migi)P) is a polynomial of degree q in the mi, (q = Tr(p)),
the coefficients of which are continuous functions of a. It follows that

IN((a+g)P)I <µg+1 forallaEK,
provided µg is sufficiently big. One therefore finds a subset I" C_ F with
finite complement such that

I,fg lK E P (A)Aq+ e- y Seµz
00

gE j"

P Al = (2µr 1)" - (24 - 1)a. The
t

series on the right is clearly convergent.

From the Poisson summation formula we now get the general
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(3.6) Theta Transformation Formula. One has

Brp,(a,b, - 1/z) _ [iTr(P)e2n;(a,b)vo1(I')]-'N((z/i)p+z)8 ,(-b, a, z).

In particular, one has for the function Or (z) = Br°, (0, 0, z) :

Br(-1/z) = N(zlt) Br (z).vol(e)

Proof: Both sides of the transformation formula are holomorphic in z
by (3.5). Therefore it suffices to check the identity for z = iy, with y E R.
Put t = y-1 "2, so that

1z = i;7, and - 1/z = it2.

Observing that t = t* =* t, so that (fit, r7) *t77) tr7), we obtain

Br(a,b, - 1/z) = N(t-p) N((ta +tg)p) e-n(ta+tg,ta+tg)+2ni(t-1b,tg)

gEr

Let a = ta, ,B = t- lb. We consider the function
fp(a 6,x) = N( (a +x)') e-n(a+x,a+x)+2ni(j3,x)

and put

This gives

(1)

(Pt (a, A, x) = fp (a, 9, W.

Brp.(a b, - 1/z) = N(t-p) tot(a,f, g)
gEr

and similarly z = i gives that

(2) Bp, (-b, a, z) = N(tp) E 9,-1 (-P, a, g).
g'Er,

Now apply the Poisson summation formula

(3)

to the function

1

gE
f (g) = vol(I) g,E ,

f (g1)

f (x) = tot (a, ,l, x) = fp (a, f, tx).
Its Fourier transform is computed as follows. Let h (x) = fp (a, so that
f (x) = h (tx) = ht (x). The transformation A : x i-+ tx of R is self-adjoint
and has determinant N(t). Thus (3.1), (ii), gives
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The Fourier transform h has been computed in (3.3). This yields

f(Y) =
C,, Y)

Substituting this into (3) and multiplying by N(t-p) gives, by (1) and (2):

9 (a, b, - 1/z) _ [N(ipt2p+t)e2'rt(a.b)vol(T')]-1O-'Op,(-b, a

Since t = (z/i)-1/2, i.e., (t2p+1)-1 = (z/i)p+71 , this is indeed the transfor-
mation formula sought.

For n = 1, we obtain proposition (2.3), which at the time was used
without proof for proving the functional equation of the Dirichlet L -series
(and Riemann's zeta function).

§ 4. The Higher-dimensional Gamma Function

The passage from theta series to L -series in § 1 and § 2 was afforded by
the gamma function o

F(s) = J e-YY d
0

In order to generalize this process, we now introduce a higher-dimensional
gamma function for every finite G(C IR)-set X, building upon the notation of
the last section. First we fix a Haar measure on the multiplicative group R+:

Let p = {t, Y J be the conjugation classes in X. We call p real or complex,
depending whether #p = 1 or #p = 2. We then have

R* R*+ - +p'
p

where

R+p = R+' resp. R+p = [ R+ x
We define isomorphisms

+={(Y,Y)IYER+}.

R+p - - R+
by y -r y, resp. (y, y) F-> y2, and obtain an isomorphism

R+ - -} r}R+.
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We now denote by yy the Haar measure on R+ which corresponds to the
product measure

where dt is the usual Haar measure on R+. The Haar measure thus defined
t

is called the canonical measure on R. Under the logarithm

log

it is mapped to the Haar measure dx on R± which under the isomorphism

R± = jl R±p fJ R,
P P

XP ri xp, resp. (xp, xp) H 2xp, corresponds to the Lebesgue measure
on flP R.

(4.1) Definition. For s = (Sr) E C such that Re(sz) > 0, we define the
gamma function associated to the

G

(C JR) -set X by

rx(S) = fN(e_Yy2.
R'

The integrand is well-defined, according to our conventions from p. 445,
and the convergence of the integral can be reduced to the case of the ordinary
gamma function as follows.

(4.2) Proposition. Decomposing the G(CIR)-set X into its conjugation
classes p, one has

rx(S) = FTrp(sp),
P

where s,= s,forp={r),resp.sp=(sr,sr)forp=(r,=t),r F. The
factors are given explicitly by

r(sp), if p real,
rp(sp)

1 2'-Tr(sP)r(Tr(sp)), ifp complex,

where Tr(s) = si + si.
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Proof: The first statement is clear in view of the product decomposition

\R*, Yy
jp R+p, fJ

3';,
p

The second is relative to a G (C R) -set X which has only one conjugation
class. If #X = 1, then trivially fX(s) = F(s). So let X = {r, i.`}, r i.
Mapping

one then gets

f N(e-yys) dy
f N(e (f, -)(sr,sr)) t

f y t

R`

00f e-2 dt
fj VL l
0

and, since d(t/2)2/(t/2)2 = 2dt/t, the substitution t H (t/2)2 yields

f N(e-yys)y d= 21-Tr'(s)r(Tl.(s))
.

J
R+

The proposition shows that the gamma integral r(s) converges for
s = (si) with Re(sr) > 0, and admits an analytic continuation to all of C,
except for poles at points dictated in the obvious way by the ordinary gamma
function r(s).

We call the function

Lx(s) = N(7r-s/2)1-X(s/2)

the L-function of the G(CI R) -set X. Decomposing X into the conjugation
classes p, yields

LX(s) = 1 t Lp(sp) ,
p

where as before we write sp = st for p = {r} and sp = (s, s7) for p = {r, z
r T. The factors L;(sp) are given explicitly, by (4.2), as

f 7r -Sp/2r(sp/2), if p real,
Lp(s) (v)/2(27x)-Tr' S 2T (Tr(sp)/2), if p complex.

For a single complex variable s E C, we put

FX(S) = I'x(Sl)
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where 1 = (1, ... ,1) is the unit element of C. Denoting rl, resp. r2, the
number of real, resp. complex, conjugation classes of X, we find

rx(s) = 2('-2s)r2r(s)r'r(2s)r2.
In the same way we put

LX (s) = Lx (s1) = 7r -ns12rx (s12), n = #X,
and in particular

LR(s) = Lx(s) = n-s/2r(s/2), if X = (r},
Lc (s) = LX (s) = 2(27r)-sr(s), if X = [r, T), t # T.

Then we have, for an arbitrary G(C R) -set X:
LX(s) = Lnz (s)" Lc (s)"

With this notation, (1.2) implies the

(4.3) Proposition. (i) LR(1) = 1, Lc(1) = n
(ii) LR(s+2)= 27rLR(s),Lc(s+1)= zLc(s)
(iii) LR(1 -s)LR(1+s) =cos7rs/2' Lc(s)Lc(1 -s) _ 2

sinus'
(iv) LR(s)LR(s + 1) = Lr(s) (Legendre's duplication formula).

As a consequence we obtain the following functional equation for the
L-function Lx(s):

(4.4) Proposition. LX(s) = A(s)Lx(1 - s) with the factor
A(s) = (cos srs/2)r'+r2 (sin 7rs/2)1'2LC (s)'.

Proof : On the one hand we have
LR(S) LR(s)LR(1 +s) =cosYrs/2

LC (s),LR(1 - s) LR(1 -s)LR(1+s)
and on the other

Lc (s) _ Lc (S)2
- sin nsL,c (s)2LC(1 - s) LC (1 - s)Lc(s) 2

= cosTrs/2 sinlrs/2 LC (S)2.

The proposition therefore results from the identity Lx (s) = La(s)r'LC(s))2.
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This concludes the purely function-theoretic preparations. They will now
be applied to number theory.

§ 5. The Dedekind Zeta Function

The Riemann zeta function (s) _ Yk t i is associated with the field Q
of rational numbers. It generalizes in the following way to an arbitrary
number field K of degree n = [K : Q].

(5.1) Definition. The Dedekind zeta function of the number field K is
defined by the series

1
K (S) = > .01(a)S

where a varies over the integral ideals of K, and 0(a) denotes their absolute
norm.

(5.2) Proposition. The series K (s) converge absolutely and uniformly in
the domain Re(s) > 1 + S for every S > 0, and one has

K (S) = II 1
P 1 - ` 1(P)-S

where p runs through the prime ideals of K.

The proof proceeds in the same way as for the Riemann zeta function
(see (1.1)), because the absolute norm 01(a) is multiplicative. We do not
go into it here, because it is the same argument that also applies to Hecke
L-series, which will be introduced in §8 as a common generalization of
Dirichlet L -series and of the Dedekind zeta function.

Just like the Riemann zeta function, the Dedekind zeta function also
admits an analytic continuation to the complex plane with 1 removed, and
it satisfies a functional equation relating the argument s to 1 - s. This is
what we are now going to prove. The argument will turn out to be a higher
dimensional generalization of the one used in § 1 for the Riemann zeta
function.
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First we split up the series K(s), according to the classes A of the usual
ideal class group C1K = J/P of K, into the partial zeta functions

aEJ
integral

1

'R(a)s

so that
OK (S) _

The functional equation is then proved for the individual functions (A,s).
The integral ideals in ri are described as follows. If a is a fractional ideal,
then the unit group o* of o operates on the set a* = a'. {0), and we denote
by a*/o* the set of orbits, i.e., the set of classes of non-zero associated
elements in a.

(5.3) Lemma. Let a be an integral ideal of K and A the class of the ideal
a-'. Then there is a bijection

a*/o* -14 { b E A I b integral I, d f---+ b = aaC1.

Proof : If a E a*, then a a-1 = (a)a-1 is an integral ideal in St, and if
as 1 = ba 1, then (a) = (b), so that ab-1 E o*. This shows the injectivity
of the mapping. But it is surjective as well, since for every integral b E S,
one has b = as 1 with a E ab c a.

To the G (1C JR) -set X = Hom(K,1C) corresponds the Minkowski space

KR =R=[fJc]t
z

The field K may be embedded into K. Then one finds for a E K* that

Jt((a)) = INKIQ(a)I = IN(a)I ,
where N denotes the norm on R* (see chap. I, § 5). The lemma therefore
yields the

(5.4) Proposition. (51,s) = O't(a)t F N(a1

)1,CEa*/o*

By chap. I, (5.2), the ideal a forms a complete lattice in R whose
fundamental mesh has volume

vol(a) = da,
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where da = 9t(a)2IdK I denotes the absolute value of the discriminant of a,
and dK is the discriminant of K. To the series s) we associate the theta
series

O (a, z) = Ba(Z/dl/n) _ erzi (az/dog",
a

aEa

It is related to (A, s) via the gamma integral associated to the G (C I R) -set
X = Hom(K, (t;),

j'K(S) = rx(S) = 1 N(e-yys) d ,

R+

where s E C, Re(s) > 0 (see (4.1)). In the integral, we substitute
y H irIa12y/da/n

with I I denoting the map R* R', (xri) H (Ix= I). We then obtain

IdKls7r-ns1'K(S) a) s
e-7r(sy/d;1,r,a)N(Y)s

dy.IN(
R

Summing this over a full system 9t of representatives of a*/o*, yields

I dK I sn-ns FK (s) (A, 2s) = f g(y)N(Y)s
dy

R*

with the series
ncay/d.""

a)g(Y)e
Swapping summation and integration is legal, for the same reason as in the
case of the Riemann zeta function (see p. 422). We view the function

Z.(s) = IdKis/27r-ns/2rK(s/2) = Idxis/2Lx(s)
as the "Ruler factor at infinity" of the zeta function (.fi, s) (see § 4, p. 455)
and define

Z(S,s) = Z.(sM.t,s),
The desire to realize this function as an integral over the theta series 0 (a, s) is
frustrated by the fact that in the theta series we sum over all a E a, whereas)
summation in the series g(y) is only over a system of representatives of,
a*/o*. This difficulty - which was already hinted at in the case of thej
Riemann zeta function - will now be overcome in the general case as
follows.
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The image I o* of the unit group o* under the mapping ( : R* -3 R+
is contained in the norm-one hypersurface

S={x ER+IN(x)=1}.
Writing every y e R+ in the form

Y = x = N(y)t = N(y),
we obtain a direct decomposition

R+=SxR+.
Let d*x be the unique Haar measure on the multiplicative group S such that
the canonical Haar measure dy/y on R+ becomes the product measure

dy dt= d*x x

y t

We will not need any more explicit description of d*x.
We now choose a fundamental domain F for the action of the group

10*12 IE12 1 s E o*} on S as follows. The logarithm map

log : R. -3 R±, (xt) F---; (log x.t) ,

takes the norm-one hypersurface S to the trace-zero space H = Ix E Rt I
Tr(x) = 0), and the group 10* I is taken to a complete lattice G in H
(Dirichlet's unit theorem). Choose F to be the preimage of an arbitrary
fundamental mesh of the lattice 2G. Any such choice satisfies the

(5.5) Proposition. The function Z(A, 2s) is the Mellin transform

Z(S,2s) =L(f,s)
of the function

f(t) = fF(a,t) = 1 J B(a,ixt'/")d*x,
W

F

where w = #p(K) denotes the number of roots of unity in K.

Proof: Decomposing R+ = S x R*, we find
00

Z(A, 2s) = T e-n(axt',a) d*xts dtff aEOt t
0 s
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with t' = (t/da)t/". The fundamental domain F cuts up the norm-one
hypersurface S into the disjoint union

S = U 112 F .

nEIo*I

The transformation x r+ r12x of S leaves the Haar measure d*x invariant and
maps F to rl2F, so that

f Y e- *xt', a) d*x = f e-yr (axt', a) d*x

s aE91 nEIO*I
n 2F

aE9R

1 e-tr(aext',ae)d*x
w EEO* aE9t

F

Iixt= f(&a ) - 1) dx=f(t)-f(oo).
F

Observe here that we have to divide by w = #p(K), because 11(K) is just
the kernel of o* -a o*I (see chap. I, (7.1)), hence EIEI = w Te Observe
furthermore that as runs through the set a* = a , (0} exactly once, and
finally that f (oo) =

w
fF d*x, as 0(a, ixoo) = 1. This result does indeed

show that
00

Z(F,2s)=f(f(t) - f(c)o))tsdt =L(f,s).
t

0

Using this proposition, the functional equation for the function Z(.J, s)
follows via the Mellin principle from a corresponding transformation formula
for the function fF (a, t), which in turn derives from the general theta
transformation formula (3.6). In order to find the precise equation, we have
to compute the volume vol(F) of the fundamental domain F with respect
to d*x, and the lattice which is dual to a in R. This is achieved by the
following two lemmas.

(5.6) Lemma. The fundamental domain F of S has the following volume
with respect to d*x:

vol(F) = 2r-1 R,

where r is the number of infinite places and R is the regulator of K (see
chap. I, (7.5)).
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Proof: The canonical measure dy/y on R+ is transformed into the product
measure d*x x dt/t by the isomorphism

a : S x R * + R+, (x, t) 1a xtlh'
.

Since I = (t E R+ I I < t < e} has measure 1 with respect to dt/t, the
quantity vol(F) is also the volume of F x I with respect to d*x x dt/t,
i.e., the volume of a(F x I) with respect to dy/y. The composite ' of the
isomorphisms

R+ log > R, -+ F1 IR = R'_
pl-

(see §4, p. 454) transforms dy/y into the Lebesgue measure of ]Rr,

vol(F) = vo1R' (ifra(F x I)) .

Let us compute the image *a (F x I). Let 1 = (1, ... , 1) E S. Then we find

Vra((1,t)) = elogtII' elogt
n

with the vector e = (epi , ... , ep,) E R', ep; = 1, resp. = 2, depending
whether pi is real or complex. By definition of F, we also have

*a (F x (11) = 20,
where 0 denotes a fundamental mesh of the unit lattice G in trace-zero space
H = ((xi) E ][fir I E xi = 0). This gives

1i/ra(F x I) =20+[0,
n

the parallelepiped spanned by the vectors 2e1, ..., 2er-1, ,: e, if et, , er-I
span the fundamental mesh 0. Its volume is n 2r-1 times the absolute value
of the determinant

det

ell ... er-i, 1 ep1

eir ... er-1,r ep,
Adding the first r - 1 lines to the last one, all entries of the last line become
zero, except the last one, which is n = ep,. The matrix above these
zeroes has the absolute value of its determinant by definition equal to the
regulator R. Thus we get

vol(F) =2r_1R. 0
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(5.7) Lemma. The lattice F' in R which is dual to the lattice r = a is
given by

where the asterisk denotes the involution (xt) r->. (xt) on Ka and 0 the
different of K IQ.

Proof: As (x, y) = Tr(*xy), we have

*F'={*gERI (g,a)EzforallaEa)={xERI Tr(xa)c7G}
Tr(x a) c 7L implies immediately x E K, for if a 1, ... , a is a 7L -basis of a and
x = x1a1 +. +Xnan, with x; E R, then Tr(xai) _ >t x; Tr(a;ai) = ni E 7Z'
is a system of linear equations with coefficients Tr(a; ai) = TrK IQ (alai) E Q
so all xl E Q, and thus x E K. It follows that

*F'{xEKI Tr(xa)c7L}
By definition we have i-1 = {x E K I TrK,Q(xo) c 7L}, and we obtain the,
equivalences x E* T' TrKIQ(xao) c Z for all a E a xa c o-I',

X E E

(5.S) Proposition. The functions fF (a, t) satisfy the transformation formula

fF {a, t) = t lie fF-i (at)
and one has

1

fF(a, t) = 2 R + O(e-cth/h )
w

for t-*oo,c>0.

Proof: We make use of formula (3.6)

Br(-1/z) = N(z/i)
Br (z)vol(F)

for the lattice F = a in R, whose fundamental mesh has volume;
vol(I) = Yt(a) I dK I t/2. The lattice I" dual to r is given by (5.7)
as *T' _ (ac0)-1. The compatibility (*gz, *g) = (gz, g) implies that
Br, (z) = 0*r, (z). Furthermore we have

d(a.D)_1 ='JT(a)-2,R(0)-2IdK I = 1/(O(a)2IdK I) = 1/da.

The transformation x H x-' of the multiplicative group S fixes the Haar,
measure d*x (in the same way as x H -x fixes a Haar measure on R")I
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and maps the fundamental domain F onto the fundamental domain F-1,
whose image log(F-1) is again a fundamental mesh of the lattice 2 log I o* j .

Observing that N(x(tda)'1n) =rtda for x E S, we obtain

fF(a, 1 = 1 J ea(ix tda) d*x
t w

F

1 (

Bal-1/ix n tda) d*x
W

F_i

(tda)1/21 f 0(aa)_l (ix n tda) d*xw vol(a) J
F-I

t1/2

w [ 0(ac0)-1 (ix n tld(a)-, ) d*x
F -I

= t'/2 f _i ( (act)-' , t) .
This shows the first formula. To prove the second, we write

fF(a,t) = w1 d*x+ 1

w
f (B(a,ixt' n) - 1) d*x = vol(F)

w +r(t).
F F

The function r (t) satisfies r (t) = O (e-lt'I°) , c > 0, t -> co, as the
summands of 6(a, ixt'I") - 1 are of the form

n ,

e-"(°x'Q) a E a, a 0, t' = t/da.
The point x = (xi) varies in the compact closure F C { R+] + of F.
Hence xT > 8 > 0 for all r, i.e.,

(ax,a) _ IrQ12xT > 8(a,a)

and so
vol(F) nr(t)

w
Writing m=min{(a,a)IaEa,a¢0)and M=#(aEaI(a,am),it
follows that

0a(is t') - 1 = e-n8F71 t'(M +
O(e-ctI/

` (a,a)>nv

where c = We thus get as claimed

yol(F) _c,,/n 2r-1 't,/,.fF(a,t)= +O(e )= R -{-O(e- ).
-w w

0
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This last proposition now enables us to apply the Mellin principle (1.4) to
the functions fF (a, t). For the partial zeta functions

(q,s) = E 's0T(6)
integral

this yields the following result, where the notations dK, R, w, and r signify
as before the discriminant, the regulator, the number of roots of unity, and
the number of infinite places, respectively.

