Name:
\square

Problem 1

Suppose that A, B, and C are sets and that $A \backslash B \subseteq C$. Prove that $A \backslash C \subseteq B$.

Scratch Work

Solution

Problem 2

(a) Prove that $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$.
(b) Prove that $A \cap\left(\bigcup_{i \in I} B_{i}\right)=\bigcup_{i \in I}\left(A \cap B_{i}\right)$.

Scratch Work

Solution

Problem 3

Prove that for every real number x, if $x>0$ then there is a real number y such that $y(y+1)=x$.

Scratch Work

Solution

Problem 4

(a) Prove that for all real numbers x and y there is a real number z such that $x+z=y-z$.
(b) Would the statement in part (a) be correct if "real number" were changed to "integer?" Justify your answer.

Scratch Work

Solution

Problem 5

In this problem, all variables range over \mathbb{Z}.
(a) Prove that if $a \mid b$ and $a \mid c$, then $a \mid(b+c)$.
(b) Prove that if $a c \mid b c$ and $c \neq 0$, then $a \mid b$.

Scratch Work

Solution

Problem 6

Suppose $\left\{A_{i} \mid i \in I\right\}$ is an indexed family of sets. Prove that $\bigcup_{i \in I} \mathcal{P}\left(A_{i}\right) \subseteq \mathcal{P}\left(\bigcup_{i \in I} A_{i}\right)$. (Hint: First make sure you know what all the notation means!)

Scratch Work

Solution

Problem 7
Suppose that \mathcal{F} and \mathcal{G} are nonempty families of sets, and every element of \mathcal{F} is a subset of every element of \mathcal{G}. Prove that $\cup \mathcal{F} \subseteq \cap \mathcal{G}$.

Scratch Work

Solution

