UCSB: MATH 8 Section Six TA: Seth Althauser Email: althauser@math.ucsb.edu

Name:

Problem 1

- (a) Show that the existential quantifier distributes over disjunction. In other words, show that $\exists x (P(x) \lor Q(x))$ is equivalent to $\exists x P(x) \lor \exists x Q(x)$.
- (b) Is $\forall x(P(x) \lor Q(x))$ equivalent to $\forall xP(x) \lor \forall xQ(x)$? Explain. (Hint: Try assigning meanings to P(x) and Q(x)).

Solution

Problem 2

- (a) Show that $(\forall x \in A, P(x)) \land (\forall x \in B, P(x))$ is equivalent to $\forall x \in (A \cup B), P(x)$.
- (b) Show that $\exists x \in A, P(x) \lor \exists x \in B, P(x)$ is equivalent to $\exists x \in (A \cup B), P(x)$.
- (c) Is $\exists x \in A, P(x) \land \exists x \in B, P(x)$ equivalent to $\exists x \in (A \cap B), P(x)$? Explain your answer.

Solution

Problem 3

Show that the statements $A \subseteq B$ and $A \setminus B = \emptyset$ are equivalent by writing each in logical symbols and then showing that the resulting formulas are equivalent.

Solution

Problem 4

Let T(x, y) mean "*x* is a teacher of *y*." What do the following statements mean? Under what circumstances would each one be true? Area ny of them equivalent to each other?

- (a) $\exists !yT(x,y)$.
- (b) $\exists x \exists ! y T(x, y)$.
- (c) $\exists !x \exists y T(x,y)$.
- (d) $\exists y \exists ! x T(x, y)$.
- (e) $\exists !x \exists !y T(x,y)$.
- (f) $\exists x \exists y [T(x,y) \land \neg \exists u \exists v (T(u,v) \land (u \neq x \lor v \neq y))].$

Solution