(5.9) Theorem. The function

Z(A, s) =
Z.(s) _ JdK Is/2Yr-ns/21K (s/2), ad-nits an analytic continuation to C
{0, 1) and satisfies the functional equation

Z(.P, S) = Z(.',1 - s),
where the ideal classes . and .l! correspond to each other via .fiR' = [D]. It
has simple poles at s = 0 and s = 1 with residues

2r 2r--R, resp. -R.
w w

Proof: Let f (t) = fF (a, t) and g(t) = fF_, ((aD)-l, t). Then (5.8) implies

f (. ) = t ll2g(t)
and

.f (t) =ao+O(e-ctl/'), g(t) =ao+O(e-`t),
with ao =

2w
t R. Proposition (1.4) thus ensures the analytic continuation of

the Mellin transforms of f and g, and the functional equation

L(f,s) =L(g, 2 -s)
with simple poles of L (f , s) at s = 0 and s = 2 with residues -ao, resp. ao.
Therefore

Z(ft's)=L`f,2)
admits an analytic continuation to C (0, 11 with simple poles at s = 0 and
s = 1 and residues

2r 2r-2ao = - - R, resp. 2ao = - R
w w
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and satisfies the functional equation

Z(.fi,s)=L(f,2)=L(g,12s)=Z(.kt',1-s).

This theorem about the partial zeta functions immediately implies an
analogous result for the completed zeta function of the number field K,

ZK(S) = Z(-R,s)

(5.10) Corollary. The completed zeta function ZK (s) admits an analytic
continuation to C [0, 11 and satisfies the functional equation

ZK(S)=ZK(1-S).
It has simple poles at s = 0 and s = 1 with residues

2rhR 2rhR
resp.

w w

where h is the class number of K.

The last result can be immediately generalized as follows. For every
character

X:J/P) S'
of the ideal class group, one may form the zeta function

Z(X,s) =
where

X (a)
it integral 91(a)3

and X (a) denotes the value X (Ft) of the class 51 = [a] of an ideal a. Then
clearly

Z (x, s) _ E X (A) Z (A, S),

and in view of 1t' = .At`1 [c'], we obtain from (5.9) the functional equation

Z (X , s) = X (D)Z (X ,1 -S).

If X E 1, then Z(X, s) is holomorphic on all of C, as Er X (S) = 0.
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We now conclude with the original Dedekind zeta function

Ws) _ w(a)s > Re(s) > 1.

467;

The Euler factor at infinity, Z., (s), is given explicitly by § 4 as

Zoo(s) =IdKIS/2Lx(s) = IdKISI2LR(s)r1Lc(s)r2,

where r1, resp. r2, denotes the number of real, resp. complex, places. By
(4.3), (i), one has Z,(1) = IdK 11/2/7,r2 . As

K(s) = Zoo(S)ZK(S) = IdKI-S/2Lx(S)-1ZK(s),
we obtain from (4.4) the

(5.11) Corollary. (i) The Dedekind zeta function K (s) has an analytic
continuation to C '. { I).

(ii) At s = 1 it has a simple pole with residue
2r1 (27r)r2

K
wldx11/2hR =hR/e5.

Here h denotes the class number and

w l
dK 11/2

g log
21" (27r)r2

the genus of the number field K (see chap. III, (3.5)).

(iii) It satisfies the functional equation

K(1 -s) =

A(s) = IdKIs 7 (cos 2 2 )r2L/ c (s)

The proof of the analytic continuation and functional equation of the
Dedekind zeta function was first given by the mathematician ERICH HECKE
(1887-1947), along the same general lines we have presented here, albeit in a
somewhat different formulation. Further, the theory we are about to develop
in the following sections § § 6-8 also substantially goes back to HECKE

The formula for the residue
2' (27r)r2

Ress=1 x (s) = hR
w IdK 1112
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is commonly known as the analytic class number formula. It does allow
us to determine the class number h of the field K, provided we know the
law for the decomposition of primes in this field sufficiently well to lay our
hands on the Euler product and thus compute the zeta function.

The following application of corollary (5.11) to Dirichlet L-series L(X, s)
(see § 2) is highly remarkable. It results from studying the Dedekind zeta
function K(s) for the field K = Q(lan,) of m-th roots of unity, and is based
on the

(5.12) Proposition. If K = Q (Am) is the field of m -th roots of unity, then

K(s) = G(s) IIL(X,s),
x

where X varies over all Dirichlet characters mod nz, and

G(s) = TI (1 - 01(p)-s)-i.

pInt

Proof: The proof hinges on the law of decomposition of prime numbers p in
the field K. Let p = (pt ... pr)e be the decomposition of the prime number
p in K, and let f be the degree of the p;, i.e., T(p;) = pf. Then OK(s)
contains the factor

fJ(1 -'71(p)-s)-t = (1 - p-fs)-r.
PIP

On the other hand, the L -series give the factor ]lx (1 - x (p)p-s)-t . For p Im
this is 1. So let p { m. By chap. I, (10.3), f is the order of p mod m in
(Z/mZ)* and e = 1. Since efr = cp(m), the quotient r = rp(m)/f is the
index of the subgroup Gp generated by p in G = (Z/mZ)*. Associating
X '-a X (p) defines an isomorphism GP = IL f , and gives the exact sequence

I G/GPGµf1,
where' indicates character groups. We therefore find r = #(G/G,,) = (G
Gp) elements in the preimage of X (p). It follows that

II(1 - X(P)P-s)-t = II (1 - p-s)-r = (1 - p-fs)-r
x 5EAf

= fl (1 - `n(p)-s)-t
PIP

Finally, taking the product over all p, we get OK (s) = G(s) J] L(X, s).
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For the trivial character X° mod m, we have L(X°,s) = fpl,,,(1 - p- )
c(s), so that

OK(s)=G(s) fl(1-p(s) fl L(X,s).
PI- X#XI

Since c(s) and OK (s) both have a simple pole at s = 1, we obtain the

(5.13) Proposition. For every non-trivial Dirichiet character X, one has

L(X, 1) 0 0.

This innocuous looking result is in fact rather profound, and yields as 1

concrete consequence

(5.14) Dirichlet's Prime Number Theorem. Every arithmetic progression 1

a, a±m, a±2m, a±3m, ..., with (a, m) = 1,
i.e., every class a mod m, contains infinitely many prime numbers.

Proof: Let X be a Dirichlet character mod m. Then one has, for Re(s) > 1,

logL(X,s) = ->2log(1-X(p)p_S) = >2 >2 X(Pms) = > X(P)+gx(s),
P P m=1 MP P P

where gx (s) is holomorphic for Re(s) > 1 - this follows from a trivia
estimate. Multiplying by X(a-1) and summing over all characters mod m
yields

1EX (a-') logL(X, s) _ EE X (a P) + g(s)
x x P

Ps

_ >2 >2X(a_1b) > is
+g(s)

b=1 x p=b(m) P

om -f-g(s).
p=a(m) Ps

Note here that
0, if a=Ab,

>X(a-1 b) _
x (P(m) _ #(Z/mZ)*, if a = b.

When we pass to the limit s --f 1 (s real > 1), logL(X,s) stays
bounded for X X ° because L(, 1) 0 0, whereas log L (X °, s) =
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EP,,, log(1 - p'S) + log(s) tends to oo because c(s) has a pole. The
left-hand side of the above equation therefore tends to oo, and since g(s) is
holomorphic at s = 1, we find

lim
(P m)

= oo .
S-1 p=a(m) Ps

Thus the sum cannot consist of only finitely many terms, and the theorem is
proved.

For a = 1, Dirichlet's prime number theorem may be proved by pure
algebra (see chap. I, § 10, exercise 1). Searching for a proof in the general
case Dirichlet was led to the study of the L-series L(X,s). This analytic
method gives sharper results on the distribution of prime numbers among
the classes a mod m. We will come back to this in a more general context
in§13.

§ 6. Hecke Characters

Let m be an integral ideal of the number field K, and let J'° be the group
of all ideals of K which are relatively prime to m. Given any character

X:Jm --* S' fz cc IzI=I),
we may associate to it, as a common generalization of the Dirichlet L -series
as well as the Dedekind zeta function, the L -series

(X, S) _ X(a)
a gZ(a)s

.

Here a varies over all integral ideals of K, and one defines X (a) = 0 whenever
(a, m) 0 1. Searching for the most comprehensive class of characters X for
which the corresponding L-series could be shown to have a functional
equation, HECKE was led to the notion of GriJ3encharaktere, which we
define as follows.

(6.1) Definition. A Grofiencharakter mod m is a character X : Jm -+ S'
for which there exists a pair of characters

Xf:(o/m)*)S', Xco:R*S',
such that

X((a)) = Xf(a)Xc(a)
for every algebraic integer a E o relatively prime to m.
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A character X of J'° is a Gr5f3encharakter mod m as soon as there exists
a character X,),, of R* such that

x((a)) = X. (a)
for all a E o such that a = 1 mod m. For if this is the case, then the rule
Xf(a) = X((a))X.(a)-1 defines a character Xf of (o/m)* which satisfies

X((a)) = Xf(a)X.(a)
for all algebraic integers a E o relatively prime to m. This last identity
underlines the fact that the restriction of a GrOj3encharakter to principal
ideals breaks up into a finite and an infinite part. From

o(m)laecI(a,m)1)

it extends uniquely to the group

K(m)={aeK*I(a,m)=1}

of all fractions relatively prime to m, because every a E Kdetermines
a well-defined class in (o/m)*. The character X,,., and thus also the
character X F, are determined uniquely by the Gr6f3encharakter X, since
the group

ml
is dense in R*, by the approximation theorem, and one has Xc" (a) = X ((a))
for a E K. Let us recall that the congruence a =_ 1 mod m signifies that
a = b/c, for two integers b, c relatively prime to m, such that b = c mod m
or, equivalently, a E Up"Plc Kp for p Im, if m = fp p"P.

The character X,,. factors automatically through R*/om, where

OmE E0*IE=l modm}.
In fact, for E E o' we have Xf(s) = 1, and thus Xf(E)Xoo(E)

(E)) = 1. The two characters Xf and X,,,, of (o/m)*, resp. R*/Om,
associated with a Grbj3encharakter X satisfy the relation

Xf(E)Xo(E) = 1 for all E E o*,

and it can be shown that every such pair of characters (Xf, X,,) comes from
a Gr5j3encharakter X (exercise 5).

The attempt to understand Grdj3encharaktere in a conceptual way leads
one to introduce ideaes. In fact, all Gr6f3encharaktere arise as characters of
the idele class group of the number field K. We will not use this more
abstract interpretation in what follows, but it will be explained at the end of
this section.
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(6.2) Proposition. Let X be a Grofiencharakter mod in, and let m' be a
divisor of m. Then the following conditions are equivalent.

(i) X is the restriction of a GroJ3encharakter X': J"'' -+ S1 mod m'.

(ii) Xf factors through (o/m')*.

Proof: (i) = (ii). Let X be the restriction of the GrOJ3encharakter
X' : J'"' S', and let Xf, X' be the pair of characters associated with X'.00
Let Xf, resp. X,,o, be the composite of

x'
(o/m)* (o/m')* - S', resp. R*/om R*/om -oc-.,, S1.

We then find for a E O(m) C o('"') :

X ((a)) = X'((a)) = Xf (a)X' (a) = Xf(a)&(a),00

so that Xf = Xf and X,) = X, because Xf and X,, are uniquely determined
by X. Thus Xf factors through (o/m')* (and through R*/o"`').

(ii) W. Let Xf be the composite of (o/m)* , (o/m')* S1. In every

class a' mod P'' I E J"''/P"'', there is an ideal a E J"' which is relatively
prime to m, i.e., a' = as for some (a) E P"' . We Put

X'(a) = X(a)Xf(a)X.(a)
This definition does not depend on the choice of the ideal a E J', for if

alai, al EJm,(al)EP',then onehas(aal1)EJm,and
X (a)x'(a)xon(a) = X (a)x ((aal 1)) xf(a-lal)Xoo(a-la1)Xf(a)X,,.(a)

= X(at)Xf (al)x.(al)
The restriction of the character X' from J'', to J"' is the Gr6f3encharakter X
of J"', and if (a) is a principal ideal prime to m' and a' = ab, (a) E J'",
(b) E P'"e, then we have

X'((a')) = X ((a)) X'((b)) = X ((a)) X'(b)xoo(b)
= Xf(a)X.(a)Xf (b)Xao(b) = Xf (ab)x (ab) = Xf(a')X"o(a').

Thus X' is a Grbjiencharakter mod m' with corresponding pair of characters

The Grof3encharakter X mod m is called primitive if it is not the
restriction of a Gr6J3encharakter X' mod m' for any proper divisor m'Im.
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According to (6.2), this is the case if and only if the character Xf of (o/m)'
is primitive in the sense that it does not factorize through (o/m')* for any
proper divisor m'Im. The conductor of X is the smallest divisor f of in
such that X is the restriction of a Gr6f3encharakter mod f. By (6.2), j

is the conductor of Xf, i.e., the smallest divisor of m such that Xf factor:
through (o/f)*.

Let us now have a closer look at the character Xf, and then at the
character Xoo.

(6.3) Definition. Let Xf be a character of (o/m)* and y E m-iD-1, where V
is the different of K IQ. Then we define the Gauss sum of X f to be

rm(Xf, y) = F Xf(x) e2ai Ti(xy)

xmod m
(.r, M) =I

where x varies over a system of representatives of (o/m)*.

The Gauss sum does not depend on the choice of representatives x, for if
x'-Xmodm,then x'y-xyEmm sir-l =i-'={aEKlTr(a)EZ},
so that

Tr(x'y) - Tr(xy) mod 7G

and therefore e2ai Tr(x'y) = e2ai Tr(xy) The same argument shows that
rm(Xf, y) depends only on the coset y + zr', i.e., it defines a function
on the o/m-module In the case K = Q, m = (m), we get back
the Gauss sum introduced in (2.5) by r (Xf, n) = rm(Xf, m }. We will have to
define theta series and L-series attached to Hecke's Grbj3encharaktere with
a view to proving functional equations. For this, the following properties of
Gauss sums will play a crucial role.

(6.4) Theorem. Let Xf be a primitive character of (o/m)*, let y E m-tD-1
and a E o. Then one has

rm(Xf, ay) =
Xf(a)rm(Xf, y) , if (a, m) = 1,
0, if (a, m) 0 1,

and furthermore

I rm(Xf, Y) I = ` t(m) , if (YMD, m) = 1.
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The most diffcult part of the theorem is the last claim. To prove it, we
make the following preparations. For integral ideals a = p v' p, vi > 1,
consider the Mi bius function

1, if r = 0, i.e., a = (1),
lu(a)= (-1)r, if v1=...-v,-=1,

0, otherwise.

For this function we have the

(6.5) Proposition. If a 0 1, then r pc(b) = 0.
bra

Proof: If a = pi` p° r, vi > 1, then

AM w(1)+E/4pi)+ E µ( Piipi2)+...+µ(Pi...pr)
bin i il <i2

= 1+1)+121(-1)2+...+\r)(-1)r
1+(-1))r=0. 0

Now, for y E m-10-1 and for every integral divisor a of m, we look at
the sums

Ta(Y) e2niTr(xy) and sa(y) _ e27riTr(xy)
x mod m x mod m
(x, m)=a aIr

These sums do not depend on the choice of representatives x, for if
x' - x mod m, then (x' - x)y E D-1, hence Tr(x'y) - Tr(xy) mod Z. We
find the

(6.6) Lemma. One has

and for every divisor aim,

Ti (Y) _ E g (a)S.(Y),
aim

(0l(a), ifyEa-'D-1,

Sa(Y) = S
0, ify a
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Proof: In view of (6.5), we have

µ(a)S.(y) _ E pt (a) E Tb(Y) _ F Tb(y) E u(a) = T1(y)
aim aim b bim alb

album
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If y E a 1t-1 and a I x, then xy E t-1, so that Tr(xy) E Z, i.e., all summands
of Sa are 1 and there are #(a/m) = M(11) of them. If on the other hand
y 0 a1-0-1, then we can find in a/m a class z mod m such that zy D_1,

i.e., Tr(zy) 0 7G, so that e27riTr-(zy) 54 1, and we obtain

e21r i Tr(zy) Sa(Y) _ E e27riTr((x+z)y) - Sa(Y),
xmodm

aix

since x + z varies over all the classes of a/m as x does, so that we do find
sa(y) = 0-

ProofProof of Theorem (6.4): Let a E o, (a, m) = 1. As x runs through a system
of representatives of (o/m)*, so does xa. We get

tm(Xf, ay) = >2 Xf(x) e27r1 Tr(xay)

x mod m
(x, m)='1

= X f(a) F Xf(xa) e27r1 Tr(xay)

x mod m
(x, m)=1

= Xf(a)tm(Xf, y)

Let (a, m) = ml 1. Since Xf is primitive, we can find a class
b mod in E (o/m)* such that

Xf(b) 1 and
mb - lmod -
MI

As a consequence, ab - a mod m, so that aby - ay r= D-1, and by what we
have just shown,

Xf(b)tm(Xf, ay) = rm(Xf, bay) = tm(Xf, ay)

Finally, in view of Xf(b) # 1, we find t,,,(Xf, ay) = 0.

As for the absolute value of the Gauss sum, we see from (6.6) that
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Itm(Xf, Y)I2 = tm(Xf, Y)tm(Xf, Y)

: tm(Xf, y)Xf(x) e-2fri Tt(xy)
xmod m
(x, m)=1

rm (Xf, xy) e-27ri Tr(xy)
x mod m
(x, m)=1

F E Xf(z) e2ni Tr(xy(z-1))
z mod m x mod m
(z, m)=1 (x, m)=1

E Xf(z)TI(Y(z - 1))
z mod m
(z, m)=1

E Xf(z) E u(a)S.(Y(z - 1)) .
Z mod m aim
(z, m)=1

We now make use of the condition (ymD, m) = 1. It implies that

y(z-1)ea 1-0-1 z - lmod
a

Indeed, if z - 1 E aim, then y(z - 1) E m-1-0-'a-1m = a-1-0-1. If on the
other hand z # 1 mod a , i.e., a f (z - 1), then vp(z - 1) < up(11) for a
prime divisor p of

a
M. Since (ymD, m) = 1, we have vp(ymcD) = 0, so that

vp(y) _ -vp(m) - vp(c)) and

vp(y(z - 1)) < Vp(m) - v ,(a) +vp(Y) = -Vp(a) - V,(() = Vp(a 1D-1),

and thus y(z - 1) a -'D-1. This, together with (6.6), gives

++I rm(Xf,y)12 = Lp(a) (m)
F- Xf(Z)

aim a z mod m
z=1 mod m/a

For a 0 1, the last character sum vanishes since Xf is primitive, and therefore
nonzero on the subgroup of z mod in E (o/m)* such that z - 1 mod m/a:
the sum reproduces itself under multiplication with a value Xf(x) 1 of the
character. So we finally have that I rm(Xf, Y)I2 = 0'i(m). This proves all the
statements of the theorem.

Having studied the characters Xf of (o/m)*, we now turn to the characters
X,,) of R*. They are given explicitly as follows.

(6.7) Proposition. The characters X of R*, i.e., the continuous homomor-
phisms

X:R*->S',
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are given explicitly by

A(x) = N(xPIxI-P+'q),

for some admissible p e ft Z (see § 3, p.448)land a q E R. p and q are
uniquely determined by),.

Proof: For every x E R* we may write x = IXI Ix I, and obtain in this way
a decomposition

R*=UxR+,
where U = { x E R* I Ix I = 1) . It therefore suffices to determine separately
the characters of U and those of R. We write p instead of r for elements of
Hom(K, C) to indicate that r = F, and we choose an element a from each
pair jr, fl such that r $ F. Then we have

U= [ r(S1]+ _ fl(±l) x fl [SIX SlI+
Z P a

and S' -} [S' x S']+, xa H is a topological isomorphism. The
characters of [±1} correspond one-to-one to exponentiating by a pp E (0, 1),
and the characters of Si correspond one-to-one to the mappings xa H XQ,
fork e Z. From the correspondence k it (k, 0), resp. (0, - k), fork > 0,
resp. k < 0, we obtain the characters of [St x Sh]+ in a one-to-one way from
the pairs (p7, pt) with pZ, py > 0 and ptpt = 0. The characters of U are
therefore given by

A(x) = N(xP),
with a uniquely determined admissible p E fl, Z.

The characters of R+ are obtained via the topological isomorphism

log :R+-+R±.
Writing as above

R±=FIR xfl[R
p a

and observing the isomorphism [ R x R] t R, (xa, xa) H 2xa, we see
that a character of R± corresponds one-to-one to a system (qp, qa) via the
rule

x H lieigpxa II e2igTxo

P a

It is therefore given by an element q e R± via x r> N(e'gx). The
isomorphism log then gives a character A of R+ via y H N (el q log y) =
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N(yiq), with a uniquely determined q E R. In view of the decomposition
x = I I x 1, we finally obtain the characters ), of R* as

X(x) = N(( 1XX I )PIxIcg) = N(xP XI-P+iq) El

If the character Xoo associated to the Gr5f3encharakter X : J' S1 is
given by

Xoo(x) = N(XPIxI-P+iq

/Jthen we say that X is of type (p, q), and we call p - iq, the exponent
of X. Since Xm factors through R*/o'", not all exponents actually occur (see
exercise 3).

