Problem 1

Suppose a, b, c and d are real numbers, $0<a<b$, and $d>0$. Prove that if $a c>b d$ then $c>d$.

Scratch Work

Suppose that a is a real number. Prove that if $a^{3}>a$, then $a^{5}>a$.

Scratch Work

Solution

Problem 3

Prove the following statement: if x is odd, then x^{2} is odd.

Scratch Work

Solution

Problem 4
Suppose a and b are real numbers. Prove that if $a<b$, then $\frac{a+b}{2}<b$.

Scratch Work

Solution

Problem 5

Let x and y be positive real numbers. Prove that if $x \leq y$, then $\sqrt{x} \leq \sqrt{y}$.

Scratch Work

Problem 6

Prove that every odd integer is a difference of squares-i.e. show that an odd integer can be written as $x^{2}-y^{2}$ for an appropriate choice of x and y.

Solution

Problem 7

(a) Let n and k be positive integers with $1<k \leq n$. Prove that $n!+k$ is composite. (Thus for any $n \geq 2$, one can find n consecutive composite numbers. This means there are arbitrarily large "gaps" between prime numbers).
(b) Use part (a) to find 100 consecutive integers, all of which are composite.

