Math 5B - Midterm 1 Solutions

1. (a) Find parametric equations for the line that passes through the point $(2,0,-1)$ and is perpendicular to the plane with equation $4 x-y-2 z=1$.
Solution. The direction vector for this line is $\mathbf{v}=(4,-1,-2)$ and it must pass through the point $(2,0,-1)$. Thus we have parametric equations $(x, y, z)=$ $(2,0,-1)+(4,-1,-2) t=(2+4 t,-t,-1-2 t)$.
(b) Find the equation of the unique plane that contains the two lines, L_{1} and L_{2}, whose equations are:

$$
L_{1}:\left\{\begin{array}{l}
x=t \\
y=2-t, L_{2}:\left\{\begin{array}{l}
x=-1+2 t \\
z=3
\end{array},\left\{\begin{array}{l}
x-2 t \\
z=3 t
\end{array}\right.\right.
\end{array}\right.
$$

Solution. Since the plane contains the two lines, their direction vectors $(1,-1,0)$ and $(2,-2,3)$ are parallel to the plane. Hence their cross product will be a normal vector.

$$
\mathbf{n}=(1,-1,0) \times(2,-2,3)=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
1 & -1 & 0 \\
2 & -2 & 3
\end{array}\right|=-3 \mathbf{i}-3 \mathbf{j}+0 \mathbf{k}=(-3,-3,0) .
$$

To get a point in the plane, we can take any point in either line, so just set $t=0$ in the equations for L_{1} to get the point $(0,2,3)$. The equation for the plane is then $-3(x-0)-3(y-2)+0(z-3)=0$, or more simply, $-3 x-3 y+6=0$.
2. Graph at least 5 level curves of $z=y^{2} / x$ (label them with the corresponding values of z), and then graph the surface $z=y^{2} / x$ for $z \geq 0$. Be sure to label your axes.

Solution. Setting $z=c \neq 0$, we can solve for x to get $x=y^{2} / c$. These graphs are (sideways) parabolas in the $x y$-plane, that get less steep as c gets large, and more steep as c approaches 0 . If $z=0$, the level curve is $y=0$, or just the x-axis. It is important that these level curves all have a hole where $x=0$ since z is not defined there. (See the link to the level curves picture.) In graphing the whole surface, we sketch two cross sections for $x=1$ and $x=2$. These again are parabolas with equations $z=y^{2}$ and $z=y^{2} / 2$, so they get less steep as x gets larger. Note that the z-axis is not actually part of the graph, again since z is not defined when $x=0$. (See the link to the surface picture.)
3. Calculate the following limits, or show that they do not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{2 x y-y^{2}}}{x^{2}+y^{2}}$

Solution. As $(x, y) \rightarrow(0,0)$, the numerator approaches $e^{0}=1$, since it is a continuous function of x and y, while the denominator approaches 0 and is always positive. Thus the ratio approaches $+\infty$.
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{2 x y^{2}}{x^{2}+y^{2}}$

Solution. Convert to polar coordinates to get

$$
\lim _{r \rightarrow 0^{+}} \frac{2 r^{3} \cos \theta \sin ^{2} \theta}{r^{2}}=\lim _{r \rightarrow 0^{+}} 2 r \cos \theta \sin ^{2} \theta=\left(2 \cos \theta \sin ^{2} \theta\right) \lim _{r \rightarrow 0^{+}} r=0 .
$$

(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{\sin (x+y)}{2 x-y}$

Solution. We take the limit as (x, y) approaches $(0,0)$ along two different lines with equations $y=c x$. First, let (x, y) approach $(0,0)$ along the line $y=0$. We get

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=0}} \frac{\sin (x+y)}{2 x-y}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\lim _{x \rightarrow 0} \frac{\cos x}{2}=\frac{1}{2},
$$

using l'Hospital's rule for the second equality. If (x, y) approaches $(0,0)$ along the line $y=x$ instead, we get

$$
\lim _{\substack{(x, y) \rightarrow(0,0) \\ y=s}} \frac{\sin (x+y)}{2 x-y}=\lim _{x \rightarrow 0} \frac{\sin (2 x)}{x}=\lim _{x \rightarrow 0} \frac{2 \cos (2 x)}{1}=2,
$$

using l'Hospital's rule for the second equality. Since we get different limits depending on the direction from which we approach $(0,0)$, the limit does not exist.
4. A function $\mathbf{y}=\left(y_{1}, y_{2}\right)$ is defined by $y_{1}=3 x_{1}^{2}+x_{2}^{2}$ and $y_{2}=\frac{x_{1} x_{2}-1}{x_{1}+2}$.
(a) Find the Jacobian matrix $\left(\frac{\partial y_{i}}{\partial x_{j}}\right)$, and say where \mathbf{y} is differentiable.

Solution.

$$
\mathbf{y}_{\mathbf{x}}=\left(\frac{\partial y_{i}}{\partial x_{j}}\right)=\left(\begin{array}{cc}
\frac{\partial y_{1}}{\partial x_{1}} & \frac{\partial y_{1}}{\partial x_{2}} \\
\frac{\partial y_{2}}{\partial x_{1}} & \frac{\partial y_{2}}{\partial x_{2}}
\end{array}\right)=\left(\begin{array}{cc}
6 x_{1} & 2 x_{2} \\
\frac{2 x_{2}+1}{\left(x_{1}+2\right)^{2}} & \frac{x_{1}}{x_{1}+2}
\end{array}\right) .
$$

Each partial derivative appearing here is a rational function and thus continuous on its domain. The only time any of them are undefined is when $x_{1}=-2$. Thus \mathbf{y} is differentiable on the set $\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \neq-2\right\}$.
(b) Approximate $\mathbf{y}(-1.01,2.02)$.