The class of all Grof3encharaktere subsumes in particular the generalized
Dirichlet characters defined as follows. To the module

m = J p',,
pt-

we associate the ray class group J'°/P'° mod m (see chap. VI, § 1). Here
J'° is the group of all ideals relatively prime to m, and PII1 is the group of
fractional principal ideals (a) such that

a - 1 mod m and a totally positive.
This last condition means that to > 0 for every real embedding t : K R.

(6.8) Definition. A Dirichlet character mod m is a character
X : Jm/Pm - S1

of the ray class group mod m, i.e., a character X : J'" -+ S' such that
X(Pm) = 1.

The conductor of a Dirichlet character X mod m is defined to be the
smallest module f dividing m such that X factors through Jf/pf_

(6.9) Proposition. The Dirichlet characters X mod m are precisely the
Gri3j3encharaktere mod m of type (p, 0), p = (pr), such that pt = 0 for all
complex r. In other words, one has

X ((a)) = Xf(a)N((lal)P)'
for some character Xf of (o/m)*. The conductor of the Dirichlet character is
at the same time also the conductor of the corresponding Gr(3flencharakter.
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Proof: Let X be a GroJ3encharakter mod m with corresponding characters
Xf, X. of (o/m)*, R*/om, such that X... is of type (p, 0) with pi = 0 for r
complex. E o such that a 1 mod m, we then obviously
have Xf(a) = 1, and x. (a) = 1, and then X((a)) = Xf(a)X,, (a) = I.
Therefore X factorizes through Jm/Pm, and is thus a Dirichlet character
mod m.

Conversely, let X be a Dirichlet character mod m, i.e., a character of Jm
such that X (Pm) = 1. Let Km = {a E K* I a = 1 mod m), K. = {a (=- K' I a
totally positive) and R*) _ ((xt) E R* I xr > 0 for r real). Then we have
an isomorphism

Km/K+ R*/R(+) = II (±1).
p real

Then the composite

Km/K+ t) J°'/P- -4 S'

defines a character of R*/R*+). It is induced by a character X,,,, of R* which -
because 1 - is of the form X00(x) = )P) with p = (pr),
P, E (0, 11 for r real, and pz = 0 for r complex. We have X ((a)) = Xoo(a)
for a E K m, and

Xf(a) = X((a)) XCO(a) '

gives us a character of (o/m)*. Therefore X is indeed a GroJiencharakter of
the type claimed.

Let f be the conductor of the Dirichlet character X mod m, and let f be the
conductor of the corresponding Grbj3encharakter mod m. X : J'"/P' - S;'
is then induced by a character X' : Jf/Pf ---)- S', so the GrOJ3encharakter
X : Jm -3 S' mod m is the restriction of the GroJ3encharakter X' : Jf -+ S'.
This implies that f' I f. On the other hand, the Graj3encharakter X J' --> S'
is the restriction of a Gr6j3encharakter X" : Jf' S' , so X f is the composite

x"of (o/m)* - (o/f')* -+ S' (see (6.2)). By the above, X" gives a character

Jf'/Pf' S' such that the Dirichlet character X : Jm/Pm -* S' factors
'' . Hence f I f', so that f = f .through Jf /Pf 0

(6.10) Corollary. The characters of the ideal class group C1K = JIP,
i.e., the characters X : J S' such that X (P) = 1, are precisely the
GrOJ3encharaktere X mod 1 satisfying Xc: = 1.
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Proof: For m = 1 we have (o/m)* = (1). A character X of J/P is
a Gr5f3encharakter mod 1. The associated character Xf is trivial, so
X.(a) = Xf(a)-'X((a)) = 1, and thus X,,. = 1, because K* is dense
in R*. If conversely X is a Gr6f3encharakter mod 1 satisfying X', = 1, then

X((a)) = Xf(a)X.(a) = Xf(a) = 1,
for a E K*. Therefore X(P) = 1, and X is a character of the ideal class
group.

To conclude this section, let us study the relation of Gr5f3encharaktere to
characters of the ideae class group.

(6.11) Definition. A Hecke character is a character of the id81e class group
C = I /K* of the number field K, i.e., a continuous homomorphism

of the ideae group I = L[pK* such that X(K*) = 1.

In order to deal with Hecke characters concretely, consider an integral
ideal m = IIp p"P of K, i.e., no > 0 and no = 0 for p I oo. We associate to
this ideal the subgroup I'° of I,

1 "` = If" x I. where If = I1 Up"Pi , I, = f1 Kp .
p100pt-

If p { oo, then Up(') is the group of units Up if n = 0, and the n-th group
of higher units for n > 1. We interpret 1 as the multiplicative group R* of
the R-algebra R = K ®Q I[8 = Ilpl K. Observe that I7II differs slightly
from the congruence subgroup I' _ Flp Up"PI introduced in chap. Vl, § 1, in
that, for real p, we have the factor Up°l = R instead of the component K.
The effect is that I/IrK* is not the ray class group J'°/P'° mod. m, but
isomorphic to the quotient J°'/P'" by the group P'° of all principal ideals (a)
such that a = 1 mod m - this is seen as in chap. VI, (1.9). We will refer
to J'IP' as the small ray class group.

We call m a module of definition for the Hecke character X if

X(If)=1.
Every Hecke character admits a module of definition, since the image of
X : fpt,,. Up -+ S' is a compact and totally disconnected subgroup of
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S1, hence finite, and so the kernel has to contain a subgroup of the form
Up' where np = 0 for almost all p. For it we can take the ideal

m = fp},,. p' as a module of definition.

Since X (If) = 1, the character X : C = I/ K * - St induces a character

X:C(m)-fS1
of the group

C(m) = I/IfK*.
But it will not in general factor through the small ray class group
I/I'"K* = Jm/Pm (see chap. VI, (1.7), (1.9)), which bears the following
relation to C(m).

(6.12) Proposition. There is an exact sequence

1 -) R*/Om -) C(m) -> J'n/Pm _ 1.

Proof: The claim follows immediately from the two exact sequences

1 -) IrK*/ImK* I/If K* I/ImK* ) 1,

1 1m fl K*/If fl K* -+ 1 m/If 1rK*/IfK* 1.

In the second one, one _has 1 m n K* = om, If fl K* = 1 and
1°1/If=1,),, = R*, and soImK*/IfK*=R*/om.

Given a Hecke character X with module of definition m, we may now
construct a Gr5f3encharakter mod m as follows. For every p { oo, we choose
a fixed prime element 7rp of Kp and obtain a homomorphism

C:Jm-pC(m)
which maps a prime ideal p t m to the class of the idele (7rp)
(.... 1, 1, ir,,1,1, . . .). This mapping does not depend on the choice of
the prime elements, since the ideles (up), up c Up, for p fi in, lie in I.
Taking the composite map

JmC* C(m)-4St
yields a 1-1 correspondence between Hecke characters with module of
definition m and Grbj3encharaktere mod in. The reason for this is the
following
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(6.13) Proposition. There is a canonical exact sequence

1 K(m)/om J' x (o/m)* x R*/O' * C(m) 1,

where S is given by

S(a) _ ((a)-1, a mod m, a mod o'n)

Proof : For every a E K () , let a E I be the idele with components ap = a
for p t moo and ap = 1 for p I moo. It is then obvious that

c((a)) =a modifK*.
Let us decompose the principal idele a according to its components in
I = If x I... as a product a = afaw, and define the homomorphisms

rp : (o/m)* -> C(m), c/r : R*/o'n _ ) C(m)
by

sp(a) = aa,, mod If K*, VI(b) = b-1 mod If K*,
where every b E R* = I,,, is considered as an idele in I. For a E 0,
a = 1 mod m, we have afa-1 E If C I, so we get in C(m) the equation
V(a) = aa.] = [afa.] _ [a] = 1, where [ ] indicates taking classes.
This shows that fp is well-defined. For every s E om, one has sf E If, so
[sue] = [s.sf] = [s] = 1 in C(m), and thus *(s,,) = 1. Consequently ,/r is
well-defined. We now define the homomorphism

f : J'n x (o/m)* x R*/o'n C(m)
by

f ((a, a mod m, b mod O'n)) = c(a)rp(a)i/r(b),
and we show that the resulting sequence is exact. The homomorphism S is
clearly injective. For a E K ('n) one has

f(S(a)) =c((a))-lfp(a),/r(a)=a modifK*=1,
so that f o S = 1. Conversely, let

f ((a, a mod m, b mod Om)) = c(a)cp(a)*(b) = 1,
and let a = Then

c(a) = y mod IfK*
for some idele y with components yp = jr' pfor p t moo, and yp = 1
for p I moo. This yields an identity

yaaO,)b-1 = l;x with E If and x E K*.
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For p t moo one has (yaa,,.b-1)p = zrp°a = px in Kp, and so
vp = vp(a lx). For V I m one has 1 = 1=px, so that x E Up"
and also 0 = vp = vp(a-lx) since a is relatively prime to m. This gives

a = (ax-1).

As X E Uphl°), one has x = 1 mod m, hence

(P(ax-1) _ (P(a)

Finally, for p I no we find (yaa,,,,b'1)p = abp 1 = x in Kp, so that
b = a)x-1, and thus

*(ax-1) _ *(b)
So we have

(a, a mod m, b mod o') _ ((ax-1), ax-1 mod m, ax-1 mod ow) ,

and this shows the exactness of our sequence in the middle.
The surjectivity of f is proved as follows. Let a mod If K* be a class!

in C(m). By the approximation theorem, we may modify the representing:
idele a, multiplying it by a suitable x E K*, in such a way that ap E Upn°)
for p I m. Let a = l p"°(a°). Then we have

c(a)=ymodI K*,

where the idele y has components yp = nv°p(a°) = Epap, Ep E Up, for
p moo, and yp = 1 for p I moo. This gives ya-lac E If , and if we define,
b = then f ((a, 1 mod m, b mod om)) = yb-1 = ya, =- a mod If K*.

0

By the preceding proposition, the characters of C(m) correspond 1-1 to
the characters of J`° x (o/m)* x R*/o"' that vanish on S(K(m)/o"'), i.e., to
the triples X, Xf, Xoo of characters of J°', resp. (o/m)*, resp. R*/Om, such
that

x ((a)) -1 Xf(a mod m)X,,.(a mod om) = 1

for a E K("'). This makes X a Gr6f3encharakter mod m, and since Xf and
Xoo are uniquely determined by X, we obtain the

(6.14) Corollary. The correspondence X H X o c is 1-1 between characters
X of C(m), i.e., Hecke characters with module of definition m, and
Gr6f3encharaktere mod m.
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Exercise 1. Let at = fi=i in, be a decomposition of m into integral ideals which
are pairwise relatively prime. Then one has the decompositions

and

Let Xf be a character of (o/m)*, and let Xfi be the characters of (o/m;)* defined
by Xf. If Y E m7'?-'/cr-1, and if yi E m are the components of y with
respect to the above decomposition, then

rm(Xf, y) = f 1 rm, (Xfi, yr)i=l
Exercise 2. Prove the Mobius inversion formula: let f (a) be any function of
integral ideals a with values in an additive abelian group, and let

g(a) _ f(b)

Then one has
bin

f(a) = Fu- ag(b)
bin b

Exercise 3. Which of the characters ),(x) = N (xP Ix I -P+"?) of R* are characters of
R*/o'°?
Exercise 4. The characters of the "small ray class group" J'°/P'° mod m are the
Grof3encharaktere mod m such that X= = 1.

Exercise 5. Show that every pair of characters Xf : (o/m)* --.>. S1 and
X : R*/o' --> S1 such that

Xf(E)X.(e) = I for all E E o*

comes from a Grofiencharakter mod m.

Exercise 6. Show that the homomorphism c : JC (m) is injective.

§ 7. Theta Series of Algebraic Number Fields

The group P of fractional principal ideals (a) is constituted from the
elements a E K*, and it sits in the exact sequence

1-± - +K* - ) P-) 1.
In order to form the theta series we will need, let us now extend K* to a
group K* whose elements represent all fractional ideals a E J.
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(7.1) Proposition. There is a commutative exact diagram

1 --) 0* > K * () P ) 1

1 _+ 0* --- K* -1)) J - + 1

with a subgroup K* C C* containing K* such that jai E R+, and

IR((a)) = I N(a)I
for all a E K*.

Proof: Let the ideal class group J/P be given by a basis [b1],..., [b,-], and
choose, for every one of these basic classes, an ideal bl, ... , b,.. Then every
fractional ideal a c J can be written in the form

a=abi' -.ba
where a E K* is well-determined up to a unit s E o*, and the exponents
v; mod hi are uniquely determined, h; being the order of [b,] in J/P. Let
bh' = (bk). For every r E Hom(K, C), we choose a fixed root

b17 = h' rb,

in C in such a way that btt = btr whenever r is complex. We define K* to
be the subgroup of C* generated by K* and by the elements b; = (b;r) E C.
Each class [b] E J/P contains a uniquely determined ideal of the form

with 0<v; <h1,
and we consider the mapping

f : J/P -+ K*/K*, f ([b]) = bl'' ... b'. mod K*.

It is a homomorphism, for if b = bv' b;" and b' = bv' ... b;' , and if
v; + vt = tt; + )1h1, 0 < lt; < hi, then b A' ' - - bµ' is the ideal belonging to
the class DID], and

f([b][b'])=bi'...RAI bl1...bwfb;I...bar

(i' ... b°r)(bt ... br') mod K* = f ([b])f ([b'])
f is clearly surjective. To show the injectivity, let bi' b"'' = a E K
and let h = hl . - - h,- be the class number of K. Then we have for
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the ideal a= a-1b1' b,' E J that ah = a-h(bi'hlh' ... b It/hr) =
a-h (bi' . - . b,')h = (1). Since J is torsion-free, it follows that a = (1), and
so bi' . - b,'.'' = (a) E P. From this we deduce that every element a E K*
admits a unique representation

a=abi'---br', 0<v1 <hi, aEK*.
We define a map K*J
by abi'...br. H (a)=abI'...br -

Arguing as above, we see that this is a homomorphism. It is surjective and
obviously has kernel o*. Finally we have that lbi I = (lbit 1) E R+ and

=IR(b;'') = N(bi)I =!fTtbil = IIIbtTI N(bi)h
r r

so that 0T((bi)) = JN(bi)l, and thus lal E R+, qt((a)) = JN(a)l for
allaEK*.

The elements a of k* used to be called ideal numbers - a name which
is somewhat forgotten but will be used in what follows. The diagram (7.1)
implies an isomorphism

K*/K* = J/P.
For a, b E K* we write a - b if a and b lie in the same class, i.e., if
ab-1 E K*. We call a an ideal integer, or an integral ideal number, if (a) is
an integral ideal. The semigroup of all ideal integers will be denoted by o.
Furthermore we write a I b if a E o, and for every pair a, b E K*, we have
the notion of gcd(a, b) E K* (which is lacking inside K*). The greatest
common divisor is the ideal number d (which is unique up to a unit) such
that the ideal (d) is the gcd of the ideals (a), (b). Observe that the ideal
numbers are not defined in a canonical way. This is the reason why they have
not been able to hold their own in the development of number theory. (They
are treated in [46], [65].)

We now form an analogous extension of the prime residue groups
(7L/mZ)*. For three ideal numbers a, b, m, the congruence

a bmodm
signifies that a - b and amb E U (0). If m = (m), we also write this
relation as a = b mod m. Let m be an integral ideal. The semigroup a(m)
of all integral ideal numbers relatively prime to m is partitioned by the
equivalence relation = into classes, which we will write as a mod in. They
are given explicitly as follows.
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(7.2) Lemma. For every a E off'") one has

a mod m= a+a(a-')m.

Proof: Let b E a mod m, b a, i.e., b = as for some a E K*, a 1, and
b - a = cm, c E o. Then

a-' (b - a) = a -1 E (a -1) _ (a-')(c)(m) c (a-')m,
so that b E a + a (a-' )m. Let conversely b E a + a (a-') m, b a, and thus
b/a = a E 1 + (a-' )m. Then one has b - a and (b - a) _ (a) (a - 1) C
(a) (a-')m = (m), i.e., m I b - a and therefore b =_ a mod m. ';

We now consider the set

(o/m)* a mod m I a E dtmi }

of all equivalence classes in the semigroup o(m) of ideal integers prime to m.l

(7.3) Proposition. (o/m)* is an abelian group, and we have a canonical';
exact sequence

1 -* (o/m)* -* (o/m)* ) J/P --) 1.

Proof: For a, b E o(m), the class ab mod m only depends on the classes'
a mod m, b mod m, so we get a well-defined product in (o/m)*. Everyclass

a mod m has an inverse. Indeed, since (a) + m = o, we may write'i
1 = a + a, 0 a r= (a), u, E in. Consequently a I a, so that a = ax,j
x E O(), and since 1 E a(l +a-'m) = a mod in, we see that ax mod in is
the unit class, i.e., x mod in is inverse to a mod in.

The right-hand arrow in the sequence is induced by a -+ (a). It is
surjective since every class of J/P contains an integral ideal relatively prime
to in. If the class a mod m = all + (a)-'m) is mapped to 1, then one has!
(a) E P; and so a E o, (a, m) = 1. Hence a mod m = a + m is a unit
in o/m. The injectivity of the arrow on the left is completely trivial, i.e., we
have shown the exactness.

For an ideal class .fi E J/P, we will denote by .q` E J/P in what follows
the class defined by ;

jig = [MD],



C3
.

C3
.

bbl)
w

ad

c°)

(-e

488 Chapter VII. Zeta Functions and L-series

where t is the different of K IQ. Let m = (m) and D = (d), with some fixed
ideal numbers m, d. For m = o let m = 1. We now study characters

X : (o/m)* ) C*,
and put X (a) = 0 for a E o such that (a, m) 0 1. In the applications, x will
come from a Gr5f3encharakter mod m, but the treatment of the theta series
is independent of such an origin of X.

(7.4) Definition. Let a E n be an ideal integer, and let . be the class of (a).
Then we define the Gauss sum

r (X , a) _ X (X) e2ni Ti (za/md)

xmod m
where x mod m runs through the classes of (o/m)* which are mapped to the
class W. In particular, we put r(X) = r(x, 1).

The Gauss sum r (X, a) reduces immediately to the one considered in § 6,

rm(X,y) = L. X(x)e2"
x mod m
(x, -)=1

In fact, on the one hand we have
y = za/md E

since the class of the ideal (y) = (a)(x)(m)-1(d)-1 is the principal class
.L'm-1D-1, so y E K*, and one finds

y E (y) _ (a)m'?' C m 1D-1 ,

because a and z are integral. On the other hand, if z mod m is a fixed
class of (o/m)* which maps to if, then, in view of (7.3), we get the others
by xx mod m, with x mod in varying over the classes of (o/m)*. Therefore

r(x,a) = X(x)rm(X,Y),
and in particular

r(X) = X(x)rm(X, Y)
with y = X/md, which satisfies (ymD, m) = 1 since yrnD _ (z) and
((x ), m) = 1. Consequently, r(X, a) does not depend on the choice of
representatives z, and theorem (6.4) yields at once the

(7.5) Proposition. For a primitive character X of (o/m)*, one has

r(X,a) = X(a)r(X)
and Ir(x)I =.fs7t(m).



'
'
'

r`4

CA
D

§ 7. Theta Series of Algebraic Number Fields 489

The theta series 0 (X, z) used in § 2 in the treatment of Dirichlet L -series
are attached to the field Q. We now have to find their analogues relative to
an arbitrary number field K. Given any admissible element p E F1, Z (see
§3, p.448) and a character X of (o/m)*, we form the Hecke theta series

81(X,z) X(a)N(aP)en'(az/in:dl,a)

aEOU(o)

where m, d are fixed ideal numbers such that (m) = m and (d) = D. We take
m = 1 if m = 1. The case m = 1, p = 0 is exceptional in that the constant
term of the theta series is X(0)N(0P) = 1, whereas it is 0 in all other cases.

Let us decompose the theta series according to the ideal classes A E J/P
into partial Hecke theta series

8p(A, X, Z) _ X
(a)N(ap)eni(azllmdl,a)

aE(.flo)U(0}

where a varies over all ideal integers in the class A E K*/K* which
corresponds to the ideal class A under the isomorphism K*/K* - J/P.
For these partial theta series, we want to deduce a transformation formula,
and to this end we decompose them further into theta series for which we
have the general transformation formula (3.6) at our disposal.

Let a be an integral ideal relatively prime to m which belongs to the
class A, and let a E o(') be an ideal number such that (a) = a.

