Math 5B, Midterm 2 Solutions
 Fall 2006

1. Suppose $u=\cos x+y$ and $v=\sin y-x$. Find $\left(\frac{\partial x}{\partial u}\right)_{v}$ and $\left(\frac{\partial y}{\partial v}\right)_{u}$.

Solution. The Jacobian matrix $\frac{\partial(x, y)}{\partial(u, v)}$ is simply the inverse of the Jacobian matrix $\frac{\partial(u, v)}{\partial(x, y)}=\left(\begin{array}{cc}-\sin x & 1 \\ -1 & \cos y\end{array}\right)$. The determinant of this matrix is $-\sin x \cos y+1$, and thus its inverse is $\left(\begin{array}{ll}\frac{\cos y}{1-\sin x \cos y} & \frac{-1}{1-\sin x \cos y} \\ \frac{1}{1-\sin x \cos y} & \frac{-\sin x}{1-\sin x \cos y}\end{array}\right)$. Thus

$$
\left(\frac{\partial x}{\partial u}\right)_{v}=\frac{\cos y}{1-\sin x \cos y}
$$

is the upper left entry of this Jacobian, while

$$
\left(\frac{\partial y}{\partial v}\right)_{u}=\frac{-\sin x}{1-\sin x \cos y}
$$

is the lower right entry.
2. Let S be the surface given by the equation $x^{2}+y z=1$, and let C be the curve defined by the equations $\left\{\begin{array}{l}x(t)=\cos t-\sin t \\ y(t)=2 \sin t \quad \text { for } 0 \leq t \leq 2 \pi . \\ z(t)=\cos t\end{array}\right.$
(a) Show that the curve C is contained in the surface S.

Solution. Let $F(x, y, z)=x^{2}+y z-1$, so that we must check that $F(\cos t-$ $\sin t, 2 \sin t, \cos t)=0$. We have $F(\cos t-\sin t, 2 \sin t, \cos t)=(\cos t-\sin t)^{2}+$ $2 \sin t \cos t-1=\cos ^{2} t-2 \sin t \cos t+\cos ^{2} t+2 \sin t \cos t-1=\cos ^{2} t+\sin ^{2} t-1=0$.
(b) Find parametric equations for the tangent line to C at the point where $t=\pi / 4$.

Solution. The tangent vector to C at $t=\pi / 4$ is given by $\left(x^{\prime}(\pi / 4), y^{\prime}(\pi / 4), z^{\prime}(\pi / 4)\right)=$ $(-\sin (\pi / 4)-\cos (\pi / 4), 2 \cos (\pi / 4),-\sin (\pi / 4))=(-\sqrt{2}, \sqrt{2},-\sqrt{2} / 2)$ (we could also use the tangent vector $(-2,2,-1)$ obtained by multiplying this one by the scalar $\sqrt{2}$). The coordinates of the point on C when $t=\pi / 4$ are $(x(\pi / 4), y(\pi / 4), z(\pi / 4))=$ $(0, \sqrt{2}, \sqrt{2} / 2)$. Thus the parametric equation of the tangent line is

$$
\left\{\begin{array}{l}
x(t)=-t \sqrt{2} \\
y(t)=\sqrt{2}+t \sqrt{2} \\
z(t)=\sqrt{2} / 2-t \sqrt{2} / 2
\end{array}\right.
$$

(c) Find the equation of the tangent plane to S at the point $(3,-2,4)$.

Solution. The normal vector is given by the gradient of F. Thus $\mathbf{n}=\left.\nabla F\right|_{(3,-2,4)}=$ $\left.(2 x, z, y)\right|_{(3,-2,4)}=(6,4,-2)$. So the equation of the tangent plane is $6(x-3)+$ $4(y+2)-2(z-4)=0$.
3. A bee is flying through a region of space where the temperature at a point (x, y, z) is given by the function $T(x, y, z)=\frac{z}{x+y^{2}}+z y$
(a) If the bee is at $(2,1,3)$ and is too cold, which direction should the bee fly to get warmer as quickly as possible? (Give your answer as a vector.)

