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6.2 Cyclotomic Extensions

We next turn to discussing some of the uses of Frobenius elements in the

specific context of cyclotomic fields. First, we recall some facts about these

fields from basic Galois theory. For m ≥ 1, we let ζm be a primitive mth root

of unity. Then the map

(Z/mZ)× 7→ Gal(Q(ζm)/Q)

a (mod m) 7→ (σa : ζm 7→ ζam)

is an isomorphism. Part of why we care about cyclotomic extensions of Q is

because of the following theorem.

Theorem (Kronecker–Weber). Let K/Q be an abelian extension. Then there

exists an m such that K ⊆ Q(ζm).

We won’t discuss the proof of this theorem here, but it is something that

can be approached by class field theory.

We note the following facts about cyclotomic extensions. Let O denote the

ring of integers of Q(ζm). It’s clear that we have the inclusion Z[ζm] ⊆ O (in

fact, this inclusion is an equality, but in the discussion that follows, we will

only need this direction). Now, we can calculate directly that

∆(1, ζm, . . . , ζ
φ(m)−1
m ) =

∏
ζ ̸=ζ ′

mth roots of 1

(ζ − ζ ′)
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where φ is the Euler φ-function. To compute this value, we use L’Hôpital’s

rule and notice that

lim
x→1

xm − 1

x− 1
= m =

∏
ζ ̸=1

mth root of 1

(1− ζ).

From this then, we see that if (p) | (ζ − 1) as ideals for a prime p ∈ Z and

ζ ̸= 1, then p | m. Moreover, if p ramifies in Q(ζm)/Q, then p | m. Also, this

tells us that if p ∤ m, then the product ∆(1, ζm, . . . , ζ
φ(m)−1
m ) is not congruent

to 0 modulo p and so all the terms in the product must be distinct. Hence,

if p ∤ m, we have the implication ζ ≡ ζ ′ (mod p) =⇒ ζ = ζ ′.

Next, we will want to look at the Frobenius element associated to the prime

p in the following theorem.

Theorem 6.8 (Decomposition in cyclotomic extensions). Suppose (m, p) = 1

and let n denote the order of p in (Z/mZ)×. Then n = f where f is the

residuce class extension degree of p in Q(ζm)/Q.

Proof. We write L = Q(ζm) and we let P denote a prime in OL above the

prime p. We have the following tower:

L P

Q p

Γ

where Γ = Gal(L/Q) is abelian with Γ ∼= (Z/mZ)×. We set f = fP and our

goal now is to show that n = f . We know that f is the order of the Frobenius

element (P, L/Q). Furthermore, before we saw that the Frobenius element

depended on the choice of prime above p up to conjugation, but here, we

have that

(Pγ, L/Q) = γ−1(P, L/Q)γ = (P, L/Q)
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for any γ ∈ Γ because Γ is abelian. Hence, the Frobenius element doesn’t

depend on the choice of P above p either so the Frobenius autmomorphism is

uniquely determined by the prime p so we can unambiguously write (P, L/Q).

Now, we know the Frobenius element acts as raising to the pth power on the

residue fields so that we have

ζ(P,L/Q)
m ≡ ζpm (mod P).

Raising both sides to the nth power then, we get that

ζ(P,L/Q)n

m ≡ ζp
n

m ≡ ζm (mod P)

where the first congruence holds by definition of the Frobenius element and

the second congruence holds because n is the order of p in (Z/mZ)×. So

the map (P, L/Q)n induces on residue fields is the identity. But recall that

since p was unramified, the map ρ : ΓP → Gal(ℓ/Fp) is an isomorphism,

in particular, injective, and so if (P, L/Q)n induces the identity on residue

fields, we must have that (P, L/Q)n = 1 in Gal(L/Q). Therefore, the order

of (P, L/Q) divides n and so we have f | n.
Suppose now for sake of contradiction that f < n. We still have the

congruences

ζ(P,L/Q)f

m ≡ ζp
f

m ≡ ζm (mod P)

by definition of the Frobenius element and as (P, L/Q) has order f . Thus

these congruences then imply that ζp
f−1− 1 ≡ 0 (mod P) and hence ζp

f−1
m −

1 ∈ P. But, as f < n, pf ̸≡ 1 (mod m) and so ζp
f−1

m − 1 can be chosen to

be nonzero. But the only divisors of ζp
f−1

m − 1 divide m by our earlier note

and hence we reach a contradiction as (m, p) = 1. Therefore, we must indeed

have that f = n as desired. □

This theorem then leads to a nice proof of the law of quadratic reciprocity.
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Theorem 6.9 (Quadratic reciprocity). Let p and q be distinct odd primes.

Then we have (
p

q

)(
q

p

)
= (−1)

p−1
2

q−1
2 .

Proof. Let q∗ =

(
−1

q

)
q. Then first, we claim that the field L := Q(

√
q∗) is

the unique quadratic subfield of Q(ζq). There are at least two ways we can

see this:

(1) Consider Γ = Gal(Q(ζq)/Q) ∼= (Z/qZ)×. This group has a unique

subgroup of index 2 and hence by the Galois correspondence, Q(ζq)/Q
has a unique quadratic subfield L.

Next, we ask what this subfield L is. We can identify it by noting

that q is the unique prime which ramifies in L (as it’s the unique

prime which ramifies in Q(ζq)). Hence to determine L, we just need

to determine a quadratic subfield where q is the unique prime which

ramifies. This is enough then to determine that L = Q(
√
q∗).