(7.6) Lemma. Assume that m 1 or p ; 0. If x mod m varies over the
classes of (o/m)*, then one has

8P(A>X,z) = X(a)N(a") X(x)8r(x,0,zIa2/mdl) ,
x mod m

where P is the lattice m/a C R and

Br(x,0,z) _ E N((x+g)P)e'r'((x+g)z,x+g)

gEr

Proof: In the theta series 8P(A, X, z), it suffices to sum over the elements of
A n o(m) because X is zero on the others. Every class z mod m E (o/m)*
is either disjoint from A or else it is contained in A. In view of the exact
sequence (7.3)

1-;(o/m)*-f(o/m)*--) J/P-) 1,
the classes

ax mod m=a(x+a 1m)
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are the different residue classes of (o/m)* contained ink This gives

OP (A, X, z) = X (ax)N((ax + ag)P) eni(a(x+g)z/Imdl,a(x+g))
x mod m gEr

= X (a)N(aP) E x(x) EN((x + g)P) eni((x+g)zla2/mdl,x+g)
xmod m gEr

= X(a)N(aP) E X(x)6r(x,0,zla2/mdl) .
x mod m

For any admissible element p = (pr), we will write p for the admissible
element with components j5, = pT . From the transformation formula (3.6)
for the series Or and proposition (7.5) on Gauss sums, we now obtain the

(7.7) Theorem. For a primitive character X of (o/m)*, one has the
transformation formula

OI(A,X, -1/z)=W(X,P)N((zli)P+.I)6P(S',X,z)
with the constant factor

(( Imdl rn(m)W(X,P) = [ITr(P)N\\ and
)P)I -'

r(X)

This factor has absolute value I W (X, p) I = 1.

Proof: The lattice F' dual to the lattice r = m/a C R is given, according
to (5.7), by T' = a/m1. (Here as in § 4, the asterisk signifies adjunction with
respect to ( , ), i.e., (x, ay) _ (*ax, y).) The volume of the fundamental
mesh of F is by chap. I, (5.2),

vol(j') = M(m/a) I dK l = N (I m/a l) N ( Id 1)1/2 .

From (3.6) we now get

(1) 9rP,(x,O, - 1/Imd/a2Iz) =

A(z)

the series -

(2) 9r(0,x,zlmd/a2I) _ N(gP)e27ri(x,g')ezri(g'zjmd/aZI.g')

9 'Er'
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Writing g' = *g the rules stated in § 3 give*(nad/a)'

(x, g') = Tr(axg/md),

(g'lmdla2lz,S) _ (*gzlmdla2Illmd1a12, g) (gz/Imd1,g)

and N((*g)P) = N(gP). If g' varies over the lattice T", then g varies over
the set

(md/a)*I" = = (md/a)a(mD)-1 = (A' fl o) U {0}. Of
lam"

ifSubstituting all this into (2) yields

(3) O ,(0 x,zlmd/a2I)

N(( )P/ j N(g")e-'Tr(axglmd)eni(gzllmdl,g)

9E(. 'fl(;)U{O)

Let us now consider first the special case m = 1, p = 0 (which was
essentially treated already in § 5). In this case, we have (.kt fl o) U {0}
tag I g E K, (ag) C o) = as 1 = aT'. Consequently

01(A, X, z) = e'i(agzlldl,ag) erri(gzIa2/dl,g) = BI
gef

BP (A,
X z) Br (zld/a21).

gE(k'no)U(o)

Equation (1) thus becomes

0P(A,X, -1/z)=N(z/i)7BP(A',7,z)
Now assume m 1 or p 0. Then we have X(0)N(0P) = 0. Substituting

(3) into (1) and (1) into formula (7.6), with -1/z instead of z, we obtain

0P(A, X, - 1/z) = N(aP) E X(ax)O (x,0, - 1/zlmd/a2I)
x mod m

=B(z) Y_ N(gP)( X(QX)Q21iTr(axg/md) eni(gz/Imdl.g)

gek'n0 x mod m

with the factor
B(z) = A(z) N(aP)

N((md/a)P)
Now consider the sum in parentheses. If x varies over a system of
representatives of (o/m)*, then ax varies over a system of representatives
of those classes of (o/m)* which are mapped under (-/m)* --> JIP to the
class A. Furthermore, (g) is an integral ideal in the class A', and since .S
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bears the same relation fi.'.fi = [mO] to Sz as .fi does to .t3', we recognize the
sum in question as the Gauss sum

r(X,g) _ X(ax)e27riTi(axg/md)
x mod m

Substituting in now the result (7.5),

T(X,g) = X(8)r(X),

we finally arrive at the identity

(4) 01(A,X, - 1/z) =W(X,))N((zli)P+z)0z)
with the factor

P
W(X,p) [iTr(P) q't(m)]-1N( Imd/a2lP) a z(X

N((md/a)P)
r(X) N ((Imdj )P) (aP*aPl

1Ti'(P) sn(m) and I IN
I a l2P /

r(X) riTr(P)N
\\ and

\ p\ -1
0t (m) LL ImdI J /I

where one has to observe that Tr(p) = Tr(p), aP = *aP, a*a = Ial2, and
ImdlP = (*Imdl)P = Imdl' because lmdl E R. Since lr(X)l _ `n(m),
we have I W (X, p) l = 1. El

If m 0 1 or p ,-f 0, we find for the special theta series:

BP(X,z)= E X(a)N(aP)e'i(az/jmdl,a)EBP(A,X,z),

aEO k

and (7.7) yields the

(7.8) Corollary. 8P(X, - 1/z) = W (x, P)N((z/i)P+z)BP(X, z).

We recommend that the reader who has studied the above proof allow
himself a moment of contemplation. Looking back, he will realize the
peculiar way in which almost all fundamental arithmetic properties of the
number field K have been used. First they served to break up the theta
series, then these constituents were reshuffled by the analytic transformation
law, but in the end they are reassembled to form a new theta series. Having
contemplated this, the reader should reflect upon the admirable simplicity of
the theta formula which encapsulates all these aspects of the arithmetic of
the number field.
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There is however one important fundamental law of number theory which
does not enter into this formula, that is, Dirichlet's unit theorem. This will
play an essential role when we now pass from theta series to L-series in the
next section.

Exercise 1. Define ideal prime numbers and show that unique prime factorization
holds in k*.
Exercise 2. Let o be the semigroup of all ideal integers. If it = (a, b) is the gcd of
a, b, then there exist elements x, y E U (0) such that

d=xa+yb.
Furthermore, we have x d/a, resp. y - d/b, unless x = 0, resp. y = 0. Here the
notation a fi means UP-1 E K*.
Exercise 3. The congruence ax = b mod m has a solution in o with integral x if
and only if (a,m)Ib. This solution is unique mod m, provided (a, n2) = 1.
Exercise 4. A system of finitely many congruences with pairwise relatively prime
moduli is simultaneously solvable if every congruence is solvable individually in
such a way that the individual solutions are equivalent (with respect to ^-),
Exercise 5. If a, m E o, then there exists in every residue class mod m prime to m,
an ideal integer prime to a.

Exercise 6. For the factor group J m/ P m by the group F' of all principal ideals (a)
such that a = 1 mod m, one has the exact sequence

1 -+ O*/O'n i ( /m)*
where 0m=(s E0*1s=1 mod m).
Exercise 7. Let k(m) be the preimage of Jm under K* J, and let
K' = = (a E K* I a =_ 1 mod m). Then one has (/m)* = K(m)/Km.'

§ 8. Hecke L-series

Let in be again an integral ideal of the number field K and let

X:J, ) S'
be a character of the group of ideals relatively prime to M. With respect to
this character, we form the L -series

L(X,s)_> X(a)a 9q(a)s '

where a varies over the integral ideals of K and we put X (a) = 0 whenever
(a, m) 0 1. Then the following proposition holds in complete generality.
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(8.1) Proposition. The L -series L (X, s) converges absolutely and uniformly
in the domain Re(s) > 1 + 8, for all 8 > 0, and one has

L(X,s)=F1 1
P 1 - X(p)`RW-S

where p varies over the prime ideals of K.

Proof: Taking formally the logarithm of the product

E(s)=j1

gives the series

1

P 1 - x (P) 91(p) -S

log E(s) = F_ E X
(p)n

P n=1 nM(p)ns
It converges absolutely and uniformly for Re(s) = a > 1 + 3. In fact,
since IX(p)I < 1, and IIR(p)''I = IJl(p)IO' > pfo(1+s) > p1+8and since
#{plp) .< d = [K : Q], it admits the following convergent upper bound
which is independent of s :

r =dlogi;(1+8).
p n npn(1+S)

This shows that the product
1 ( X (p)nE (s) _ 1 - X (P) t(P) = exp \ ( n'R(p)s

is absolutely and uniformly convergent for Re(s) > 1 +S. Now develop in
this product the factors

1 _ X (p) X (p)2
1 - X (P)IR(p)-S - 1 + sa(p)s + `n(p)IS +

.. .

for the finitely many prime ideals p l, ._p, pr such that O1(pi) < N, and
multiply them. This yields the equation

r 1 _ 00 X (pl)"I... X (pr)Ur

vt,...,vr-0 (`R(pl)°t ...Mpr)ur)S
X(a)

where denotes the sum over all integral ideals a which are divisible at
most by the prime ideals p1, ... , pr. Since the sum >' contains in particular
the terms such that 01(a) < N, we may also write

71'71
1 _ X (a) , X (a)

i=1 1 - X (Pi) (Pi)_S

9t( N O'1(a)S +
9q(a)>N

$R(a)S
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Comparing now in (*) the sum with the series L(X, s), we get

r7 1
IL(

X (a)
it 1 X,s) :C (91(1 N1 - X(Pi)'N(Pi)-s - w(a)s

pifa
1

71(a)>N 'F(a)t+a

For N --* oo the right-hand side tends to zero, as it is the remainder term of
a convergent series, since the sequence (E,n(a) <N 91(al) 1+s ) N EN is monotone
increasing and bounded from above. Indeed, with the previous notations we
find

1 1

fit( N m(a)t+a - m(a)t+a

i=1

and

log( fi (1 - 2(pi-(1+S)) -1) = log((1 - S7t(pi)-(1+S)) -1)
i=1 i=1

r co 1

)(t+S)ui=1 n=1

rL °O 1<
p

Fd 1

p ,n npn(1+S)

= d log(w + S)) .

We now face the task of analytically continuing the L -series L (X, s)
attached to a Grol3encharakter X mod m, and setting up a suitable functional
equation for it at the same time. So we are given a character

X : J, ) S1,

such that

(*) X((a)) = Xf(a)Xoo(a)
for all integers a E o relatively prime to in, and there are two associated
characters

) S 1 and X00 : R* - S1.
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The character Xf extends in a unique way to a character

Xf : (o/m)* ) S1

such that the identity (*) holds for all integral ideal numbers a E (m> prime
to m. Indeed, the restriction of the function Xf(a) := X ((a))X.(a)-1 of otm)
to o(m) is given by the original character Xf of (o/m)*, so it is in particular
trivial on 1 + m and thus yields a character of (-o/m)'.

The L-series of a Grof3encharacter of Jm is called a Hecke L-series.
If X is a (generalized) Dirichlet character mod m, i.e., a character of the ray
class group J°`/P`", then we call it a (generalized) Dirichlet L-series. The
proof of the functional equation of the Hecke L-series proceeds in exactly
the same way as for the Dedekind zeta function, except that it is based on
the theta transformation formula (7.7).

We decompose the Hecke L -series according to the classes S of the ideal
class group J/P as a sum

L(X,s)L(A,X,s)
of the partial L-series

L (A, X , s) _ r tYx (a)

0.E. J`(a)S
integral

and deduce a functional equation for those. If all one wants is the functional
equation of the L -series L(X,s), this decomposition is unnecessary; it may
also be derived directly using the transformation formula (7.8), because we
know how to represent any ideal a by an ideal number (this was not yet
the case when we were treating the Dedekind zeta function). However, we
prefer to establish the finer result for the partial L -series.

By (7.1), we have a bijective mapping
(S n "off /o* --4 { a E S I a integral} , a H (a),

where .h E K*/K* corresponds to the class .A E J/P with respect to the
isomorphism K*/K* = J/P. Therefore we get

LM X,s)= > X((a))
QE91 IN(a)IS

where 9 is a system of representatives of (Ft fl )/o*. We want to write this
function as a Mellin transform. To this end, we recall from § 4 the L -function

Lx(s) = N(n-512)I'x(s/2) = N(n-s/2) J N(e-yyS/2) aJy
R*
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which has been attached to the G(CIR)-set X = Hom(K, C). The character
x of R* corresponding to X is given by (6.7) as

Xoo(x) = N(XPIXI-p+iq)for
an admissible p E ft 7L and a q E R±. We put s = s1 + p - iq, where

s E C is a single complex variable, and

Lw(X,s)=Lx(s)=Lx(s1+p-iq).
In the integral

1'x (s/2) = J N (e-y ys/2) Y ,

we make the substitution

y r- + jrIaI2y/Imdl (a E 91),

where m, d E o are fixed ideal numbers such that (m) = m and (d) = D is
the different of K IQ. We then obtain

T'x(s/2) = N((Iandl)SI2)N(IaIs) f e-"(ay/Iandl,a)N(ys/2) dY

and, since N(Imd Its/2) = (IdK IM(m))s/2

dK I` t(m))s/2L.(X, s) N(laIS) = c(X)f e -"(aY/Imdl,a)N(ys/2) yY

here c(X) = N(Imdl-P+`q)h/2. Multiplying this by Xf(a)N(aP) andw
summing over a E 9 t yields, in view of

Xf(a)N(aP) _ Xf(a)N(aPIaI-P+iq) _ x((a))
N(Ials) N(lals) IN(a)Is

the equation

(IdK I`n(m))s/2Loo(X, s)L(A, X, s) = c(X) f g(Y)N(ys/2) d
R*

with the series

g(y) = Xf(a)N(aP)e-R(aYllmdl,a)

a E9i

We now consider the completed L-series

A(A, X, s) = (IdK I`n(m))s/2Loo (X , s)L (A, X, s)
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Then we get

A(A, X, S) = c(X) f g(Y)N(YS/2) yY .

R*

We now want to write this function as an integral over the series

9(,,z) := 0P(., Xf, z) = s(x) + E Xf(a)N(aP)e'i(az/Imdl,a)

aEAno

where the summation is extended not only - as in the case of g(y) - over a
system of representatives 9t of (An but over all a e St fl o. We have
s(X) = 1 if m = 1 and p = 0, and s(X) = 0 otherwise. We will proceed in
the same way as with the Dedekind zeta function (see (5.5)). Just as we did
there, using

y=Xttln, x= N(Y)tln, t=N(Y),

with n = [K : Q], we decompose

R+=Sx][8+, dy =d*xx dt-
y t

Then, observing that

N(YS/2) = N(xs/2)N(ts/2n) = N(X(P-iq)I2)t-j'(s+Tr(P-iq)ln)

we obtain the identity
00

(*) A(A, x. s) = c(x) ff N(X(P-iq)I2)g(xtI1n)d*xts'
dt
t

0s

with s' = 1(s + Tr(p - iq)/n). The function under the second integral will
be denoted by

g9t(x,t) = N(x(P-iq)/2) F Xf(a)N(aP)e-7f(axtImd1,a)
ae9t

From it, the theta series 0(A, X, ixtI /') is constructed as follows.

(8.2) Lemma. N(x(P-iq)I2)( 0(. ,X,ixtIln)-s(X)) _ grr(Isl2x,t).
£EO*

Proof: For every unit s E o*, one has Xoo(E)Xf(s) = X((s)) = 1, so that
we get

N(EIP-iq) = 3 o.(E)N(EP) = Xf(E)N(EP).
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We put for short = xt 1 /'/ I and I and obtain

gyt( Is IZx, t) = N(x(p-iq)l2) Xf(Ea)N( (sa)p) e'r(Eat,sa) = gEst(x, t) .
aE9t

Since S fl u s9t, we get
EEO*

N(x(p-iq)/2)(e(.q, x , ixtl/") - s(X))
E E N(x(p-iq)l2)Xf(sa)N((ea)p)

EEo* aEE9t

_ ge`R(x, t) gs (I s 12x, t) .

EEO* EEO*

From this lemma we now obtain the desired integral representation of
the function A (A, X, s). We choose as in § 5 a fundamental domain F of S
for the action of the group I o* 1 '. F is mapped by log : R+ - - R± to a
fundamental mesh of the lattice 2 log I o* 1. This means that we have

S= U q2F.
nElo*I

(8.3) Proposition. The function

A(Jq,X,s) =
is the Mellin transform

A(A,X,s) =L(f,s')
of the function

f(t) = fF(A, x, t) = c(w) f x, ixtll")d*x
F

at s' =
z

(s + Tr(p - iq)/n). Here we have set n = [K : Q], c(X)I =
N(Imdl-p+iq)1/2, and w denotes the number of roots of unity in K.

Proof: One has
C(X)E(X) r N(x(p-iq)l2)d*x.f( ) = w J

F
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We have seen before that
00

(*) A(A, X, s) f fo(r)ts, at

= L(f, s')
0

where
fo(r) = c(X) f got (x, t)d*x.

S

Since S = UgElo*I772F, one has

fo(r) = c(X) fgEt(x,t)d*x.
pEIO*I

zI? F

In each one of the integrals on the right, we make the transformation
F n2 F, x H n2x, and obtain

fo(r) = c(X) f go't(n2x,t)d*x.
nHo*1F

The fact that we may swap summation and integration is justified in exactly
the same way as for the case of Dirichiet L-series in §2, p.436. In view of
the exact sequence

l) µ(K)_+o* _ to*I-#1,
where tz(K) denotes the group of roots of unity in K, one has
#(rE0*1 Isl=n1=w, so that we get

gtt(IE12x,t) = wgot(n2x,t)
IE1=71

Using (8.2), this gives

A(r) = c(X) f Sot(Iel2x, t) d*x
w EEO*

F

= c(X) f N(x(P-iq)l2)(9(_q,X,ixt1/n)-E(X))d*x
w

F

=f(t)-f(oo)
This together with (*) yields the claim of the proposition.

It is now the transformation formula (7.7) for the theta series 6(A, ),,, z) =
0P(Ft, Xf, z) which guarantees that the functions f (t) = fF (A, X, t) satisfy
the hypotheses of the Mellin principle.
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(8.4) Proposition. We have fF (Ft, X, t) = ao + O (e-`t'I n) for some c > 0,
and

ao= N(IdI`g12)
J
rN(x-iq/2)d*x

w
F

if m = 1 and p = 0, and ao = 0 otherwise. Furthermore we have

fF(R,X, =W(X)t21Tr(P)lnfFt)

where .' = [mO], and the constant factor is given by

W(X) = IITr(P)N(( and )P)1-1 r(Xf)
L Imd) J - (m)

Proof: The first statement follows exactly as in the proof of (5.8). For the
second, we make use of formula (7.7). It gives us

B(S, X , - l/z) = BP(.R, Xf, - 1/z) = W (X)N((z/i)P+2)Oi (.', Xf, z)

= W(X)N((z1i)P+)0(-',X,z),
because Xoo(x) = N(xPIXI-P+iq) = N((*x)PIxl-P-'q) = N(xPIxI-P-iq)

Observing the fact that the transformation x f-1 x-1 leaves the Haar measure
d*x invariant and takes the fundamental domain F to the fundamental domain
F-1, (7.7) yields for z = ixtlln:

f N(x(P-iq)/2)g(.,X,ix/tl/n)d*x
t w J

F
= C(X) f (P-iq)/2 11nf N(x- )e(St, X, - 1/ixt )d *x

F-1

= c(x)W(x) r N(x- +P+Z)N(t(P+2)ln)9(A',X,ixtl/n)d*xJ
F-1

c(X)W(x) (f ixt 1/n)dx
w

F-1

= W (X)t 2+Tr(P)/n.fF-r (.', X, t)
We have used in this calculation that N(xt/2) = N(x)1/2 = 1 and
N(xP) = N((*x)P) = N(xP), and that the character X,,, the complex
conjugate of X,,., is given by

Xoo(x) = N(xP Ix I-P-iq) .
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From this proposition and (1.4), we now finally get our main result.
We may assume that X is a primitive GrOj3encharacter mod in, i.e., that
the corresponding character Xf of (o/m)* is primitive (see §6, p.472).
The L-series of an arbitrary character differs from the L-series of the
corresponding primitive character only by finitely many Euler factors. So
analytic continuation and functional equation of one follow from those of the
other.

(8.5) Theorem. Let x be a primitive Groj3encharacter mod m. Then the
function

A(. ,X,s) = (IdKIOl(m))s/ZL.(X,s)L(. ,X,s), Re(s) > 1,
has a meromorphic continuation to the complex plane C and satisfies the
functional equation

A(A,X,s)=W(X)A(i',X,1-s)
where J W = [mZZ], and the constant factor is given by

W(X) = iTr(P)N(( and );5)1-1 [(Xf)
I IandI I-R(m)

It has absolute value I W (X) I = 1.
A (.fi, X , s) is holomorphic except for poles of order at most one at

s = Tr(-p + iq)/n and s = l +Tr(p + iq)/n. In the case m 0 1 or p ¢ 0,
A(.., X, s) is holomorphic on all of C.

