UCSB: MATH 8 Section Five TA: Seth Althauser Email: althauser@math.ucsb.edu

Name:

Problem 1

What do the following statements mean? Are they true or false? The universe of discourse in each case is \mathbb{N} , the set of all natural numbers.

- (a) $\forall x \exists y (x < y)$
- (b) $\exists y \forall x (x < y)$
- (c) $\exists x \forall y (x < y)$
- (d) $\forall y \exists x (x < y)$
- (e) $\exists x \exists y (x < y)$
- (f) $\forall x \forall y (x < y)$

Solution

Problem 2

Analyze the logical forms of the following statements The universe of discourse is \mathbb{R} . What are the free variables in each statement?

- (a) Every number that is larger than *x* is larger than *y*.
- (b) For every number *a*, the equation $ax^2 + 4x 2 = 0$ has at least one solution if and only if $a \ge -2$.
- (c) All solutions of the inequality $x^3 3x < 3$ are smaller than 10.
- (d) If there is a number x such that $x^2 + 5x = w$ and there is a number y such that $4 y^2 = w$, then w is between -10 and 10.

Solution

Problem 3

Are these statements true or false? The universe of discourse is \mathbb{N} .

- (a) $\forall x \exists y (2x y = 0)$.
- (b) $\exists y \forall x (2x y = 0).$
- (c) $\forall x \exists y(x 2y = 0).$
- (d) $\forall x (x < 10 \rightarrow \forall y (y < x \rightarrow y < 9)).$
- (e) $\exists y \exists z(y + z = 100)).$
- (f) $\forall x \exists y (y > x \land \exists z (y + z = 100)).$

Solution

Problem 4

Repeat the above exercise, but with:

- (a) \mathbb{R} as the universe of discourse.
- (b) \mathbb{Z} as the universe of discourse.

Solution