
Math 108A - Home Work # 7 Solutions

1. For the following matrices:

(a) Find the eigenvalues (over F = C).

(b) Describe the eigenspace for each eigenvalue. (i.e., describe all the eigenvectors for
each eigenvalue).

(c) Determine whether F 2 or F 3 has a basis consisting of eigenvectors of the matrix.

(a) and (b)

•
A =

(
1 1

−2 −2

)
Solution. The characteristic polynomial is p(x) = (1−x)(−2−x)+2 = x2 +x =
x(x + 1). Hence the eigenvalues are x = 0,−1. For x = 0, the eigenvectors are
just the nonzero vectors in ker A. Since the second row of A is −2 times the first
row, the kernel is defined by a single equation: it consists of all vectors (y, z) with
y + z = 0. Thus the eigenspace V0 for the eigenvalue 0 is

V0 = {(y, z) ∈ F 2 | y + z = 0} = F (1,−1).

For x = −1, the eigenspace is

V−1 = ker(A + I) = {(y, z) ∈ F 2 | 2y + z = 0} = F (1,−2).

•
B =

(
2 −2
2 2

)
Solution. The characteristic polynomial is p(z) = (2−z)(2−z)+4 = z2−4z+8,
which has two complex roots z = 2 ± 2i, and these are the eigenvalues. For
z = 2 + 2i, the eigenspace is V2+2i = ker(B − (2 + 2i)I). We write down this
matrix and convert it to RREF:

B − (2 + 2i)I =

(
−2i −2
2 −2i

)
7→

(
1 −i
0 0

)
.

Hence the eigenvectors are precisely those (x, y) with x− iy = 0. Hence V2+2i =
F (i, 1).

For z = 2− 2i, we have

B − (2− 2i)I =

(
2i −2
2 2i

)
7→

(
1 i
0 0

)
.

Hence any (x, y) with x + iy = 0 is an eigenvector, and V2−2i = F (−i, 1).
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•

C =

 1 1 1
0 2 1
0 0 1


Solution. Using the fact that the matrix C is upper-triangular, we easily compute
its characteristic polynomial p(t) = det(C − tI) = (1 − t)(2 − t)(1 − t) and thus
the eigenvalues of C are t = 1, 2. For t = 1, we convert the matrix C−I to RREF
to compute its kernel:

C − I =

 0 1 1
0 1 1
0 0 0

 7→

 0 1 1
0 0 0
0 0 0

 .

Hence the eigenspace for t = 1 is

V1 = {(x, y, z) ∈ F 3 | y + z = 0} = span{(1, 0, 0), (0, 1,−1)}.

For t = 2, we convert the matrix C − 2I to RREF to compute its kernel:

C − 2I =

 −1 1 1
0 0 1
0 0 −1

 7→

 1 −1 0
0 0 1
0 0 0

 .

Hence the eigenspace is

V2 = {(x, y, z) ∈ F 3 | x− y = 0 and z = 0} = F (1, 1, 0).

(c) For A and B we found two linearly independent eigenvectors, so these form a
basis for F 2 in each case. For C we found three linearly independent eigenvectors
(1, 0, 0), (0, 1,−1) and (1, 1, 0), and these form a basis for F 3.

2. λ = 2 is an eigenvalue of the matrix

A =

 4 −12 −6
1 −4 −3

−1 6 5

 .

(a) Find a basis for the eigenspace of A for the eigenvalue λ = 2.

(b) Does A have any other eigenvalues? If so, find them and find corresponding eigen-
vectors.
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Solution.(a) We convert the matrix A− 2I to RREF to compute its kernel:

A− 2I =

 2 −12 −6
1 −6 −3
−1 6 3

 7→

 2 −12 −6
1 −6 −3
0 0 0


7→

 1 −6 −3
1 −6 −3
0 0 0

 7→

 1 −6 −3
0 0 0
0 0 0


Hence, the eigenspace is

ker(A− 2I) = {(x, y, z) ∈ R3 | x− 6y − 3z = 0}
= {(6y + 3z, y, z) | y, z ∈ R}
= {y(6, 1, 0) + z(3, 0, 1) | y, z ∈ R}
= span{(6, 1, 0), (3, 0, 1)}.