Proof: Let f (t) = fF(.., X, t) and g(t) = fF-1(S', X, t). From f (t) _
ao + O(e'ct'I"), g(t) = bo + O(e-ct'1'1) and

f (1) = W (X)t +Tr(p)ing(t),
t

it follows by (1.4) that the Mellin transforms L (f , s) and L (g, s) can be
meromorphically continued, and from (8.3) we get

A(A, X, s) = L (f, 2 (s + Tr(p - iq)l n))

=W(X)L(g, 2
+Tr(p)ln- 2(s+Tr(p-iq)ln))

=W(X)L(g, 2(1-s+Tr(5 +iq)ln))
= W(X)A(. ', X,1 - s),

where we have to take into account again that X,,,(x) = N(xp Ixff-i4).
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According to (1.4), in the case ao 0, L (f , s) has a simple pole at s = d
and s = 1 + Tr(p)/n, i.e., A(A, X, s) = L(f,

2
(s + Tr(p - iq)/n)) has a'

simple pole at s = Tr(-p +iq)/n and s = 1 + Tr(p + iq)/n. If m 1'

or p 0, then ao = 0, i.e., A(.q, X, s) is holomorphic on all of C. 1

For the completed Hecke L-series

A(X,s) = (IdKI (m))s12L.(X,s)L(X,s) _ A(J.,X,s)

we derive immediately from the theorem the

(8.6) Corollary. The L -series A (X , s) admits a holomorphic continuation
to

C N {Tr(-p+iq)/n, 1+Tr(p+iq)/n}
and satisfies the functional equation

A(X, s) = W (X)A(X , 1 - s).

It is holomorphic on all of C, if m 0 1 or p 0.

Remark 1: For a Dirichlet character X mod m, the functional equation
can be proved without using ideal numbers, by splitting the ray class group
J°'/P`° into its classes ,Ft, and then proceeding exactly as for the Dedekind
zeta function. The Gauss sums to be used then are those treated by HnssE
in [52]. On the other hand, one may prove the functional equation for the
Dedekind zeta function by using ideal numbers, imitating the above proof,
without decomposing the ideal group at all,

Remark 2: There is an important alternative approach to the results of
this section. It starts from a character of the idele class group and from
the representation (8.1) of the corresponding L-series as an Euler product.
The proof of the functional equation is then based on the local-to-global
principle of algebraic number theory and on the Fourier analysis of p-adic
number fields and their ideae class group. This theory was developed by the
American mathematician JOHN TATE, and is commonly known for short as
Tate's thesis. Even though it does meet the goal of this book of presenting
modern conceptual approaches, we still decided not to include it here. The
reason for this is the clarity and conciseness of Tate's original paper [24],
which cannot be improved upon. In addition SERGE LANG's account of the
theory [94] provides an illustrative complement.
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Thus instead of idly copying this theory, we have chosen to provide a
conceptual framework and a modem treatment of Hecke's original proof
which is somewhat difficult to fathom. It turns out that Hecke's approach
continues to have a relevance of its own, and can even claim a number of
advantages over Tate's theory. For the functional equation of the Riemann
zeta function and the Dirichlet L-series, for example, it would be out of
proportion to develop Tate's formalism with all its p-adic expense, since
they can be settled at a beginner's level with the method used here. Also,
L-series, and the very theory of theta series has to be seen as an important
arithmetic accomplishment in its own right.

It was for pedagogical reasons that we have proved the analytic
continuation and functional equation of L-series four times over: for the
Riemann zeta function, for the Dirichlet L-series, for the Dedekind zeta
function, and finally for general Hecke L -series. This explains the number
of pages needed. Attacking the general case directly would shrink the expose
to little more than the size of Tate's thesis. Still, it has to be said that
Tate's theory has acquired fundamental importance for number theory at
large through its far reaching generalizations.

§ 9. Values of Dirichlet L-series at Integer Points

The results of § 1 and § 2 on the values (1 - k) and L (X, 1 - k) of the
Riemann zeta function and the Dirichlet L-series will now be extended to
generalized Dirichlet L-series over a totally real number field. We do this
using a method devised by the Japanese mathematician TAKURO SHINTANI (who
died an early and tragic death) (see [127], [128]).

We first prove a new kind of unit theorem for which we need the following
notions from linear algebra. Let V be an n-dimensional R-vector space, k
a subfield of R, and Vk a fixed k-structure of V, i.e., a k-subspace such
that V = Vk ®k R. By definition, an (open) k-rational simplicial cone of
dimension d is a subset of the form

C(v1, ...,vd) = {t1v1 +...+tdvd I tt E R+1

where v1, ... , vd are linearly independent vectors in Vk. A finite disjoint
union of k-rational simplicial cones is called a k-rational polyhedric cone.
We call a linear form L on V k-rational if its coefficients with respect to a
k-basis of Vk lie in k.
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(9.1) Lemma. Every nonempty subset different from (0) of the form

P = I x E V I Li(x) >0, 0<i<Q,Mj(x)>0,0<j<m}
with nonzero k-rational linear forms Li, Mj (f = 0 or m = 0 is allowed) is
a disjoint union of finitely many k -rational cones, and possibly the origin.

Proof: First let P = (x E V I Li(x) > 0, i = 1, ...,e}, with k-rational
linear forms L 1, ... , Lt 0. For n = 1 and n = 2 the lemma is obvious. We
assume it is established for all k-vector spaces of dimension smaller than n.
If P has no inner point, then there is a linear f o r m L among the L 1, ... , L i
such that P is contained in the hyperplane L = 0. In this case the lemma
follows from the induction hypothesis. So let u E P be an inner point, i.e.,
Ll (u) > 0, ... , Le (u) > 0. Since Vk is dense in V, we may assume u E Vk.
For every i = 1, ... , C, let di P = (x E P Li (x) = 0). If 3i P 0 {0}, then
3i P '. (0) is by the induction hypothesis a disjoint union of a finite number
of k-rational simplicial cones of dimension < n. If a simplicial cone in diP
has a nonempty intersection with some dj P, then it is clearly contained in
di P fl dj P. Therefore d, P U ... U dtP . (0) is a disjoint union of k-rational
simplicial cones of -':mension < n, so that

U

where Cj = C(vl, ..., vd,), v1, ..., vd3 E Vk, dj < n. For every j E J
we put Cj (u) = C (vl, ... , vdj, u). This is a (dj + 1)-dimensional k-rational
simplicial cone. We claim that

P N (0) = U C j U U Cj (u) U R+u.
jEJ jEJ

Indeed, if the point x E P N {0) lies on the boundary of P, then it belongs
to some di P, hence to U j EJ Cj. On the other hand, if x belongs to the
interior of P, then Li(x) > 0 for all i. If x is a scalar multiple of u, then
we have x E 1R u. Assume this is not the case, and let s be the minimum
of the numbers L1(x)/L1(u), ..., Le(x)/Lt(u). Then s > 0 and x - su lies
on the boundary of P. Since x - su # 0, there is a unique j E J such that
x - Su E Cj, and thus there is a unique j E J such that x E Cj (u). This
proves the claim.

Now let

P={xEVI Li(x) >0, 0<i <e, Mj(x)>0, j=1,...,m}.
Then

P={xEVI Li(x)>0, Mj(x)>0}
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is a disjoint union of a finite number of k-rational simplicial cones and (0}.
For every j = 1, ... , in, let ajP = (x E P I MM (x) = 0). If a simplicial
cone in P has nonempty intersection with 8j P , then it is contained in a1 P .
As P = P N U;

1
BjP, we see that since P (0) is a disjoint union of

finitely many k-rational simplicial cones, then so is P.

(9.2) Corollary. If C and C' are k-rational polyhedric cones, then C N C'
is also a k -rational polyhedric cone.

Proof: We may assume without loss of generality that C and C' are k-
rational cones. Let d be the dimension of C. Then there are n k-rational
linear forms L1, . . . , L,-d, M 1 ,---, Md such that

C'=(XEVI LI(x)=...=L,,-d(x)=0, MI(x)>0,.,Md(x)>0}.
If we define, for each i = 1, ..., n - d,

C, = (XECI ±Li(x)>0},
and for each j = 1, ... , d,

Li(x) _ ... = Ln_d(x) = 0,C1= xEC
M1(x) > 0,..., Mj_1(x) > 0, Mj(x) < 0

then we find, as can be checked immediately, that C N C' is the disjoint
union of t h e sets Ci , ... , Cnd Ct ... , Cn-d' C1, ... , Cd. By (9.1), these
are either empty or k-rational polyhedric cones. Therefore C N C' is also.

It is a rare and special event if a new substantial insight is added to the
foundations of algebraic number theory. The following theorem, proved by
SrnM}1M in 1979, falls into this category. Let K be a number field of degree
n = [K : Q], and let R = [ [(T C] + be the corresponding Minkowski space
(r E Hom(K, C)). Define

R*+)=((xt)ER*Ixt>0 for all real-r
(Observe that one has R*+) = R+ only in the case where K is totally real.)
Since R = K ®Q R, the field K is a Q-structure of R. The group

o+ = o n R1+1

of totally positive units acts on R*) via multiplication, and we will show that
this action has a fundamental domain which is a Q-rational polyhedric cone:
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(9.3) Shintani's Unit Theorem. If E is a subgroup of finite index in o+,
then there exists a Q -rational polyhedric cone P such that

Ri+)= UsP
EEE

(disjoint union).

Proof: We consider in R*+) the norm-one hypersurface

S=}xER*(+) I IN(x)I=1}.

Every X E R{+) is in a unique way the product of an element of S and of a
positive scalar element. Indeed, x = I N (x) I'1" (x/ I N (x) I'""). By Dirichlet's
unit theorem, E (being a subgroup of finite index in o*) is mapped by the
mapping

f : S -. [f R]+, (xr) h--> log Ixr l) ,
r

onto a complete lattice r of the trace-zero space H
{ x E [ ft R] + I Tr(x) = 0} . Let 0 be a fundamental mesh of r, let
a be the closure of 45 in H, and put F = tSince. is bounded and
closed, so is F. It is therefore compact, and we have

(1) S = U sF.
EEE

Let X E F and Us(x) = {y E R I IIx - yII < 81 (::R*), S > 0. Then there
is clearly a basis v1..... u,, E U&) of R such that x = t1 v 1 +---+ t" v"
with tj > 0. Since K is dense in R by the approximation theorem, we may
even choose the vi to lie in K n U8 (x). Then CS = C(v1, ... , v") is a
-rational simplicial cone in R*) with x E Ca, and every y E CS is of the
form y = Az with A E R+ and Z E U5(x). We may now choose S sufficiently
small so that

C3nEC5=O forallEEE,s¢l.
If not, then we would find sequences A,z,,, A;,z'v E C11,,, A,,, Au E R+,
z,,, zv E Ui/v(x), and Ev E E, Ev 1, such that Avzv = and thus
PuZv = Evzu, Pu = ),v/,k. z and z' would converge to x ; now pv would
converge to 1 as p"N(zv) = N(zv), i.e., x = (limsv)x. This would mean
that limsv = 1, which is impossible, since E is discrete in R.

F being compact, we thus find a finite number of Q -rational cones
C1, ... , C," in R'+1 such that

m
(2) F = U (C; n F)

i=1
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andCinEC1=0forallseE,a 1, and all i=1,...,m.From (1)
and (2), we deduce that

m

Rc+)=U UsCi.
i=1 LEE

In order to turn this union into a disjoint one, we put C(]) = C1 and
CP) =Ci N U sC1, i =2, ...,m.

LEE

EC1 and Ci are disjoint for almost all s E E. Hence, by (9.2), C is a
0-rational polyhedric cone. Observing that Ci n sCi = 0 for e E E, s
we obtain

* = U U c])Rw = sCi
i=1EEE

and ECil)nC;1)=0 forallsEEandi=2,...,m.
We now assume by induction that we have found a finite system of

-rational polyhedric cones Ci°), .. , C, v = 1, ... , m - 2 satisfying the
following properties:

(i) Civ) c Ci,

(ii) R'+) = U U ECi v) ,
i=1 LEE

(iii) ECM °) n CJ = 0 for all s E E, if i < v and i j.
We put Ct °+1) = C, ") for i < v + 1, and

C` v+1) = Ci )
U ECv+1 for i > v + 2.

LEE

Then Ci°+]) ,
M, is a finite system of Q-rational polyhedric cones

which enjoys properties (i), (ii), and (iii) with v+1 instead of v. Consequently,
Cim-t) Cmm-1) is a system of Q-rational polyhedric cones such that

R(*+) = U U E& 1) (disjoint union). El
1=1 SEE

Based on Shintani's unit theorem, we now obtain the following description
of Dirichlet's L-series. Let m be an integral ideal, JI/PI the ray class group
mod m. Let X : J'/P'" -). C* be a Dirichlet character mod m, and

L(X,s) _ X(a)
a sp(a)s



Q
..

'.'
.-.

§ 9. Values of Dirichlet L-series at Integer Points 509

the associated Dirichlet L-series. If . varies over the classes of J°t/P'n
then we have

L(X,s) _ Xs)it
with the partial zeta functions

s) = Y,
1

aESt g(a)s
a integral

Let . be a fixed class, and a an integral ideal in .t. Furthermore let
(1 + a -1m)+ _ (1 + a-im) fl R*+) be the set of all totally positive elements
in 1 + a 1 m. The group

E=o+= Is E0*1Elmodm, eER*I)
acts on (1 + a 1 m)+, and we have the

(9.4) Lemma. There is a bijection

(1 + a 1m)+/E -4 .dint, a aa,

onto the set .dint of integral ideals in A.

Proof: Let a E (1 + a 1m)+. Then we have (a - i)a C m, and since a and
m are relatively prime, we get a - 1 E m, i.e., (a) E P(). Hence as lies
in A. Furthermore, we have as C all + a-1m) = a + m = o, so that as is
integral. Therefore a H as gives us a mapping

(1 + a -'M)+ - Aint

It is surjective, for if aa, a E P', is an integral ideal in A, then
(a - 1)a C ma C m, so that a E 1 + a 1m, and also a E R*), and so
a E (1 + a-1m)+. For a, b E (1 + a lm)+, we have as = ba if and only
if (a) = (b), so that a = be with E E o*. Since E E (1 + a lm)+, it follows
that E E E, i.e., a and b have exactly the same image if and only if they
belong to the same class under the action of E.

The lemma implies the following formula for the partial zeta function
(A, s)

1 1

M(a)S
aE IN(a)is
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where 91 runs through a system of representatives of (1 +a-1m)+/E. To this
we now apply Shintani's unit theorem. Let

M

Rc+)=U UsCi
i=1 SEE

be a disjoint decomposition of R*) into finitely many Q-rational simplicial
cones Ci. For every i = 1 , ... , m, let v 1 , . . . , vid, be a linearly independent
system of.generators of Ci. Multiplying if necessary by a convenient totally
positive integer, we may assume that all vie lie in m. Let

Ct = Itivi1+...+tdivid; 10 <tt < 1},
and

R(J ,Ci) = (l+a 'm)+flCJ.

Then we have the

(9.5) Proposition. The sets R (.ft, C1) are finite, and one has
1 m

(-q' s) F- r-
(Ci,x,s)

(a)S i=1

with the zeta functions

(Ci,x,s) =FIN(x+zlviI+...-l.zdivid) I^S,

w h e r e z = (z 1, ... , zd,) varies over all di -tuples of nonnegative integers.

Proof : R (.fi, Ci) is a bounded subset of the lattice a 1 m in R, translated
by 1. It is therefore finite. Since Ci C R*) is the simplicial cone generatedby. . . .vi 1, vid, E m, every a E (1 + a 1m) fl Ci can be written uniquely as

di
a = E Yevie

f=1

with rational numbers ye > 0. Putting

Ye=xe+zt, 0<xe<1, 0<ZtEZ,
we have E xevie E 1 + aIm because zevie E m e a lm. In other words,
every a E (1 + a -1m) fl Ci can be written uniquely in the form

di
a = x + zevie

E.1
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with x = Exeuie E R(.i't,Ci). Since

(1 + a 1m)+ = U U (l + a-1m) n sci,
i=1 EEE

a = x+ r zlvie runs through a system 91 of representatives of (l+a 1m)+/E
if i runs through the numbers 1, ... , m, x through the elements of R (A't, Ci ),
and z = (z1, ... , zd,) through integer tuples with ze > 0. Thus we indeed
find that

1 m

Y- F- ('(Ci,x,s)sp(a)s i=1 xCR(S C,)

(9.6) Corollary. For the Dirichlet L -series attached to the Dirichlet character
X : J'°/P' -+ C*, we have the decomposition

mL(X s) = X(a)
A w(a i=1 xER(F,C,)

where .fi runs through the classes Jm/Pm, and a denotes an integral ideal
in A, one for each class.

The relation between zeta functions and Bernoulli numbers hinges on a
purely analytic fact which is independent of number theory. This is what we
will describe now.

Let A be a real r x n-matrix, r < n, with positive entries aji, 1 < j <
1 < i < n. From this matrix we construct the linear forms

n r
Lj (t1, ... , tn) _ ajiti and L!(z1, ... , zr) E ajizj

i-1 j=1

For an r -tuple x = (x1, ._x,.)x,.) of positive real numbers, we write the
following series

00 n

(A,x,s) _ E H L;(z + x)-s.
Zl,.., Zr-o i=1

On the other hand we define the generalized Bernoulli polynomials Bk(A, x)
by

n
Bk(A, x) = 1 > Bk(A, x)(') ,

n i=1

where Bk(A,x)(k !)n is the coefficient of
u(k-1)n(t1 ... ti-Iti+l ... tn)k-1
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in the Laurent expansion at 0 of the function

'' exp(uxjLj (t))
FI
i exp(uLi (t)) - 1 q=1

in the variables u, t 1 , ... , t,-1, ti+1, ... , t, . For r = n = 1 and A = a,
we have Bk(a,x) = ak-1Bk(x), with the usual Bernoulli polynomial Bk(x)
(see § 1, exercise 2). The equation

Bk(A, 1 -x) _ (-1)n(k-t)+rBk(A,x),

where 1 - x signifies (1 - X 1 , . . . , 1 - x,.), is easily proved.

(9.7) Proposition. The series i; (A, x, s) is absolutely convergent forRe(s) >
r/n, and it can be meromorphically continued to the whole complex plane.
Its values at the points s = 1 - k, k = 1, 2, ..., are given by

Bk(A,x)

Proof: The absolute convergence for Re(s) > r/n is deduced from the
convergence of a series En t

n
+s by the same arguments that we have used

repeatedly. It will be left to the reader. The remainder of the proof is similar
to that of (1.8). In the gamma function

00 00

j (s)n =
f f n... fl e-k (t1 ... tn)S-1 dt1 ... dtn,

i=1

we substitute

0 0

ti -- L; (z + x)t,,
and obtain

nr(s)n JT L (z +x)-S

i=1
00 w

tiLi(z+x)](t,...tn)s-1dtl...dtn.
i=1

0 0

Summing this over all z = (z1, ... , Zr), zi E Z, zi > 0, and observing that
n

ttL; (z +x) = (zi +xj)Ll(t),
i=] ,j=1
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yields the equation
CO r00

J
...f g(t)(t1 ... t,,)s-' dti ... dt,

0 0

with the function
r exp((1 - x1)L1(t))

g(t) = g(t1, ... , tn) = II ex L1(tj=1 P()) - 1
We cut up the space Rn into the subsets

Di=It El[8n10<te<ti,+1,..
for i = 1, ... , n, and get

(1) (A,x,s)=r(s)-n f g(t)(ti...tn)s-1dt1...dt,=.
i=1

D;

In Di we make the transformation of variables

t = uY = u(Y1, ...,Yn),
where 0 < u, 0 < yt < 1 for. i and yi = 1. This gives

t)(t1 ... tn)s-1dt1 ... dtr(s)-n fDi g(
00 1 1

r(s)-n f
L
f ...f g(uy)(f ye)s-1 fl dyt]uns-1du.