Solution. The gradient vector $\left.\nabla T\right|_{(2,1,3)}$ points in the direction in which the temperature is increasing most rapidly. We have $\left.\nabla T\right|_{(2,1,3)}=\left(\frac{-z}{\left(x+y^{2}\right)^{2}}, \frac{-2 y z}{\left(x+y^{2}\right)^{2}}+\right.$ $\left.z, \frac{1}{x+y^{2}}+y\right)\left.\right|_{(2,1,3)}=(-1 / 3,7 / 3,4 / 3)$. (Any positive multiple of this vector, for instance $(-1,7,4)$, would also be correct.)
(b) If the bee is flying along a curve $\mathbf{r}(t)=\left(2 t^{3}, t, 1-t^{2}\right)$, is the bee getting colder or warmer when $t=1$? Justify your answer.

Solution. When $t=1$, the bee is at $\mathbf{r}(1)=(2,1,0)$ with velocity vector $\mathbf{r}^{\prime}(t)=$ $\left.(6 t, 1,-2 t)\right|_{t=1}=(6,1,-2)$. The instantaneous rate of change of the temperature T along this curve at $t=1$ is given by the directional derivative $\left.\nabla_{(6,1,-2)} T\right|_{(2,1,0)}=$ $\left.\frac{(6,1,-2)}{|(6,1,-2)|} \cdot \nabla T\right|_{(2,1,0)}$. From (a), $\left.\nabla T\right|_{(2,1,0)}=\left.\left(\frac{-z}{\left(x+y^{2}\right)^{2}}, \frac{-2 y z}{\left(x+y^{2}\right)^{2}}+z, \frac{1}{x+y^{2}}+y\right)\right|_{(2,1,0)}=$ $(0,0,4 / 3)$. Thus $\left.\nabla_{(6,1,-2)} T\right|_{(2,1,0)}=\frac{1}{\sqrt{41}}(6,1,-2) \cdot(0,0,4 / 3)=\frac{-8}{3 \sqrt{41}}<0$, so the temperature is decreasing and the bee is getting colder.
4. Let $f(x, y)=x^{3}-x^{2}+2 x y+y^{2}$. Find all critical points of $f(x, y)$ and classify each as a relative maximum, relative minimum or saddle point.

Solution. We set the gradient of f equal to 0 : $\nabla f=\left(3 x^{2}-2 x+2 y, 2 x+2 y\right)=(0,0)$. The second equation, $2 x+2 y=0$, implies that $y=-x$. Substituting this into the first equation gives $3 x^{2}-4 x=x(3 x-4)=0$. Hence $x=0$ (and $y=-x=0$), or else $x=4 / 3$ (and $y=-x=-4 / 3)$. Thus there are two critical points $(0,0)$ and $(4 / 3,-4 / 3)$. The Hessian matrix of second order partial derivatives of $f(x, y)$ is $\left(\begin{array}{cc}6 x-2 & 2 \\ 2 & 2\end{array}\right)$. At $(0,0)$ we get the matrix $\left(\begin{array}{cc}-2 & 2 \\ 2 & 2\end{array}\right)$, which has determinant $-2 * 2-2 * 2=-8<0$. Thus $(0,0)$ is a saddle point. At $(4 / 3,-4 / 3)$, the matrix becomes $\left(\begin{array}{ll}6 & 2 \\ 2 & 2\end{array}\right)$, which has deter-
minant $6 * 2-2 * 2=8>0$ and trace $6+2=8>0$, so $(4 / 3,-4 / 3)$ is a relative minimum.
5. Find the maximum value of $f(x, y)=(x+3) y$ on the set $\left\{(x, y) \mid x^{2}+4 y^{2} \leq 9\right\}$.