(2) We can also show this using Gauss sums (which are covered in the

problem sheet). Namely, we can let χ : Γ → C× be the unique character

of Γ of order 2. Then we consider the Gauss sum associated to χ:

τ(χ, ζq) :=
∑
γ∈Γ

χ(γ)ζγq ∈ Q(ζq).

We also have that

τ(χ, ζq)
2 =

(
−1

q

)
q = q∗

(by a formula for Gauss sums derived in the exercises) and hence

Q(
√
q∗) is a subfield of Q(ζq). Thus it is indeed a quadratic subfield of

Q(ζq), and the fact that it’s the unique such one follows by the same

reasoning as before.
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Now, we’ll exploit this fact to derive the formula for quadratic reciprocity.

As p is distinct from q, then p doesn’t ramify in L/Q (by noting that p

doesn’t divide the discriminant of L). So as p is not ramified, it either

splits or is inert in L/Q, and we can determine which of these it is by using

Kummer’s criterion and reducing it to a question about the Legendre symbols.

Namely, by Kummer’s criterion (Theorem 4.10), p splits or is inert in L/Q
precisely whether or not x2− q∗ ≡ 0 (mod p) has two distinct solutions or no

solutions respectively, which happens exactly depending on if

(
q∗

p

)
= +1 or(

q∗

p

)
= −1 respectively.

Next, we will determine another way to characterize whether p is split or

inert in L/Q. We fix a prime p ⊆ OL above p and a prime P ⊆ OQ(ζq) above

p so that we have the following tower:

Q(ζq) P

L p

Q p

Γ∼=(Z/qZ)×

Now by Proposition 6.7 part 2, (P,Q(ζq)/Q)|L = (p, L/Q). Then, p is split

or inert in L according to whether the residue class extension of p, fp is 1 or

2 respectively (because [L : Q] = 2 and since p is unramified). Hence, p is

split or inert in L according to if (p, L/Q) = 1 or ̸= 1 respectively since this

Frobenius element generates Γp and |Γp| = fp. This occurs exactly according

to if p is a square or non square modulo q respectively. We can see this since

if (p, L/Q) = 1, then L is the fixed field of Γp and hence Γp is the unique

subgroup of Γ of index 2 and hence Γp is the subgroup generated by squares
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of elements in (Z/qZ)× and hence p is a square modulo q. Therefore, p is split

or inert in L/Q precisely whether

(
p

q

)
= +1 or

(
p

q

)
= −1 respectively.

Now, comparing our two methods for characterizing whether or not p is

split or inert in L, we have that

(
p

q

)
=

(
q∗

p

)
=


(
−1
q

)
q

p

 = (−1)
p−1
2

q−1
2

(
q

p

)

where the alst equality above follows by Euler’s criterion. Multiplying both

sides of the above by

(
q

p

)
, we then get the formula for quadratic reciprocity.

□

The good thing about this proof is that in some sense, it also tells us

why quadratic reciprocity is true, which other methods don’t. Next, we will

present another proof of this same fact.

Alternative proof of Theorem 6.9. We work in Fp, a fixed algebraic closure of

Fp. We let η denote a qth root of unity in Fp and consider the following sum:

τ :=

q−1∑
x=1

ηx
(
x

q

)
.

raising both sides to the power p and as the field has characteristic p, we get

τ p =

q−1∑
x=1

ηxp
(
x

q

)
=

q−1∑
x=1

ηxp
(
xp2

q

)
,

where in the first equality, we use the fact that

(
x

q

)p

=

(
x

q

)
as p is odd,

and in the second equality, we use the fact that we can use the fact that since

p2 is a quadratic residue, it won’t change affect whether or not x is. Next,
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we make the substitution y = xp in this sum which then gives that

τ p =

q−1∑
y=1

ηy
(
y

q

)(
p

q

)
= τ

(
p

q

)
.

By the linear independence of characters, τ ̸= 0 and therefore, we can cancel

out τ in the above equality, thus we have:

τ p−1 =

(
p

q

)
. (A)

Next, we consider τ 2:

τ 2 =
∑
x,y

ηx+y

(
xy

q

)
.

Making the substitution y = xz yields:

τ 2 =
∑
x,z

ηx(1+z)

(
z

q

)
=

∑
z

(
z

q

)[∑
x

ηx(1+z)

]
.

Now, we consider the inner sum. If z ̸= −1, η(1+z) ̸= 1 and hence∑
x

ηx(1+z) = −1.

Hence, if we split up the sum in the formula for τ 2 to the terms where z = −1

and z ̸= −1, we get

τ 2 =

(
−1

q

)
(q − 1)︸ ︷︷ ︸

z=−1

+
∑
z ̸=−1

(−1)

(
z

q

)
.

But we know that
∑
z

(
z

q

)
= 0 and so simplifying the above, we have

τ 2 =

(
−1

q

)
(q − 1) +

(
−1

q

)
=

(
−1

q

)
q. (B)
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Using what we’ve derived then, we see that by (A),(
p

q

)
= 1 ⇐⇒ τ ∈ Fp

because Fp is the splitting field of xp − x and by (B),

τ ∈ Fp ⇐⇒

q
(
−1
q

)
p

 = 1.

And so we have that (
p

q

)
=


(
−1
q

)
q

p


which, as with the first proof, is exactly quadratic reciprocity. □

There are many natural questions we could look at next. For instance,

we could look at the generalized quadratic reciprocity law for totally real

number fields à la Hecke, but this would require the theory of theta functions

which can’t be covered in the remaining two lectures. So instead, the last

two lectures of the course will either cover the Dedekind zeta function or a

basic introduction to class field theory.
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