0 0 0
P#i Pj4i

513

For 0 < s < 1, let now IE(1), resp. I,(+oo), denote the path in C consisting
of the interval [1, e], resp. [+oo, e], followed by a circle around 0 of radius
s in the positive direction, and the interval [c, 1], resp [s, + co]. For s
sufficiently small, the right-hand side of the last equation following (1.9)
becomes

(2) A(s) f J [g(uY)uns-'(F1 Ye)s-1 11 dyg]du,
Phi t i

JE (+00) JE (1)"- 1

with the factor
(s)

El (S) _ (e2nins - 1)(e2nis _

where one has to observe that the linear forms L 1, ... , L,. have positive
coefficients. It is easy to check that the above expression, as a function of the
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variable s, is meromorphic on all of C. As for the factor A(s), (1.2) implies
that _ 1 r(1 - s)"

A(s)
(27ri)" (ebrins - 1)(e2Tris - 1)-1enyris

Let us now put s = 1 - k. The function a""s(e2""es - 1)/(e2"is - 1) takes
the value (-1)n(k-1)n at s = 1 - k. Thus expression (2) turns into

(-1)n(k-1) r(k)"
1 n f f[g(uy)um(1__1(flyt)_kfldy]du,

n (22ri)
Ki-1Kf E

where Ke denotes the positively oriented circumference of the circle of radius
e, and where we have to observe that the integrals over (oo, e] and [s, oo),
resp, over [1, e] and [s, 1], kill each other in (2) ifs = 1 - k. This value is
obviously ((-l)n(k-1)F(k)"1n) times the coefficient of u"(k-1) (fe#i ye)k-i

in the Laurent expansion of the function
Tr7 exp(u(1 -xj)Lj(Y))

g(uY1, ... , uyi-1, u, uYi+l, ... ,.uYn) = 1 1
j=1 exp(uLj(Y)) - 1 yt=l

which is a holomorphic function of u, t1, ... , ti _ 1 , ti+1, ... , to in the direct
product of n copies of the punctured disc of radius E. Therefore the value
of (2) at s = 1 - k equals (-1)"(k-1)k-"Bk(A,1 - x)(i)/n. Inserting this
into (1) gives

n

(A,x, 1 - k) _ (-1)n(k-l)k-n E Bk(A, 1 -x)(i)
n i=1

Bk(A, 1 - x)
kn

Together with the equation Bk(A, 1 -x) = (-1)n(k-1)+rBk(A,x) mentioned
above, this gives the desired result.

Theorems (9.5) and (9.6) now imply our main result concerning the values
of Dirichlet L-series L(X, s) at integer points s = 1 - k, k = 1, 2, ... If K
is not totally real, then these values are all zero (except if X is the trivial
character, for which s = 0 is not a zero). This can be read off immediately
from the functional equation (8.6) and (5.11).

So we let K be a totally real number field of degree n. Numbering
the embeddings t : K R identifies the Minkowski space R with I8",
and R* = R+ with the set R+ of vectors ( x 1 , . . . , xn) with positive
coefficients xi. Given the Q-rational simplicial cone Ci c i(8+ generated by
vii, ... , vide , we again consider the zeta functions

(Ci,x,s) rlN(x +z1vil +... +zdiVidi)I -s
Z
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If
j=1,...,d1

then Ai = (ask) is a (di x n)-matrix with positive entries, and the k-th
component of z 1 vi 1 + + zd1 vidi becomes

* d; O
Lk(zl, ..,zd,)= aikZi

l=1

For X E ][8+, we therefore get -

(Ci,x,s) _ 11 Lk(z1, ...,zdi)-S = (Ai,x,s),
z k=1

and, from (9.5) and (9.6), we obtain by putting s = 1 - k the

(9.8) Theorem. The values of the partial zeta function (.fi, s) at the integral
points s = 1 - k, k = 1, 2, 3, ... , are given by

Bk A
1

x)
(.h, I - k) = 9q(a)k_1 [(-i)d (

k"

and the values of the Dirichlet L -series L(X, s) are given by
m

L(X, 1 - k) X(a)01(a)k_1 -1)d' Bk (Ai, x)
i=1 xeR(..,C;) k

Here a is an integral ideal in the class .fi of J'/P'

This result about the Dirichlet L -series L(X, s) also covers the Dedekind
zeta function K (s). The theorem says in particular that the values L (X, 1=k),
for k > 1, are algebraic numbers which all lie in the cyclotomic field Q(Xf)
generated by the values of the character Xf. The values K (1 - k) are even
rational numbers. From the functional equation (5.11),

l r1+r2K(1 -s) = IdKIs_h12(cos
7rS

2) (Sin
7rS 2)r2

we deduce that K(1 - k) = 0 for odd k > 1, and it is # 0 for even k > 1.
If the number field K is not totally real, then we have K (s) = 0 for, all
s=-1,-2, -3, ...

(9.9) Corollary (SIEGEL-KL!NGEN). The values of the partial zeta function
(A, s) at the points ,s = 0, - 1, - 2, ... are rational numbers.

I
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Proof: Let a1, ...,ar be nonzero numbers in K, and let A be the (r x n)-
matrix (a 1), where aji is the i -th component of aj, after identifying 12 = l[l;°
according to the chosen numbering of the embeddings r : K -+ R. It is
enough to show that Bk(A,x) is a rational number for every r-tuple of
rational numbers x = (x1, ... , xr ). To see this, let L I Q be the normal
closure of KIQ and Cr E G(LIQ). Then a induces a permutation of the
indices { 1, 2, ... , n } so that

aajj =aj (j) : ! S

Now we had Bk(A,x) = n F 1 Bk(A,x)iji, where Bk(A,x)ljl was the
coefficient of u'a(k-t)+r (t1, ... , t1_1, tj+1, ... , tn)k-1 in the Taylor expansion
of the function

r r exp(xjuLj(t))U
,j=1 exp(uLj(t) - 1)

with L j (t) = a j 1 t1 + + a in t,,. This makes it clear that Bk (A, x) (j) lies
in L and that aBk(A,x)(j) = Bk(A,x)(Q(j)). Therefore Bk(A,x) is invariant
under the action of the Galois group G(LIQ), and thus belongs to Q.

The nature of the special values of L -series at integer points has recently
found increasing interest. Like in the class number formula, which expresses
the behaviour of the Dedekind zeta function at the point s = 0, the properties
of all the special values indicate a deep arithmetic law which appears
to extend to an extremely wide class of L-series, the L-series attached
to "motives". According to a conjecture of the American mathematician
STEPHEN LICHTENBAUM, the significance of these L-values can be explained
by a strikingly simple geometric interpretation: they appear according to
the Lichtenbaum conjecture as Euler characteristics in etale cohomology
(see [99], [12]). The proof of this conjecture is a great, if still remote, goal
of number theory. On the way towards it, the insights into the nature of
L -series which we have encountered may prove to be important.

Finally we want to mention that the French mathematicians DANIEL, BARSKY
and PIERETTE CASSOU-NOGUES have used SHINmw's result to prove the existence
of p-adic L -series. These play a major role in Iwasawa theory, which we
have mentioned before. The p-adic zeta function of a totally real number
field K is a continuous function

p : ZP \ {1} -) QP,
which is related to the ordinary Dedekind zeta function K (s) by

p(-n) = K (-n) Fl (1 - 9(p)n)
pip
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for all n E N such that -n = 1 mod d, where d = [K(µ2p) : K] denotes
the degree of the field K(92p) of 2p-th roots of unity over K. The p-adic
zeta function is uniquely determined by this relation. Its existence hinges on
the fact that the rational values K (-n) are subjected to severe congruences
with respect to p.

§ 10. Artin L-series

So far, all L-series we have considered were associated to an individual
number field K. With the Artin L -series, a new type of L -series enters the
stage; these are derived from representations of the Galois group G(LIK)
of a Galois extension L I K. This new kind of L -series is intimately related
to the old ones via the main theorem of class field theory. In this way they
appear as far-reaching generalizations of the old L-series. Let us explain this
for the case of a Dirichlet L -series

X (n)L(X
s) = =ns 1 - X (p)p-s

attached to a Dirichlet character

X : (7L/m7L)* ) C*.
Let G = G(Q(gm)IQ) be the Galois group of the field Q(ii,,,) of m-th roots
of unity. The main theorem of class field theory in this particular case simply
describes the familiar isomorphism

(7L/m7L)* --* G,

which sends the residue class p mod m of a prime number p fi in to the
Frobenius automorphism (pp, which in turn is defined by

cpp = p for E Un,.

Using this isomorphism we may interpret X as a character of the Galois
group G, or in other words, as a 1-dimensional representation of G, i.e., a
homomorphism

X:G) GLI(C).
This interpretation describes the Dirichlet L-series in a purely Galois-
theoretic fashion,

L(X s)=17I
ptm 1 - X (cOp)p-s

and allows us the following generalization.
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Let L I K be a Galois extension of finite algebraic number fields with
Galois group G = G (L I K). A representation of G is an action of G on a
finite dimensional G-vector space V, i.e., a homomorphism

p:G -GL(V) = Autc (V).
Our shorthand notation for the action of a e G on v e V is av, instead of
the complete expression p(a)v. Let p be a prime ideal of K, and let T Ip be
a prime ideal of L lying above p. Let Gp be the decomposition group and
IT the inertia group of 93 over p. Then we have a canonical isomorphism

GTIIp -24 G(K(q3)IK(p))

onto the Galois group of the residue field extension K (93) I K (p) (see chap. I,
(9.5)). The factor group GW/Ip is therefore generated by the Frobenius
automorphism VT whose image in G(K()3)IK(p)) is the q-th power map
x i-+ x`I, where q = 01(p). rpp is an endomorphism of the module VIP of
invariants. The characteristic polynomial

det(l - cpet; V IT)
only depends on the prime ideal p, not on the choice of the prime idealT
above p. In fact, a different choice l'Ip yields an endomorphism conjugate
to cps, as the decomposition groups Gp and Gp,, the inertia groups IT
and IV, and the Frobenius automorphisms VT and rpT, are simultaneous
conjugates. We thus arrive at the following

(10.1) Definition. Let L J K be a Galois extension of algebraic number fields
with Galois group G, and let (p, V) be a representation of G. Then the Artin
L-series attached to p is defined to be

L(L I K, p, s) = r(
1

p VIP)

where p runs through all prime ideals of K.

The Artin L-series converges absolutely and uniformly in the half-plane
Re(s) > 1 + 8, for any 8 > 0. It thus defines an analytic function on the
half-plane Re(s) > 1. This is shown in the same way as for the Hecke
L-series (see (8.1)), observing that the e; in the factorization

d
det(1 -'PT Fqq(p)-S; VIA') _ H(1 -Ei`n(p)-S)

i=1

are roots of unity because the endomorphism qpT of VIP has finite order.
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For the trivial representation (p, C), p(o) = 1, the Artin L-series is!
simply the Dedekind zeta function K (s). An additive expression analogous;
to the expansion

WS) a `n(a)s
does not exist for general Artin L -series. But they exhibit a perfectly regular
behaviour under change of extensions L I K and representations p. This
allows to deduce many of their excellent properties. As a preparation for this
study, we first collect basic facts from representation theory of finite groups.
For their proofs we refer to [125].

The degree of a representation (p, V) of a finite group G is the dimension
of V. The representation is called irreducible if the G -module V does not
admit any proper G -invariant subspace. An irreducible representation of an,
abelian group is simply a character

p:GC*=GLj(C).
Two representations (p, V) and (p', V') are called equivalent if the G
modules V and V' are isomorphic. Every representation (p, V) factors into
a direct sum

V=Vm®...®VS

of irreducible representations. If an irreducible representation (p"', V«) is
equivalent to precisely r among the representations in this decomposition;
then ra is called the multiplicity of pa in p, and one writes

P-Er«P.,
a

where p,, varies over all non-equivalent irreducible representations of G.
The character of a representation (p, V) is by definition the function

Xp:G -C, Xp(a)=trace p(Q).
One has Xp(1) = dim V = degree(p), and Xp(Qty-1) = Xp(t) for
all o', r e G. In general, a function f : G -+ C with the property
that f (vto--t) = f (t) is called a central function (or class function)
The special importance of characters comes from the following fact:

Two representations are equivalent if and only if their characters are equal!.
If p Fa r,,,Pa, then

XpraXp..
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The character of the trivial representation p : G -* GL(V), dim V = 1,
p(o) = 1 for all a E G, is the constant function of value 1, and is denoted
by 1G, or simply 1. The regular representation is given by the G-module

V=C[G]={ F_ xtrI xt (=- C},
tEG

on which the v E G act via multiplication on the left. It decomposes
into the direct sum of the trivial representation Vo = C LJEG or, and
the augmentation representation { ElEG X1 0' I & xa = 0} . The character
associated with the regular, resp. the augmentation representation, is denoted
by rG, resp. uG. We thus have rG = uG + 1G, and explicitly: rG(a) = 0
form; 1, rG (1) = g = #G.

A character X is called irreducible if it belongs to an irreducible
representation. Every central function p can be written uniquely as a linear
combination

rP=>c5X, cx EC,
of irreducible characters. is a character of a representation of G if and only
if the cx are rational integers > 0. For instance, for the character rG of the
regular representation we find

rG =EX(1)X,
where X varies over all irreducible characters of G. Given any two central
functions rP and >/r of G, we put

1 E 9 (a) (a) , g = #G,
g aEG

where is the function which is the complex conjugate of rfr. For two
irreducible characters X and X', this gives

i
1, if X = X"

0, ifX X'
In other words, (,) is a hermitian scalar product on the space of all central
functions on G, and the irreducible characters form an orthonormal basis of
this hermitian space.

For the representations itself, this scalar product has the following
meaning. Let

V=Vi ED ...ED Vr

be the decomposition of a representation V with character X into the direct
sum of irreducible representations V. If V' is an irreducible representation
with character X', then (X, X') is the number of times that V' occurs
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among the Vi, up to isomorphism. For if Xi is the character of V1, then
X = X1 ++Xr, so that

(x, X') _ (X1,X')++(Xr,X'),
and we have (Xi, X') = 1 or 0, depending whether V1 is or is not isomorphic
to W. Applying this to the trivial representation V' = C, we obtain in
particular that

dim VG = 1 I X(a), g=#G.
g QEG

Now let h : H G be a homomorphism of finite groups. If cp is a central
function on G, then h*('p) = rp o h is a central function on H. Conversely,
one has the following proposition.

(10.2) Frobenius Reciprocity. For every central function i/r on H there is
one and only one central function h*(ik) on G such that one has

(co,h*(ik)) =
for all central functions 'p on G.

This will be applied chiefly to the following two special cases.

a) H is a subgroup of G and h is inclusion.
In this case we write rp I H or simply 'p instead of h* ((p), and ** instead

of h*(*) (the induced function). If rp is the character of a representation
(p, V) of G, then 'pIH is the character of the representation (pIH,V). If *
is the character of a representation (p, V) of H, then i/r* is the character of
the representation (ind(p), IndG (V)) given by the induced G-module

IndG(V)={f:G-*VI f(ax)=rf(x) for all rEH},
on which Cr E G acts by (af)(x) = f (xa) (see chap. IV, §7). One has

where r varies over a system of representatives on the right of G/H, and we
put i/'(rar-1) = 0 if tar-1 0 H.
b) G is a quotient group H/N of H and h is the projection.

We then write 'p instead of h*(co), and *q instead of h*(fl. One has

*(a)_F*(r)-#N t
If 'p is the character of a representation (p, V) of G, then is the
character of the representation (p o h, V).

The following result is of great importance.
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(10.3) Brauer's Theorem. Every character X of a finite group G is a Z -
linear combination of characters Xi* induced from characters X; of degree 1
associated to subgroups H; of G.

Note that a character of degree 1 of a group H is simply a homomorphism
X:H-*C*.

After this brief survey of representation theory for finite groups, we
now return to Artin L-series. Since two representations (p, V) and (p', V')
are equivalent if and only if their characters X and X' coincide, we will
henceforth write

L(LIK s) = 1-7X
1

, ,
p det(1 - p(rPT)9T(p)-s; V113)

instead of L(L I K, p, s). These L-series exhibit the following functorial
behaviour.

(10.4) Proposition. (i) For the principal character X = 1, one has

L(LIK,1,s) = K(s).
(ii) If X, X' are two characters of G(L I K), then

L(LIK,X +X',s) =L(LIK,X,s)L(LIK,X',s)
(iii) For a bigger Galois extension L' I K, L' D L 3 K, and a character X of
G(L I K) one has

L(L'IK,X,s) =L(LIK,X,s)
(iv) If M is an intermediate field, L 3 M 3 K, and X is a character
ofG(LIM), then

L(L I M, X , s) = L(L I K, X*, s)

Proof: We have already noted (i) earlier. (ii) If (p, V), (p', V') are
representations of G (L I K) with characters X , X', then the direct sum
(p ® p', V ® V') is a representation with character X + X', and

det(1-rpc t; (V ®V')'T)=det(1-rp,pt; V1T)det(1-rppt; Vi1q').
This yields (ii).
(iii) Let q3' I3 I p be prime ideals of L' I L I K , each lying above the next. Let X
be the character belonging to the G (L I K) -module V. G (L' I K) acts on V via
the projection G(L'IK) -+ G(LIK). It induces surjective homomorphisms

Gcp, ---+ Gt, IT, -+ 1T, G j,/1 , G p/IT
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of the decomposition and inertia groups. The latter maps the Frobenius
automorphism rpgy to the Frobenius automorphism rpcp so that (rpp', V 1,4y)

(rpp, V IT), i.e.,

det(1 -VT,t; V11y) = det(1 - (pt,V'T).
This yields (iii).
(iv) Let G = G(LIK) and H = G(LOM). Let p be a prime ideal of K,q...,1, q, the various prime ideals of M above p, and 43i a prime ideal
of L above qi, i = 1, ...,r. Let Gi, resp. Ii, be the decomposition, resp.
inertia, group of Ti over p. Then Hi = Gi n H, resp. 1il = Ii n H, are the
decomposition, resp. inertia, groups of 93i over qi. The degree of qi overjp
is fi = (Gi : Hili), i.e.,

Jt(gi) = `n(p)fi
We choose elements Ti E G such that Ti = Ti'. Then Gi = r 1 G i zi ,

and Ii = r[ ' Il r . Let P E G 1 be an element which is mapped to the
Frobenius VT, E GI/11. Then rpi = ri llpr E G i is mapped to the Frobenius
(pTr E Gi /Ii , and the image of P}' in Hi /Ii is the Frobenius of'p3i over qi.

Now let p : H --> GL(W) be a representation of H with character X.
Then X,, is the character of the induced representation ind(p) : G GL(V),
V = IndG (W). Clearly, what we have to show is that

det(1-rpt;VI')= r det(1-cpf'tI'';WIi).
i=1

We reduce the problem to the case GI = G, i.e., r = 1. Conjugating by ii,
we obtain

det(1 - of'tfi ; WI+) = det(1 - gpfitfi; (t W)I;nr,Hr ')
i

and fi = (GI : (GI n rHri-1)Ii). For every i we choose a system of
representatives on the left, aij, of GI mod G, n r i H rt i . One checks
immediately that then (Ti ) is a system of representatives on the left of
G mod H. We thus have (see chap. IV, §5, p.297) the decomposition

V =®aijriW.
i,j

Putting Vi = ®j aij ri W, we obtain a decomposition V = ®i Vi of V as a
G i -module. Hence

det(1 -ppt; VI') = jI det(1 -ppt; VI').
i=1

It is therefore sufficient to prove that

det(l - apt; Vi1')=det(l-cpfitfi; (r iW)Iinr;1 i')
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We simplify the notation by replacing G1 by G, Il by I, G1 fl rjHr,-1 by
H, fi by f = (G : HI), V, by V, and r;W by W. Then we have still
V = IndH (W), i.e., we are reduced to the case r = 1, G = G.

We may further assume that 1 = 1. For if we put G = G/I, H = H/I AH,
then V1 = IndG (W t rH). Indeed, a function f : G W in V is invariant
under I if and only if one has f (xr) = f (x) for all r E I, i.e., if and only if
it is constant on the right (and therefore also on the left) cosets of G mad 1,
i.e., if and only if it is a function on G. It then automatically takes values in
W11H, because rf (x) = f (rx) = f (x) for r E I fl H.

So let I = 1. Then G is generated by rp, f = (G : H), and thus

f-1
V=®coW.

i=O

Let A be the matrix of c p f with respect to a basis W 1 , Wd of W. If E
denotes the (d x d) unit matrix, then

u L; U

l0 0 ... E
A 0 ... 0

is the matrix of o with respect to the basis {cp' wl) of V. This gives

1E -tE ... 0

det(l - cpt; V)=det
0 0 -tE I

W)

-tA 0 ... E

as desired. The last identity is obtained by first multiplying the first column
by t and adding it to the second, and then multiplying the second column
by t and adding it to the third, etc.

The character 1,, induced from the trivial character 1 of the subgroup
{1) c G (L J K) is the character rG = Ex X (1)X of the regular representation
of G (L I K). We therefore deduce from (10.4) the

(10.5) Corollary. One has

CL(s) = OK (s) II L(LIK,x,s)x(l),
x01

where X varies over the nontrivial irreducible characters of G(L I K).
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The starting point of Artin's investigations on L-series had been the
question whether, for a Galois extension LIK, the quotient L(s)/K(s) is
an entire function, i.e., a holomorphic function on the whole complex plane.
Corollary (10.5) shows that this could be deduced from the famous

Artin Conjecture: For every irreducible character X 0 1, the Artin L -series
G(L IK, X, s) defines an entire function.

We will see presently that this conjecture holds for abelian extensions. In
general it is not known. In view of its momentous consequences, it constitutes
one of the big challenges in number theory.

