Problem 1

What do the following statements mean? Are they true or false? The universe of discourse in each case is \mathbb{N}, the set of all natural numbers.
(a) $\forall x \exists y(x<y)$
(b) $\exists y \forall x(x<y)$
(c) $\exists x \forall y(x<y)$
(d) $\forall y \exists x(x<y)$
(e) $\exists x \exists y(x<y)$
(f) $\forall x \forall y(x<y)$

Solution

Problem 2

Analyze the logical forms of the following statements The universe of discourse is \mathbb{R}. What are the free variables in each statement?
(a) Every number that is larger than x is larger than y.
(b) For every number a, the equation $a x^{2}+4 x-2=0$ has at least one solution if and only if $a \geq-2$.
(c) All solutions of the inequality $x^{3}-3 x<3$ are smaller than 10 .
(d) If there is a number x such that $x^{2}+5 x=w$ and there is a number y such that $4-y^{2}=w$, then w is between -10 and 10 .

Solution

Problem 3

Are these statements true or false? The universe of discourse is \mathbb{N}.
(a) $\forall x \exists y(2 x-y=0)$.
(b) $\exists y \forall x(2 x-y=0)$.
(c) $\forall x \exists y(x-2 y=0)$.
(d) $\forall x(x<10 \rightarrow \forall y(y<x \rightarrow y<9))$.
(e) $\exists y \exists z(y+z=100))$.
(f) $\forall x \exists y(y>x \wedge \exists z(y+z=100))$.

Solution

Problem 4

Repeat the above exercise, but with:
(a) \mathbb{R} as the universe of discourse.
(b) \mathbb{Z} as the universe of discourse.

Solution

