UCSB: MATH 8 Section Nine TA: Seth Althauser Email: althauser@math.ucsb.edu

Name:

Scratch Work Solution Problem 2 (a) Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. (b) Prove that $A \cap (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i)$. Scratch Work Solution	Problem 1 Suppose that <i>A</i> , <i>B</i> , and <i>C</i> are	sets and that $A \setminus B \subseteq C$. Prove that $A \setminus C \subseteq B$.	
Problem 2 (a) Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. (b) Prove that $A \cap (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i)$. Scratch Work Solution	Scratch Work		Solution	
(a) Prove that $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$. (b) Prove that $A \cap (\bigcup_{i \in I} B_i) = \bigcup_{i \in I} (A \cap B_i)$. Scratch Work Solution	Problem 2			
Scratch Work Solution	(a) Prove that $A \cap (B \cup C)$ (b) Prove that $A \cap (\bigcup_{i \in I} B_i)$	$= (A \cap B) \cup (A \cap C).$ $= \bigcup_{i \in I} (A \cap B_i).$		
Solution	Scratch Work			
Solution				
	Solution			

Prove that for every real number *x*, if x > 0 then there is a real number *y* such that y(y + 1) = x.

Scratch Work

Solution

Problem 4

- (a) Prove that for all real numbers *x* and *y* there is a real number *z* such that x + z = y z.
- (b) Would the statement in part (a) be correct if "real number" were changed to "integer?" Justify your answer.

Scratch Work

Solution

Problem 5

In this problem, all variables range over \mathbb{Z} .

- (a) Prove that if $a \mid b$ and $a \mid c$, then $a \mid (b + c)$.
- (b) Prove that if $ac \mid bc$ and $c \neq 0$, then $a \mid b$.

Scratch Work

Solution

Problem 6

Suppose $\{A_i \mid i \in I\}$ is an indexed family of sets. Prove that $\bigcup_{i \in I} \mathcal{P}(A_i) \subseteq \mathcal{P}(\bigcup_{i \in I} A_i)$. (Hint: First make sure you know what all the notation means!)

Scratch Work

Solution

Problem 7

Suppose that \mathcal{F} and \mathcal{G} are nonempty families of sets, and every element of \mathcal{F} is a subset of every element of \mathcal{G} . Prove that $\bigcup \mathcal{F} \subseteq \bigcap \mathcal{G}$.

Scratch Work

Solution