Math 5B, Midterm 1 Review Problems

Fall 2006

1. Consider the two planes P_{1}, defined by the equation $2 x-y+z=1$, and P_{2}, given by the equation $-x+y-z=3$.
(a) Find parametric equations for the line that is the intersection $P_{1} \cap P_{2}$ of the planes P_{1} and P_{2}.
(b) Does there exist a line that is perpendicular to both planes P_{1} and P_{2} ? Justify your answer.
(c) Find an equation of the plane that contains the point $(1,1,1)$ and the line L with equations $x(t)=1+2 t, y(t)=3-t, z(t)=4 t$.
2. Sketch at least 5 level curves of the surface given by the equation $z=e^{x-y}$, and then sketch the surface. (Be sure to label your axes.)
3. Calculate the following limits, or show that they do not exist.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{1+x y}{x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)}\left(\frac{x}{y}+\frac{y}{x}\right)$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x^{2}+y^{2}}-1}{x^{2}+y^{2}}$
4. Let $f(x, y)=\frac{2}{\frac{1}{x}+\frac{1}{y}}$.
(a) What is the domain D of f ? (Write your answer in the form $\left\{(x, y) \in \mathbb{R}^{2} \mid \ldots\right\}$.)
(b) Find $\lim _{\substack{(x, y) \rightarrow(0,0) \\(x, y) \in D}} f(x, y)$.
(Note: To compute this limit, you should only consider points (x, y) that are in the domain D of f, and not any points (x, y) near $(0,0)$ where $f(x, y)$ is undefined.)
5. Let $z=\frac{x-y}{x^{2}+y^{2}}$, and let $x=r \cos \theta$ and $y=r \sin \theta$.
(a) Find $d z$ in terms of $d x$ and $d y$.
(b) Find $d z$ in terms of $d r$ and $d \theta$. (Your answer should not contain any x 's or y 's.)
(c) Find $\left(\frac{\partial z}{\partial r}\right)_{\theta}$ and $\left(\frac{\partial z}{\partial r}\right)_{x}$ (for the second, assume $y>0$).
(d) Approximate the value of z (using (a)) when $x=1.01$ and $y=0.98$.
6. Suppose we have functions $\mathbf{z}\left(y_{1}, y_{2}, y_{3}\right): \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ and $\mathbf{y}\left(x_{1}, x_{2}\right): \mathbb{R}^{2} \rightarrow \mathbb{R}^{3}$ given by

$$
\mathbf{z}=\left\{\begin{array}{l}
z_{1}=y_{1} y_{2}-2 y_{3} e^{y_{2}} \\
z_{2}=y_{2} \cos y_{1}-y_{1} \sin y_{2}+y_{1} y_{2} y_{3}^{2} \\
z_{3}=y_{1}^{3}+y_{2}^{3}+y_{3}^{3}
\end{array} \quad \text { and } \mathbf{y}=\left\{\begin{array}{l}
y_{1}=x_{1}^{2}-x_{2}^{2} \\
y_{2}=2 x_{1} x_{2} \\
y_{3}=x_{1}+x_{2}
\end{array}\right.\right.
$$

Write the Jacobian matrix of the composition $\mathbf{z} \circ \mathbf{y}$ as a product of two matrices (do not evaluate this product), and compute $\frac{\partial z_{2}}{\partial x_{1}}$.
7. Let $f(u)$ be a function of a single variable u, and define $z(x, y)=f(a x+b y)$ where a and b are fixed real numbers. Show that

$$
b \frac{\partial z}{\partial x}-a \frac{\partial z}{\partial y}=0 .
$$

8. Suppose a function $f(x, y)$ of two variables satisfies the law $f(t x, t y)=t f(x, y)$ for all values of x, y and t in \mathbb{R}. Show that $x f_{x}+y f_{y}=f(x, y)$ for all values of x and y.