Since the two vectors (6, 1, 0) and (3, 0, 1) are linearly independent and they span the
eigenspace, they form a basis for the eigenspace.

(b) Since λ = 2 is an eigenvalue of multiplicity 2 and A is a 3 × 3 matrix, there
should be an additional eigenvalue. You could find it by computing the characteristic
polynomial of A, but here is a trickier method. First, recognize that A must be
diagonalizable: any eigenvector v for the second eigenvalue will be linearly independent
from the two eigenvectors we have already found as our basis for the eigenspace V2. In
diagonal form, the matrix will have two 2’s on the diagonal and the second eigenvalue
λ. Hence its determinant will be 4λ. This is the same as the determinant of A (since
det(C−1AC) = det(C)−1 det(A) det(C) = det(A)), which we can easily compute to be
4. Hence 4λ = 4 and λ = 1. To find the corresponding eigenvectors we must compute
the kernel of A− I:

A− I =

 3 −12 −6
1 −5 −3
−1 6 4

 7→

 0 3 3
1 −5 −3
0 1 1


7→

 1 −5 −3
0 1 1
0 0 0

 7→

 1 0 2
0 1 1
0 0 0


Hence the eigenvectors are precisely those vectors (x, y, z) such that x + 2z = 0 and
y + z = 0, and the eigenspace is F (2, 1,−1).

3. Let T : R2 → R3 be the linear transformation given by the matrix 1 −1
2 2
0 3


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with respect to the standard bases. Find bases for R2 and R3 in which the matrix of
T is  1 0

0 1
0 0


Solution. For T to have the matrix  1 0

0 1
0 0


with respect to a basis {u1, u2} of R2 and a basis {v1, v2, v3} for R3, means simply
that Tu1 = v1 and Tu2 = v2. Hence {u1, u2} can remain the standard basis, and then
v1 = (1, 2, 0) and v2 = (−1, 2, 3) will be the columns of the given matrix for T . Since
v1 and v2 are linearly independent, we can complete them to a basis. To do this we
just need to find a third vector of R3 that is not a linear combination of v1 and v2. For
instance, v3 = e3 = (0, 0, 1) works.

4. Let A be an m× n matrix with entries in F . The different row operations that can be
performed on A are

• R1(i, a): Multiply the ith row of A by a nonzero scalar a ∈ F . (1 ≤ i ≤ m)

• R2(i, j): Swap the ith and jth rows of A. (1 ≤ i, j ≤ m)

• R3(i, j): Add the ith row of A to the jth row of A. (1 ≤ i, j ≤ m)

For each row operation R listed above, exhibit an m ×m matrix X such that XA is
the matrix obtained by applying the row operation R to A. Verify that each such X
is invertible. (Hint: think about which row operation would undo R.)

Solution. Given a row operation R, assume that there is a matrix X such that XA is
the matrix obtained by applying the row operation R to A for any A. Then X = XI is
the matrix we get by performing the row operation R to the identity matrix I. Hence
the matrices we get, and their inverses, are:

• R1(i, a): X is the matrix with 1’s down the diagonal, except in the ith row where
the entry is a. In other words, Xjk = 0 if j 6= k; Xjj = 1 if j 6= i; and Xii = a.
X−1 corresponds to the inverse row operation, which will be R1(i, 1/a) – dividing
the ith row by a. Hence X−1 will have 1/a in the ith row instead of a.

• R2(i, j): X is the matrix obtained from I by swapping rows i and j. Hence

Xkl =


1, k = l 6= i, j
1, {k, l} = {i, j}
0, otherwise

4



The inverse of X corresponds to the same row operation – swapping rows i and j
back – and hence X−1 = X.

• R3(i, j): X is obtained by adding the ith row of I to the jth row. Thus

Xkl =


1, k = l
1, k = j, l = i
0, otherwise

The inverse of X corresponds to subtracting the ith row from the jth row, and thus
the matrix X−1 will look the same as X but with −1 in the (j, i)-entry, instead
of +1.
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