Math 5B, Midterm 2 Review Problems

Fall 2006

1. (a) Convert the point $(1,-1,1)$ from rectangular to cylindrical coordinates.
(b) Convert ($2, \pi / 2,2 \pi / 3$) from spherical to rectangular coordinates.
2. Suppose z and w are functions of x and y given by the equations $z=\frac{1+y}{y-x}+2$ and $w=e^{x+2 y}-1$. Find the Jacobian matrix of the inverse mapping when $(z, w)=(2,0)$, and simplify your answer.
3. The two equations $x y+u v=1$ and $x u+y v=1$ define u and v implicitly as functions of x and y.
(a) Find the Jacobian matrix $\frac{\partial(u, v)}{\partial(x, y)}$.
(b) Calculate $\frac{\partial^{2} u}{\partial x^{2}}$ and $\frac{\partial^{2} u}{\partial x \partial y}$.
4. Let S be the surface given by the equation $x^{3}-x y-y z-x z-x+2=0$.
(a) Show that the curve C whose equation is $\mathbf{r}(t)=\left\{\begin{array}{l}x=t+1 \\ y=t^{2} \\ z=2\end{array}\right.$ is contained in the surface S.
(b) Find the equation of the tangent line to C at the point $(2,1,2)$.
(c) Find the equation of the tangent plane to S at the point $(2,1,2)$.
5. Find all critical points of the function $f(x, y)=3 x^{3}-6 x y+y^{2}$, and classify each as a relative min, relative max, or saddle point.
6. Suppose you want to construct a rectangular wooden box without a top so that the volume is 32 cubic feet. What dimensions ($x=$ length, $y=$ width, $z=$ height) of the box will minimize the amount of wood you need to construct it?
7. Let $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ be a vector field on \mathbb{R}^{3}.
(a) Find $\operatorname{curl}(\mathbf{v})$.
(b) Show that there is no differentiable vector field \mathbf{u} on \mathbb{R}^{3} such that $\mathbf{v}=\operatorname{curl}(\mathbf{u})$.
8. Let $\mathbf{v}=(y-z) \mathbf{i}+(z-x) \mathbf{j}+(x-y) \mathbf{k}$ be a vector field on the surface S defined by the equation $x^{2}+y^{2}+z^{2}=1$ (i.e., S is the unit sphere in \mathbb{R}^{3}).
(a) Show that at each point of S, the vector field \mathbf{v} is tangent to S.
(b) Is $\mathbf{v}=\nabla f$ for some differentiable function $f(x, y, z)$? Justify your answer.
(c) Is $\mathbf{v}=\operatorname{curl}(\mathbf{u})$ for some differentiable vector field \mathbf{u} on S ? Justify your answer.