We will show next that the Artin L -series jr' the case of abelian extensions
L I K coincide with certain Hecke L -series, more precisely, with generalized
Dirichlet L-series. This means that the properties of Hecke's series, and in
particular their functional equation, transfer to Artin series in the abelian
case. Via functoriality (10.4) they may then be extended to the non-abelian
case.

The link between Artin and Hecke L-series is provided by class field
theory. Let L I K be an abelian extension, and let f be the conductor of L I K,
i.e., the smallest module

f = H P° r
Pt-

such that L I K lies in the ray class field K f K (see chap. VI, (6.2)). The
Artin symbol (LaK ` then gives us a surjective homomorphism

Jf/P1

-±
G(LIK), a mod Pf r--> (LK

a J
from the ray class group Jf/Pf. Here Jr is the group of fractional ideals
prime to f, and Pf is the group of principal ideals (a) such that a = 1 mod f
and a is positive in Kv = IR if p is real.

Now let X be an irreducible character of the abelian group G(LIK), i.e.,
a homomorphism

Composing with the Artin symbol ( & 1 ) , this gives a character of the ray
class group Jf/Pf, i.e., a Dirichlet character mod f. It induces a character
on Jf, which we denote by

By (6.9), this character on ideals is a Gr68encharacter mod f of type (p, 0),
and we have the
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(10.6) Theorem. Let L I K be an abelian extension, let f be the conductor of
L I K, let X 1 be an irreducible character of G(L I K), and X the associated
Grofiencharakter mod f.

Then the Artin L -series for the character X and the Hecke L -.series for
the Gr6f3encharakter X satisfy the identity

,C(LIK,X,s)=PS 1
L(X,s),1-X(w) t(P) -S

where S={plfI X(Ip) = 11.

Proof: The representation of G (L I K) associated to the character X is
given by a 1-dimensional vector space V = C on which G(L I K) acts via
multiplication by X, i.e., o v = X (a) u. Since f is the conductor of L I K, we
find by chap. VI, (6.6), that

p I f p is ramified IT : 1.
If X (IT) 0 1, then V IT = {01, and the corresponding Euler factor does not
occur in the Artin L-series. If on the other hand X(IT) = 1, then V 1 P = C,
so that

det(1 - capO(p)-S ; V t ') = 1 - X (p)-S
.

We thus have

G(LIK,X,s)=fl
P11

and

1 1

- X ((P YR(P) pl s 1 - X (p)-:,

L(X s)=Tj 1

Ptf 1 - X (PYR(p)-S

For p { f , one has ( ) = qpp, and so Y (p) = X (VT). This proves the
P

claim.

Remark: If the character X : G(LIK) -)- C* is injective, then S == 0, and
one has complete equality

G(LIK, X, s) = L(X,s).
In this case X is a primitive Grofiencharakter mod f.

If on the other hand X is the trivial character 1G , then X is the trivial
Dirichlet character mod f, and we have

OK(s) = fl 1 L(X,s)
Plf 1 - 92(p)-S
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The theorem implies that the Artin conjecture holds for all Artin L -
series G(LIK, X, s) which correspond to nontrivial irreducible characters X
of abelian Galois groups G (L I K). For if L x is the fixed field of the kernel
of X and X is the Grbj3encharakter associated with X : G(Lx I K) -4 C ,

then the above remark shows that G(L IK, X, s) = G(Lx IK, X, s) = L(X, s).
Hence G(LIK, X; s) is holomorphic on all of C, because the same is true
for L(X,s), as was shown in (8.5). This also settles the Artin conjecture for
every solvable extension L I K.

Our goal now is to prove a functional equation for Artin L -series. The
basis for this will be the above theorem and the functional equation we have
already established for Hecke L-series. We however have to complete the
Artin L-series by the right "Euler factors" at the infinite places. In looking
for these Euler factors, the first natural guideline is provided by the case of
Hecke L-series. But in order to go the whole way, we need an additional
Galois-theoretic complement which will be dealt with in the next section.

§ 11. The Artin Conductor

The discriminant -0 = 1L IK of a Galois extension L I K of algebraic number
fields admits a fine structure based on group theory. It is expressed by a
product decomposition

Z) = IIf(x)x('),
where X varies over the irreducible characters of the Galois group
G = G(LI K). The ideals f(X) are given by

f(X) = II pfc(x)
pf-

with
fp(X) gt codim VG' ,

i>0 90

where V is a representation with character X, G1 is the i -th ramification
group of LTIKp, and g; denotes its order. This discovery goes back to EMiL
ARTIN and HELMUT HASSE. The ideals f(X) are called Artin conductors. They
play an important role in the functional equation of the Artin L -series, which
we are going to prove in the next section. Here we collect the properties
needed for this, following essentially the treatment given by J.-P. SERRE
in [122].



III ti,

.-4

(I"

.°'

o
.
4

528 Chapter VII. Zeta Functions and L-series

First let us consider a Galois extension L1K of local fields, with Galois
group G = G(LIK). Let f = fLIK = [X : K] be the inertia degree of LIK.
In chap. II, § 10, we defined, for any a E G,

iG(a) = VL(aX -X),
where x is an element such that oL = OK[x], and vL is the normalized
valuation of L. With this notation we can write the i -th ramification group as

G1=[aEGI iG(a)>i+l}.
One has iG(rat'1) = iG(o-), and iH(a) = iG(a) for every subgroup
H C G. If L I K is unramified, then iG (a) = 0 for all a c= G, a 1. We put

aG(a)=
fiG(a) fora 1,

IfF-,,,IiG(7r) force=l.
aG is a central function on G, and we have

(aG,1G) = 1 E aG(a) = 0.#G QeG

We may therefore write

aG = >2 f(X)X, f(X) E C,
x

with X varying over the irreducible characters of G. Our chief problem
is to prove that the coefficients f (X) are rational integers > 0. Once we
have shown this, we may form the ideal fp(X) = pf(x), which will be the
p-component of the global Artin conductor that we want. First we prove that
the function aG satisfies the following properties (we use the notation of the
preceding section).

(11.1) Proposition. (i) If H is a normal subgroup of G, then

aG/H = (aG)4

(ii) If H is any subgroup of G, and if K' is the fixed field with discriminant
DK'IK = p', then

aG I H = vrH + fK' I K a H.

(iii) Let G; be the i-th ramification group of G, ui the augmentation
character of Gi, and (u1)# the character of G induced from ui. Then one has

O°
aG = E (ui)xi=o (Go Gt)
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Proof: (i) follows immediately from chap. II, (10.5).
(ii) Let a e H, a ; 1. Then

aG(Q) = -fLIKiG(a), aH(a) _ -fLIK'iH(a), rH(a) = 0.
Since 1G(9) = iH(a) and fLIK = fLIK'fK'IK, this implies

aG (a) = VrH (a) + fK'IKaH (a)
Now let or = 1, and let ',0LIK be the different of LIK. Let oL = 0K[x] and
g(X) be the minimal polynomial of x over K. By chap. III, (2.4), OLIK is
then generated by g(x) = r[o#1 (ax - x). Consequently,

ULMLIK) = vL(g'(x)) ' iG(a) = fLIK aG(1)

By chap. 111, (2.9), we know, on the other hand, that DLIK = NLIKPLIK),
SO VK o NLIK = fLIKVL gives the identity

aG(1) = fLIKVLMLIK) = VK(ZJLIK),
and in the same way all(l) = VK,(-0LIK'). From chap. III, (2.10), we get
furthermore that

0LIK = (DK'IK)[L:K')NK'IK(0LIK')

Thus rH(1) _ [L : K] and v = VK (tK'IK) yields the formula
aG(1) = [L : K']VK(DK'IK) + fK'IKVK'(DLIK') = vrH(l) + fK'IKaH(1)

(iii) Let gi = #Gi, g = #G. Since Gi is invariant in G, we have (ui ). (a) = 0
if a V Gi, and (ur').(u) = -g/gi = -f . go/gi if a E G or 0 1, and
EaeG(L[i)*(a) = 0. For a E Gk N Gk+1, we thus find

1aG(a)=-f(k+1)=F (Go=Gi)
This implies the identity for the case u = 1 as well, since both sides are
orthogonal to 1G.

For the coefficients f (X) in the linear combination
aG=Y- f(X)X,

we have, in view of aG(a-1) = aG(a), that

f(X) _ (aG,X) = 1 aG(a)X(a-') = i aG(a-1)X(a) = (X,aG),
g oEG g aEG

g = #G. For any central function p of G, we put
f aG)

and

9(Gi) = 1- qp(a), gi = #Gi.
gi QEG1
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(11.2) Proposition. (i) If rp is a central function on the quotient group G/H,
and cp' is the corresponding central function on G, then

f(W)=f((P')
(ii) If W is a central function on a subgroup H of G, and q0, is the central
function induced by T on G, then

AN) = vK()K'1K)cp(1) + fK'IKf(cp)
(iii) For a central function rp on G, one has

f (rp) = E g- (rs(1) - p(Gt)) .
t>o go

Proof: (i) f (cs) = aG/H) = (aG) q) = (q/, aG) = f (V)-
(ii) (p.,aG) = ((p,aGI H) = v((p,rH) +
fK'IKf (co) With V = VK(t.K IK).
(iii) We have (cp, (u;),) = ((pI G;, ul) = so the formula follows
from (11.1), (iii).

If X is the character of a representation (p, V) of G, then X (1) = dim V
and X (G;) = dim V G; , hence

f(X)=Tg`codimVG,.
i>o go

Now consider the function
S

dx
27LiK(S)- (Go:G.,)

0

which was introduced in chap. II, § 10. For integers m > -1, it is given by
1lLIK(-1) _ -1, 71LIK(0) = 0, and

m gi
nLjK(m)=Y'-

form>1.

i=1 go
The theorem of HASSE-ARF (see chap. V, (6.3)) now gives us the following
integrality statement for the number f (X) in the case of a character X of
degree 1.

(11.3) Proposition. Let X be a character of G of degree 1. Let j be the
biggest integer such that X IGi 0 1 Gi (when X = 1G we put j = -1). Then
we have

f(X) ='7LIK(J)+1,
and this is a rational integer > 0.
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Proof: If i < j, then X(Gi) = 0, so that X(1) - X(Gi) = 1. If i > j, then
X (Gi) = 1, and so X (1) - X (Gi) = 0. From (11.2), (iii), it thus follows that

f(X)=E gi ?7LIK(j)+l,
i=o go

provided j > 0. If j = -1, we have X (1) - X (Gi) = 0 for all i > 0, and
hence by (11.2), (iii), f (X) = 0 = t?LIK (-1) + 1.

Let H be the kernel of X and L' the fixed field of H. By Herbrand's
theorem (chap. II, (10.7)) one has

Gj(LI K)H/H = GJ'(L'IK) With j' = '7LIL'(1)

In terms of the upper numbering of the ramification groups, this translates
into

Gt(LIK)H/H =G'(L'IK),
where t = 77LIK(J) = t1L'IK(t]LIL'(J)) = 71L'IK(l') (see chap.11, (10.8)). But
X(GJ(LIK)H/H) 1, and X(Gi+s(LIK)H/H) = X(Gj+i(LIK)H/H)
= 1 for all 8 > 0, and in particular GJ(LIK)H/H; GJ+s(LIK)H/H for
all 8 > 0. Since 17LjK(s) is continuous and strictly increasing, it follows that

G'(L'IK) = G'(LIK)H/H 0 Gt+e(LIK)H/H =Gt+e(L'IK)

for all s > 0, i.e., t is a jump in the ramification filtration of L'IK. The
extension L' I K is abelian and therefore t = 17L IK (j) is an integer, by the
theorem of HASSE and ARF

Now let X be an arbitrary character of the Galois group G = G(L I K).
By Brauer's theorem (10.3), we then have

X=>niXi*, ni EZ,
where Xi* is the character induced from a character Xi of degree 1 of a
subgroup Hi. By (11.2), (ii), we have

f(X) _ Enif(Xi*) _ Eni(UK(oK,IK)Xi(1)+fK,IKf(Xi)),
where K, is the fixed field of Hi. Therefore f (X) is a rational integer. On the
other hand, (11.1), (iii) shows that goaG is the character of a representation
of G, so go f (X) = (X, goaG) > 0. We have thus established the

(11.4) Theorem. If x is a character of the Galois group G = G(L I K), then
f (X) is a rational integer > 0.
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(11.5) Definition. We define the (local) Artin conductor of the character X
of G = G(L I K) to be the ideal

fp(X) = pf(X)

In chap. V, (1.6), we defined the conductor of an abelian extension L I K
of local fields to be the smallest power of p, f = p", such that the n-th higher
unit group UK') is contained in the norm group NLIKL*. The latter is the
kernel of the norm residue symbol

( LIK) : K* ) G(LIK),
which maps UY') to the higher ramification group G' (L IK) = Gj (L IK) with
i = TJLIK(J) - see V, (6.2). The conductor f = p" is therefore given by the
smallest integer n > 0 such that G" (LIK) = 1. From (11.3) we thus obtain
the following result.

(11.6) Proposition. Let LIK be a Galois extension of local fields, and let X
be a character of G (L I K) of degree 1. Let LX be the fixed field of the kernel
of X, and f the conductor of L X I K. Then one has

Proof: By (11.3), we have f(X) = 77LIK(J) + 1, where j is the largest
integer such that G (L 1K) g G(LILX) =: H. Let t = 77LIK(J). Then one
has

G' (Lx I K) = G( L I K)H/H = GJ (L I K)H/H,

and Gt+E(LXIK) S; GJ+1(LIK)H/H = 1 for all e > 0. Hence t is the
largest number such that Gt(LX IK) 1. By the theorem of HASSE-ARF, t is
an integer, and we conclude that f (X) = t + 1 is the smallest integer such
that Gf(X)(LXIK) = 1, i.e., f(X) = n.

We now leave the local situation, and suppose that LIK is a Galois
extension of global fields. Let p be a prime ideal of K, q3I p a prime
ideal of L lying above p. Let L p I Kp be the completion of LIK, and
Gt = G(LcpIKp) the decomposition group of $43 over K. We denote the
function aG. on Gt by at, and extend it to G = G(LIK) by zero. The
central function

ap = asp
TIP
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immediately turns out to be the function (ap),, induced by a-pIGT. If is
therefore the character of a representation of G. If now X is a character of !G,
then we put

f(X,p) = (X,ap) = f(XIGp).
Then f p (X) = pf (X. P) is the Artin conductor of the restriction of X I to
Gp = G(LpIKp). In particular, we have fp(X) = 1 if p is unramified. We
define the (global) Artin conductor of X to be the product

f(X) = II fp(X)
pfc

precision is called for, we write f (L I K, X) instead of f (X). The
properties (11.2) of the numbers f (X, p) transfer immediately to the Artinconductor f (X), and we obtain theI

' IProposition. (i) f(X + ) f(1) = (1) j=) f(X)f(XX

(ii) If L' I K is a Galois subextension of L I K, and X is a character, of
G(L'IK), then

f(LI K, X) = f(L'I K, X).
(iii) If H is a subgroup of G with fixed field K', and if X is a character
of H, then

f(LIK,X*)_O Y NK'IK(f(LIK',X)).

Proof: (i) and (ii) are trivial. To prove (iii), we choose a fixed prime ideal 'j3
ofL,put

G=G(LIK), H=G(LIK'), G=G(LIKp),
with p = j3 fl K, and consider the decomposition

G = U G rHt
into double cosecs. Then representation theory yields the following formula
for the character X of H :

(*) X* I G p _ > X* ,

where XT is the character XT(v) = X(t-1Qt) of Gpfl rHr 1, and X* is 'the

character of Gcp induced by XT (see [119], chap. 7, prop. 22). Furthermore
137 ='3T fl K' are the different prime ideals of K' above p (see chap. I, §9,
p. 55), and we have

).Gtr = t-1Gt = G(Lr IKp), H= = G= n H = G(L I K'
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Now let p'* be the discriminant ideal of KIT IKp, and let f,p' be the

degree of overover K. Thus NK,JK W) = pfgr . Since

fp(LIK,X*)=pf(x,iGT) and fVr(LIK',X)=T7(xlH!,r)

we have to show that

f(X*IG) vgrX(1)+f rf(XIHsr),

or, in view of (11.2), (ii), that

(**) f(x*IGT) _ f((xIHpr)*)

But HTr = r-I(GT n rHr-I)r, and xIHTr, resp. (xlHpr)*, arises by
conjugation a H rar' from xt, resp. X'. Therefore f ((x I Hcpr)*) =
f (X'), and (**) follows from (*).

We apply (iii) to the case x = 1H, and denote the induced character x*
by SG/H. Since f(x) = 1, we obtain the

(11.8) Corollary. dK'IK = f(LIK,SG/H)

If in particular H = {1}, then SG/H is the character rG of the regular
representation. Its decomposition into irreducible characters x is given by

rG = EX(1)x

This yields the
x

(11.9) Conductor-Discriminant-Formula. For an arbitrary Galois exten-
sion L I K of global fields, one has

OLIK =flf(X)X(t),
X

where x varies over the irreducible characters of G (L I K).

For an abelian extension L I K of global fields, we defined the conductor
f in VI, (6.4). By chap. VI, (6.5), it is the product

f=llfp
p

of the conductors f p of the local extensions LT I Kp. (11.6) now gives rise to
the following
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(11.10) Proposition. Let L I K be a Galois extension of global fields, x a
character of G(L IK) of degree 1, LX the fixed field of the kernel of x, and f
the conductor of LX I K. Then one has

f=f(x)
Now let L I K be a Galois extension of algebraic number fields. We form

the ideal
c(LIK,X) =ZKj"NKIQ(f(LIK,X))

of Z. The positive generator of this ideal is the integer

c(LIK,X) = IdKIXl')9q(f(LIK,X))
Applying (11.7) and observing the transitivity of the discriminant (chap. III,
(2.10)), we get the

(11.11) Proposition. (i) c (L I K, x + X') = c (L I K, X) c (L I K, X'), c (L I K, 1)
= IdK1,

(ii) c(LIK,X)=c(L'IK,X),
(iii) c(LIK,X,,) =c(LIK',X)
Here the notation is that of (11.7).

§ 12. The Functional Equation of Artin L-series

The first task is to complete the Artin L -series
1

LL K X' s) - det(1 - qp
V's)'

for the character x of G = G(LI K), by the appropriate gamma factors. For
every infinite place p of K we put

Lc(s)x('), if p is complex,
Lp(L JK, X, s)

LR(s)" LR(s + 1)" , if p is real,

with the exponents n+ = X(')+z (wT) , n- = X(1)_ 2 Here q q is the
distinguished generator of G (LT I Kr), and

LR(S) = 7r_sI2r(s/2), Lc(s) = 2(2 r)-SP(s)
(see § 4). For p real, the exponents n+, n- in L p (L I K, x , s) have the
following meaning.
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The involution op on V induces an eigenspace decomposition V =
V+ ® V-, where

V+={xEVlcp,pX=x}, V =IxEVlcppx=-x},
and it follows from the remark in § 10, p.521, that

dimV+= I
(X (1) + X (VT)) , dimV- = 2( X (1) - X

The functions Gp (L I K, X, s) exhibit the same behaviour under change of
fields and characters as the L -series and the Artin conductor.

(12.1) Proposition. (i) Gp (L I K, x + x', s) = Gp (L I K, X, s),Cp (L I K, x', s).

(ii) If L' I K is a Galois subextension of L I K and x a character of G (L' I K),
then

G,(LIK,X,s)=Lp(L'IK,X,s).
(iii) If K' is an intermediate field of L I K and x a character of G (L I K'),
then

Gp(LI K, X.,s) = II Lq(LIK',X,s),
qlp

where q varies over the places of K' lying above p.

Proof: (i) is trivial.
(ii) If TIT'Ip are places of L J L' 3 K, each lying above the next,
then cpgp is mapped under the projection G(LIK) -+ G(L'IK) to ppp'.
So x (n) = X (APT,).
(iii) If p is complex, then there are precisely m = [K' : K] places q above p.
They are also complex, and the claim follows from X,, (1) = mx(1).
Suppose p is real. Let G = G(LIK), H = G(LIK'), and let H\G/Gp be
the set of double cosets HrGT with a fixed place l of L above p. Then we
have a bijection

H\G/GT --* {q place of K' above p), HrGT qT = rg3I K'

(see chap. I, §9, p.55). qz is real if and only if cp.,T = E H, i.e.,
G,T rGq3r-' c H. The latter inclusion holds if and only if the double
coset HrGcp consists of only one coset mod H:

HrGT = (HrG+pr-')r = Hr.
We thus obtain the real places among the qZ by letting r run through a
system of representatives of the cosets Hr of H\G such that rtpTr-1 E H.
But, for such a system, one has

X. (VT) =>x(rcPspr ,) _ x(cO.'T)
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Putting Ll = r 3, makes q =1 1K' run through the real places of K' above p,
i.e.,

X. ((PT) _ X
qlp
real

On the other hand we have

X«(1) _ E 2X (1) + E X (1)
q complex q real

Legendre's duplication formula LIa(s)LR(s + 1) = Lc(s) (see (4.3)) turns
this into

Lp(LIK, x., s) _
rj Lc(s)X(t) H

LR(s)xT_ jI Lte(s+1)xcl =
q complex q real q real

= fLq(LIK',X,s)
qlp

We finally put

L.(L I K, x, s) = 1I Lp(L IK, x, s),
ploo

and obtain immediately from the above proposition the equations

Loo(L IK, X + X', s) = L.(L I K, x, s)Loo(L IK, X', s),
L.(LIK, X, s) = L.(L'IK, X, s),

L. (L IK, x., s) = Lao(L I K', x, s).

(12.2) Definition. The completed Artin L-series for the character x of
G (L I K) is defined to be

A(LIK, X,s) = c(LI K, X)s12Loo(LI K, X,s)L(LI K, X, s),

where
c(LIK,X) = idKIX( (t(f(LIK,X)) .