Solution. We first look for critical points: $\nabla f=(y, x+3)=(0,0)$ implies that $x=-3$ and $y=0$, so $(-3,0)$ is the only critical point. Now we use Lagrange multipliers to find where the extrema occur on the boundary $x^{2}+4 y^{2}=9$. Let $g(x, y)=x^{2}+4 y^{2}-9$. We must solve the $\nabla f=(y, x+3)=\lambda \nabla g=\lambda(2 x, 8 y)$. We thus have a total of 3 equations relating x, y, λ :
(1) $y=2 \lambda x$.
(2) $x+3=8 \lambda y$.
(3) $x^{2}+4 y^{2}=9$.

First notice that x cannot be 0 , since then (1) would imply that $y=0$, but $(0,0)$ does not satisfy (3). Similarly y cannot be 0 . Thus, we can solve (1) and (2) for λ and set the results equal to each other:

$$
\frac{y}{2 x}=\lambda=\frac{x+3}{8 y} .
$$

Cross multiplying gives the relation $8 y^{2}=2 x(x+3)$, or $4 y^{2}=x(x+3)$. We can now substitute this into (3) to get $x^{2}+x(x+3)=9$ and solve for x. Simplifying, we have $2 x^{2}+3 x-9=(2 x-3)(x+3)=0$. Hence $x=-3$ or $x=3 / 2$. If $x=$ $-3, y=\sqrt{\left(9-x^{2}\right) / 4}=0$, giving the critical point $(-3,0)$ again. If $x=3 / 2, y=$ $\pm \sqrt{(9-9 / 4) / 4}= \pm \sqrt{27 / 16}= \pm \frac{3 \sqrt{3}}{4}$. We now evaluate $f(x, y)=(x+3) y$ at each of these 3 points to find its maximum value.
$f(-3,0)=0, \quad f(3 / 2,3 \sqrt{3} / 4)=9 / 2(3 \sqrt{3} / 4)=27 \sqrt{3} / 8, \quad f(3 / 2,-3 \sqrt{3} / 4)=-27 \sqrt{3} / 8$.
Thus the maximum value of $f(x, y)$ is $27 \sqrt{3} / 8$.
6. Let $\mathbf{v}=\left(x+y^{2}\right) \mathbf{i}+(y-x z) \mathbf{j}+\left(z^{3}+2 x y\right) \mathbf{k}$ be a vector field on \mathbb{R}^{3}.
(a) Compute $\operatorname{div}(\mathbf{v})$.

Solution. $\operatorname{div}(\mathbf{v})=\frac{\partial}{\partial x}\left(x+y^{2}\right)+\frac{\partial}{\partial y}(y-x z)+\frac{\partial}{\partial z}\left(z^{3}+2 x y\right)=1+1+3 z^{2}=2+3 z^{2}$.
(b) Compute curl(v).

Solution.

$$
\begin{aligned}
\operatorname{curl}(\mathbf{v})= & \left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x+y^{2} & y-x z & z^{3}+2 x y
\end{array}\right| \\
= & \left(\frac{\partial}{\partial y}\left(z^{3}+2 x y\right)-\frac{\partial}{\partial z}(y-x z)\right) \mathbf{i}+\left(\frac{\partial}{\partial z}\left(x+y^{2}\right)-\frac{\partial}{\partial x}\left(z^{3}+2 x y\right)\right) \mathbf{j}+ \\
& \left(\frac{\partial}{\partial x}(y-x z)-\frac{\partial}{\partial y}\left(x+y^{2}\right)\right) \mathbf{k} \\
= & 3 x \mathbf{i}-2 y \mathbf{j}-(2 y+z) \mathbf{k} .
\end{aligned}
$$

(c) Is $\mathbf{v}=\nabla f$ for some differentiable function $f(x, y, z)$? Justify your answer.

Solution. No. If $\mathbf{v}=\nabla f$, then $\operatorname{curl}(\mathbf{v})=\operatorname{curl}(\nabla f)=0$. But we showed in part (b) that $\operatorname{curl}(\mathbf{v}) \neq 0$.