Solution. Let $\Delta \mathbf{y}=\mathbf{y}(-1.01,2.02)-\mathbf{y}(-1,2)$. We know that $d \mathbf{y}$ at $(-1,2)$ approximates $\Delta \mathbf{y}$, so we have

$$
\left.\Delta \mathbf{y} \approx d \mathbf{y}\right|_{(-1,2)}=\left.\mathbf{y}_{\mathbf{x}}\right|_{(-1,2)} d \mathbf{x}=\left(\begin{array}{cc}
-6 & 4 \\
5 & -1
\end{array}\right)\binom{-0.01}{0.02}=\binom{0.14}{-0.07}
$$

Here we have taken $d x_{1}=-1.01--1=-0.01$ and $d x_{2}=2.02-2=0.02$. Thus

$$
\mathbf{y}(-1.01,2.02)=\mathbf{y}(-1,2)+\Delta \mathbf{y} \approx(7,-3)+(0.14,-0.07)=(7.14,-3.07)
$$

5. Suppose we have functions $\mathbf{z}\left(y_{1}, y_{2}, y_{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ and $\mathbf{y}\left(x_{1}, x_{2}\right): \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{z}=\left\{\begin{array}{l}
z_{1}=y_{1} y_{2} y_{3} \\
z_{2}=y_{1} y_{2}^{2}+2 y_{2} y_{3}^{2}
\end{array} \quad \text { and } \mathbf{y}=\left\{\begin{array}{l}
y_{1}=x_{2} \cos \left(\pi x_{1}\right) \\
y_{2}=x_{2} \sin \left(\pi x_{1}\right) \\
y_{3}=\ln \left(x_{1}^{2}+x_{2}^{2}\right)
\end{array}\right.\right.
$$

(a) Express the Jacobian matrix $\left(\frac{\partial z_{i}}{\partial x_{j}}\right)$ of the composition $\mathbf{z} \circ \mathbf{y}$ as a product of two matrices (do not evaluate this product).
Solution. The chain rule says $\mathbf{z}_{\mathbf{x}}=\mathbf{z}_{\mathbf{y}} \mathbf{y}_{\mathbf{x}}$. So

$$
\mathbf{z}_{\mathbf{x}}=\left(\begin{array}{ccc}
y_{2} y_{3} & y_{1} y_{3} & y_{1} y_{2} \\
y_{2}^{2} & 2 y_{1} y_{2}+2 y_{3}^{2} & 4 y_{2} y_{3}
\end{array}\right)\left(\begin{array}{cc}
-\pi x_{2} \sin \left(\pi x_{1}\right) & \cos \left(\pi x_{1}\right) \\
\pi x_{2} \cos \left(\pi x_{1}\right) & \sin \left(\pi x_{1}\right) \\
\frac{2 x_{1}}{x_{1}^{2}+x_{2}^{2}} & \frac{2 x_{2}}{x_{1}^{2}+x_{2}^{2}}
\end{array}\right) .
$$

(b) Find $\left(\frac{\partial z_{2}}{\partial x_{1}}\right)_{x_{2}}(3,-1)$ and simplify your answer.

Solution. To get $\left(\frac{\partial z_{2}}{\partial x_{1}}\right)_{x_{2}}$ we must multiply the second row of the first matrix above by the first column of the second matrix, and then we need to evaluate at $\left(x_{1}, x_{2}\right)=(3,-1)$. We get

$$
\left(\frac{\partial z_{2}}{\partial x_{1}}\right)_{x_{2}}=y_{2}^{2}\left(-\pi x_{2} \sin \left(\pi x_{1}\right)\right)+\left(2 y_{1} y_{2}+y_{3}^{2}\right)\left(\pi x_{2} \cos \left(\pi x_{1}\right)\right)+4 y_{2} y_{3}\left(\frac{2 x_{1}}{x_{1}^{2}+x_{2}^{2}}\right) .
$$

Notice that we have $y_{1}(3,-1)=-\cos (3 \pi)=1, y_{2}(3,-1)=-\sin (3 \pi)=0$ and $y_{3}(3,-1)=\ln 10$. Thus plugging in $x_{1}=3$ and $x_{2}=-1$ in the above, the first and last terms of the sum become 0 , and we are left with $y_{3}^{2} \pi x_{2} \cos \left(\pi x_{1}\right)=$ $(\ln 10)^{2} \pi(-1) \cos (3 \pi)=\pi(\ln 10)^{2}$.
6. Suppose $f(x, y)$ and $g(x, y)$ are differentiable functions, and define $h(x, y)=f(x, y) g(x, y)$. Show that $d h=f d g+g d f$.
Solution. By definition, $d h=h_{x} d x+h_{y} d y$. By the product rule, $h_{x}=\frac{\partial}{\partial x}(f g)=$ $f_{x} g+f g_{x}$ and $h_{y}=\frac{\partial}{\partial y}(f g)=f_{y} g+f g_{y}$. Thus, substituting these expressions into the equation for $d h$ and rearranging the terms, we have
$d h=\left(f_{x} g+f g_{x}\right) d x+\left(f_{y} g+f g_{y}\right) d y=g\left(f_{x} d x+f_{y} d y\right)+f\left(g_{x} d x+g_{y} d y\right)=g d f+f d g$.