The behaviour of the factors c(L I K, X), L... (L I K, X, s), L(L IK, x, s) on
the right-hand side, which we studied in (10.4), (11.11), and above, carries
over to the function A(L I K, X, s), i.e., we have the
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(12.3) Proposition. (i) A(L I K, X + X', s) = A(L I K, X, s)A(L I K, X', s).

(ii) If L' I K is a Galois subextension of L I K and X a character of G (L' I K),
then

A(LI K, X, s) = A(L'I K, X, s).

(iii) If K' is an intermediate field of L I K and X a character of G (L I K'),
then

A(LIK, X., s) = A(LIK', X, s).

For a character X of degree 1, the completed Artin L -series A(LI K, X, s)
coincides with a completed Hecke L-series. To see this, let LX IK be the
fixed field of the kernel of X, and let f = rjp p' p be the conductor of LX I K.
By (11.10), we then have

f = f(X).

Via the Artin symbol

Jf/PfG(LXIK), aF--±(LXIK),
a

X becomes a Dirichlet character of conductor f, i.e., by (6.9), a primitive
Groftencharakter mod f (X) with exponent p = (pr), so that pr = 0 if r is
complex. This Gr6f3encharakter will be denoted X.

We put pp = pr if p is the place corresponding to the embedding
r : K -* C. The numbers pp have the following Galois-theoretical meaning.

(12.4) Lemma. For every real place p of K one has

pp=[LXp:Kp}-1.

Proof: We consider the isomorphism

I/IfK* Jf/Pf,

where If = flp Up°"i is the congruence subgroup mod f of the idele group
I = 11pK* (see chap. VI, (1.9)), and consider the composite map

I/IfK* -3 Jf/Pf G(LXIK)*V*.
Let p be a real place of K, and let a E I be the idele with components
up = -1 and aq = 1 for all places q different from p. By chap. VI, (5.6),
the image q p = (a, LX I K) = (-1, LXtIKp) in G(LX J K) is a generator of
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the decomposition group Gp = G(LxtIKr). By the approximation theorem,
we may choose an a E K* such that a = 1 mod f, a < 0 in Kp, and a > 0
in Kq, for all real places q # p. Then

=aaE1(f)={xEIIXpEUp"" forpIfoo}, iff=fppnp
As explained in the proof of chap. VI, (1.9), the image of a mod IfK* in
Jf/pf is the class of (,8) = (a), which therefore maps to (pp. Consequently,

X ((a)) = Xf(a)Xoo(a) = X ((ot)

Since a 1 mod f, we have Xf(a) = 1 and X,,(a) = N((-1)") _
a )PPIQIp_ (-1)'Pn, i.e., X(rP) = (_1)PP so that pT = 1 for pp = 0,

and rpq3 ; 1 for pp = 1. But this is the statement of the lemma.

(12.5) Proposition. The completed Artin L -series for the character X of
degree I and the completed Hecke L -series for the Grbj3encharakter X
coincide:

A(L I K, X, s) = A(X, s).

Proof : The completed Hecke L -series is given, according to § 8, by

A(x, s) = (IdK 1`n(f(x))) s/2Loo(x, s)L(x, s)
with

and s = sl + p, where
L.(X,s) = Lx(s),

Lx(s) = fl Lp(sp)
PI-

is the L-function of the G(CIR)-set X = Hom(K,C) defined in §4. The
factors L p (sp) are given explicitly by

(*) Lp(sp) =
Lc (s), if p complex,

{ La (s + pp), if p real,

(see p.454). On the other hand we have

A(LIK,X,s) = c(LIK,X)s'2G00(LIK,X,s)G(LI K,X,s)
with

and

c(LIK,X) = IdKI`I(f(LIK,X))

L (LIK,X,s)= FIGp(LIK,X,s)
P100
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Let Lx be the fixed field of the kernel of X. By (11.11), (ii), and the remark
preceding lemma (12.4), one has

c(LIK,X)=c(LxIK,X)=IdKI(f(X)),
and by (10.4), (ii), and (10.6), and the subsequent remark, one has

L(L J K, X, s) = L(Lx J K, X, s) = L(X, s) .
We are thus reduced to proving

Lp(LIK,X,s) =Lp(sp)
for p I oo and s = s 1 + p. Firstly, we have Lp (L I K, X, s) = Lp (LX I K, X, s)
(see p.537). Let cpp be the generator of G(LxpIKp). Since X is injective
on G(LXIK), we get x(q) = -l ifcpp 1, and x(VT)=1if cp,3=1.
Using (12.4) this gives

LC (S), for p complex,
Lp(Lx IK, x,s)= LR(S), for p real and 13 real, i.e., pp = 0,

LR(s + 1), for p real and T complex, i.e., pp = 1 .
Hence (*) shows that indeed Lp (L I K, X, s) = L p (sp).

In view of the two results (12.3) and (12.5), the functional equation for
Artin L-series now follows from Brauer's theorem (10.3) in a purely formal
fashion, as a consequence of the functional equation for Hecke L-series,
which we have already established.

(12.6) Theorem. The Artin L -series A (L I K, X, s) admits a meromorphic
continuation to C and satisfies the functional equation

A(LI K, X, s) = W(X)A(LIK, X,1 - s)
with a constant W (X) of absolute value 1.

Proof: By Brauer's theorem, the character X is an integral linear combination

X = r- ni Xi.,
where the Xi, are induced from characters Xi of degree 1 on subgroups
Hi = G(LIK1). From propositions (12.3) and (12.5), it follows that

A(LIK,X,s) = flA(LIK,Xi*,s)'i

= fl A(L I Ki, xi, s)R'

= A(Xi,s)Ri
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where Xr is the Grbj3encharakter of K, associated to Xi. By (8.6), the Hecke
L-series A(X;,s) admit meromorphic continuations to C and satisfy the
functional equation

A(Xj , s) = W (Xr)A(Xi , l - s) .

Therefore A (L I K, X, s) satisfies the functional equation

A(LIK,X,s)=W(X)fA(Xj,1-s)=W(X)A(LIK,X,1-s),
t

where W (X) _ Hi W (X,) is of absolute value 1. D

The functional equation for the Artin L -series may be given the following
explicit form, which is easily deduced from (12.6) and (4.3):

.C(LIK,X, 1 -s) = A(X,s)L(LIK, 3C, s),

with the factor

A(X,s) = W(X)[IdKIX(1)T(f(LIK,X))]s I
x (cosirs/2)"+ (sin res/2)" I'c(s)"X(l)

and the exponents

n+= 2X(1)+E2X(@Pq), n-=P p

Here the summations are over the real places p of K. This gives immediately
the zeroes of the function C(L I K, X, s) in the half-plane Re(s) < 0. If X is
not the principal character, they are the following:

at s = 0, - 2, - 4, ... zeroes of order
2

X (1) + r- 2 X
p real

at s = -1, - 3, - 5, ... zeroes of order ZX(l) -
p real

Remark: For the proof of the functional equation of the completed Artin
L -series, we have made essential use of the fact that "Euler factors"
Lp (L I K, X, s) at the infinite places p, which are made up out of gamma
functions, behave under change of fields and characters in exactly the same
way as the Euler factors

Lp(LIK, X, s) = det(1 - cpTIR(93)-s. V17')-t
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at the finite places. This uniform behaviour is in striking contrast to the
great difference in the procedures that lead to the definitions of the Euler
factors for p I oo and p t oo. It is in this context that the mathematician
CHRISTOPHER DENiNGEe recently made a very interesting discovery (see [26],
[27]). He shows that the Euler factors for all places p can all be written in
the same way:

r log 94) 1Lp(LIK,X,s) =deter \ 27ri
(sid-(9p); H(Xp/Lp)) .

Here H(Xp/L) is an infinite dimensional C-vector space which can be
canonically constructed, Op is a certain linear "Frobenius" operator on it,
and det< is a "regularized determinant" which generalizes the ordinary
notion of determinant for finite dimensional vector spaces to the infinite
dimensional case. The theory based on this observation is of the utmost
generality, and reaches far beyond Artin L-series. It suggests a complete
analogy for the theory of L -series of algebraic varieties over finite fields.
The striking success which the geometric interpretation and treatment of the
L-series has enjoyed in this analogous situation adds to the relevance of
DENrNGER's theory for present-day research.

§ 13. Density Theorems

Dirichlet's prime number theorem (5.14) says that in every arithmetic
progression

a, a±m, a ± 2m, 3 m ,. . .,. ,

a, in E N, (a, in) = 1, there occur infinitely many prime numbers. Using
L-series, we will now deduce a far-reaching generalization and sharpening
of this theorem.

(13.1) Definition. Let M be a set of prime ideals of K. The limit

9q(p)d(M) =
lim

p

provided it exists, is called the Dirichlet density of M.
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From the product expansion
1

'
Re(s) > 1,WS) = ci 1 - 01(p)-1

we obtain as in § 8, p. 494,

543

109 K (s) _ , 1 = 1 +
p"m

mIR(p)ms p T(p)s p,m>2 m9q(p)ms

The latter sum obviuasly defines an analytic function at s = 1. We write',,
f (s) ^- g(s) if f (s) - g(s) is an analytic function at s = 1. Then we have

1 1
log K (S) f(p)s

ti
deg=] f(p)s

because the sum Ed.,gtpi,2 s1(p)-1 taken over all p of degree >_ 2 is analytic
at s = 1. Furthermore, by (5.11), (ii), we have K (s)

s
and so

1

E 9403 - logs 1 1

So we may also write the Dirichlet density as

EpeM
`n(p)-s

d (M) = lim
s-* t+o log

Since the sum E'R(p)-s over all prime ideals of degree > 1 converges, the
definition of Dirichlet density only depends on the prime ideals of degree 1
in M. Adding or omitting finitely many prime ideals also does not change
anything as far as existence or value of the Dirichlet density is concerned.
One frequently also considers the natural density

S(M) _ lira #{p E M I `.71(p) < x}
x-}oo #{p I `n(p) < x}

It is not difficult to show that the existence of 6(M) implies the existence
of d(M), and that one has 8(M) = d(M). The converse is not always true
(see [123], p. 26). In the notation of chap. VI, §1 and §7, we prove the
generalized Diriehlet density theorem.

(13.2) Theorem. Let m be a module of K and Hm an ideal group such-that
JmTHmJPmwith index hm=(Jm:Hm).

For every class S E Jm/Hm, the set P (A) of prime ideals in .fi has density

d(P(f)) - hm
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For the proof we need the following

(13.3) Lemma. Let X be a nontrivial (irreducible) character of Jm/Pm (i.e.,
a character of degree 1). Then the Hecke L -series

L(X s)=r[
1

' p 1 - X (p)`n(p)-s

(X (p) = 0 for p Im) satisfies
L(x,1)#0.

Proof: By (8.5) and the remark following (5.10) (in the case m = 1), L (X, s)
does not have a pole at s = 1. Let L I K be the ray class field mod m,
so G(LIK) = J1/P1. Interpreting X as a character of the Galois group
G (L I K), the function L (X, s) agrees with the Artin L -series 'C (L I K, X, s)
up to finitely many Euler factors - see (10.6). Like L(X, s), this Artin
L-series does not have a pole at s = 1. So all we have to show is that
G(L I K, X, 1) 0 0. According to (10.5), we have

L(s) = OK (S) II G(LI K, x,s)x(1),
X01

where X runs through the nontrivial irreducible characters of G (L I K).
By (5.11), both Ws) and CL(s) have simple poles at s = 1, i.e., the
product is nonzero at s = 1. Since none of the factors has a pole, we
find L(LIK,x,1)00.

Proof of (13.2): Exactly as for the Dedekind zeta function above, we obtain
for the Dirichlet L-series

X (p) = 1log L (X, s) st(p)S W,J- P-
X (-q')

PE-W IR(p)S
.

Multiplying this by x (.fi-t) and summing over all (irreducible) x yields

log K (s) +
t

X01 .'EJ"/Pm X PER m(p)S
Since L (X, 1) # 0, log L (X, s) is analytic at s = 1. But

E 0, if R A,tX(. )_
X hm, ifR=S.

Hence we get

logs 1 1 - log K (s) hm r
`n IPEA

and the theorem is proved.
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The theorem shows in particular that the density of the prime ideals
in a class of J'/Hm is the same for every class, i.e., the prime ideals
are equidistributed among the classes. In the case K = Q, m = (m),
and H' = Pm, we have Jm/Pm = (Z/mZ)* (see chap. VI, (1.10)),
and we recover the classical Dirichlet prime number theorem recalled at
the beginning, in the stronger form which says that the prime numbers
in an arithmetic progression, i.e., in a class a mod in, (a, m) = 1, have
density w(m) = 1/#(Z/n?Z)*.

Relating the prime ideals p of a class of Jm/Pm, via the class field
theory isomorphism Jm/Pm -= G(LIK), to the Frobenius automorphisms
VP = (LjK gives us a Galois-theoretic interpretation of the Dirichlet
density theorem. We now deduce a more general density theorem which
is particularly important in that it concerns arbitrary Galois extensions (not
necessarily abelian). For every a E G(L IK), let us consider the set

PL IK (CF)

of all unramified prime ideals p of K such that there exists a prime ideal
of L satisfying

=(L ),
where ( ) is the Frobenius automorphism cps of 3 over K. It is clear
that this set depends only on the conjugacy class

(Cr) = {rar-' I T E G(LIK)}
of or and that one has n PLIK(a) = 0 if (a) # (r). What is the
density of the set PLIK(a)? The answer to this question is given by the

density theorem.

(13.4) Theorem. Let LIK be a Galois extension with group G. Then for
every a E G, the set PLIK (a) has a density, and it is given by

d(PLIK(a)) =
#(a)

Proof: We first assume that G is generated by or. Let m be the conductor of
LIK. Then LIK is the class field of an ideal group Hm Jm D Hm D Pm
Let . E J'/H' be the class corresponding to the element or under the
isomorphism

J'/H' --L G, p i (LK)
P
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546 Chapter VII. Zeta Functions and L-series

Then PLIK(a) consists precisely of the prime ideals p which lie in the
class R. By the Dirichlet density theorem (13.2), we conclude that PLIK(a)
has density

d(PLIK(a)) = h.. #G #G) .

In the general case, let E' be the fixed field of a. If f is the order of or,
then, as we just saw, d(PLIE(a)) = 1. Let P(a) be the set of prime ideals
j3 of L such that Tip E PLIK(a) and ( L } = a. Then P(a) corresponds
bijectively to the set PLIE(a) of those prime ideals q in PLIE(a) such
that £q = Kp, qlp. Since the remaining prime ideals in PLIE(a) are either
ramified or have degree > 1 over Q, we may omit them and obtain

d(PLIE(a)) = d(PLIE(a)) =
1

.f
Now we consider the surjective map

p : PLIE(a) -+ PLIK(a), q F-r q fl K.

As PLIE(a) - P(a), we get, for every p E PLIK(a),

p-'(p) = {P E P(a) 13Ip} = Z(a)/(a),
where Z(a) = (r E G I ra = ar) is the centralizer of a. So we get

d(PLIK(a)) _ (Z(a)1 (a))
d(P,IE(a)) = #Via) f #G)

The Cebotarev density theorem has quite a number of surprising
consequences, which we will now deduce. If S and T are any two sets
of primes, then let us write

SCT
to indicate that S is contained in T up to finitely many exceptional elements.
Furthermore, let us write S T if S C T and T C S.

Let L IK be a finite extension of algebraic number fields. We denote by
P (L I K) the set of all unramified prime ideals p of K which admit in L a
prime divisor 93 of degree 1 over K. So, if L I K is Galois, then P (L I K) is
just the set of all prime ideals of K which split completely in L.

(13.5) Lemma. Let NIK be a Galois extension containing L, and let
G = G(NIK), H = G(NIL). Then one has

P(LIK)- U PNIK(a) (disjoint union).
(o)nH#0
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Proof : A prime ideal p of K which is unramified in N lies in P (LIK )' if
and only if the conjugacy class (aa) of a = (%K-), for some prime ideal
PIp of N, contains an element of H, i.e., if and only if p E PNIK(a) for

some or EGsuch that (a)nHo 0.

(13.6) Corollary. If LIK is an extension of degree n, then the set P (LIK)
has density d (P (L I K)) ? n . Furthermore, one has

d(P(LIK)) = 1 L I K is Galois.
n

Proof: Let NIK be a Galois extension containing L, and let G = G(NIK)
and H = G(NIL). By (13.5), we have

P(LIK)= U PNIK(v).
(a)nH,oa

The Cebotarev density theorem (13.4) then yields

d(P(LIK)) _ #(G) #G #( U (o))
(a)nHOO (a)nH960

Since H C U(a)nH,1e(a), it follows that

#H Id(P(LIK)) ? #G n

LIK is Galois if and only if H is a normal subgroup of G, and this is the
case if and only if (a) c H whenever (a) n H :A 0, and so this holds if and
only if H = U(a)nHOe(a) This implies the second claim. 0

(13.7) Corollary. If almost all prime ideals split completely in the finite
extension LIK, then L = K.

Proof: Let NIK be the normal closure of LIK, i.e., the smallest Galois
extension containing L. A prime ideal p of K splits completely in L if and
only if it splits completely in NIK (see chap. I, § 9, exercise 4). Under the
hypothesis of the corollary, we therefore have

1 I

1=d(P(LIK))=d(P(NIK))= [N:K]'
sothat [N:K]=1 andN=L=K. 0
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(13.8) Corollary. An extension L I K is Galois if and only if every prime
ideal in P (L I K) splits completely in L.

Proof: Let again N I K be the normal closure of L I K . Then P (N I K )
consists precisely of those prime ideals which split completely in L. Hence
if P(NIK) = P(LIK), then by (13.6),

1 =d(P(NIK)) = d(P(LIK)) > 1[N:K] [L:K]
i.e., [N : K] < [L : K], so L = N is Galois. The converse is trivial.

(13.9) Proposition (M. BAUER). If L I K is Galois and M I K is an arbitrary
finite extension, then

P(LIK)P(MIK) tom-- LcM.

Proof : L C M trivially implies that P (M I K) C P (L I K ). So assume
conversely that P (L I K) 2 P (M I K). Let N I K be a Galois extension
containing L and M, and let G = G(NIK), H = G(NIL), H' = G(NIM).
Then we have

P(MI K)= U PNIK(a) c P(LIK)= U PNIK(a)
(v)nH'00 (c)nH540

Let a E H. Since PNIK(a) is infinite by (13.4), there must exist some
p E PNIK(a) such that p E PNIK(t) for a suitable r E G such that
(r) fl H 0 0. But then a is conjugate to t, and since H is a normal
subgroup of G, we find (a) = (r) C H. We therefore have H' C_ H, and
hence L C M.

(13.10) Corollary. A Galois extension L I K is uniquely determined by the
set P (L I K) of prime ideals which split completely in it.

This beautiful result is the beginning of an answer to the programme
formulated by LEOPOLD KRONECKER (1821-1891), of characterizing the
extensions of K, with all their algebraic and arithmetic properties, solely
in terms of sets of prime ideals, "in a similar way as Cauchy's theorem
determines a function by its boundary values". The result raises the question
of how to characterize the sets P (L I K) of prime ideals solely in terns of
the base field K. For abelian extensions, class field theory gives a concise
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answer to this, in that it recognizes P(LIK) as the set of prime ideals lying
in the ideal group H'° for any module of definition m (see chap. VI, (7.3)).
If for instance L I K is the Hilbert class field, then P (L I K) consists precisely
of the prime ideals which are principal ideals. If on the other hand K = Q
and L = Q(p,,,), then P(LI K) consists of all prime numbers p = 1 mod m.

In the case of nonabelian extensions L I K, a characterization of the sets
P(LIK) is essentially not known. However, this problem is part of a much
more general and far-reaching programme known as "Langlands philosophy",
which is undergoing a rapid development at the moment. For an introduction
to this circle of ideas, we refer the interested reader to [106].
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