Problem 1

This problem could be solved by using truth tables, but don't do it that way. Instead, use the methods for writing proofs discussed in chapter 3 of your text.
(a) Suppose $P \rightarrow Q$ and $R \rightarrow \neg Q$ are both true. Prove that $P \rightarrow \neg R$ is true.
(b) Suppose that P is true. Prove that $Q \rightarrow \neg(Q \rightarrow \neg P)$ is true.

Scratch Work

Problem 2
Suppose $A \subseteq C$, and B and C are disjoint. Prove that if $x \in A$, then $x \notin B$.

Scratch Work

Solution

Problem 3

Suppose that $A \backslash B$ is disjoint from C and $x \in A$. Prove that if $x \in C$ then $x \in B$.

Scratch Work

Solution

Problem 4
Suppose that a and b are nonzero real numbers. Prove that if $a<\frac{1}{a}<b<\frac{1}{b}$ then $a<-1$.

Scratch Work

Solution

Problem 5

Suppose that $x, y \in \mathbb{Z}$. Prove that if $x+y$ is even, then x and y have the same parity.

Scratch Work

Solution

(a) Suppose that $x \in \mathbb{Z}$. Prove that if $x^{2}-6 x+5$ is even, then x is odd.
(b) Prove that if $n \in \mathbb{Z}$, then $n^{2}+3 n+4$ is even.

Scratch Work

Solution

Problem 7

(A puzzle to think about-or maybe even prove!)
Can a checkerboard be tiled by 1×2 dominoes? (You can orient each domino as either a 1×2 rectangle or a 2×1 rectangle on the checkerboard).

What if we remove the top left corner from the board?

What if we remove both the top left corner and the bottom right corner?

