Math 5B, Midterm 2 Review Problems Fall 2006

- 1. (a) Convert the point (1, -1, 1) from rectangular to cylindrical coordinates.
 - (b) Convert $(2, \pi/2, 2\pi/3)$ from spherical to rectangular coordinates.
- 2. Suppose z and w are functions of x and y given by the equations $z = \frac{1+y}{y-x} + 2$ and $w = e^{x+2y} 1$. Find the Jacobian matrix of the inverse mapping when (z, w) = (2, 0), and simplify your answer.
- 3. The two equations xy + uv = 1 and xu + yv = 1 define u and v implicitly as functions of x and y.
 - (a) Find the Jacobian matrix $\frac{\partial(u,v)}{\partial(x,y)}$.
 - (b) Calculate $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial x \partial y}$.
- 4. Let S be the surface given by the equation $x^3 xy yz xz x + 2 = 0$.

(a) Show that the curve C whose equation is $\mathbf{r}(t) = \begin{cases} x = t+1 \\ y = t^2 \\ z = 2 \end{cases}$ is contained in the surface S.

- (b) Find the equation of the tangent line to C at the point (2, 1, 2).
- (c) Find the equation of the tangent plane to S at the point (2, 1, 2).
- 5. Find all critical points of the function $f(x, y) = 3x^3 6xy + y^2$, and classify each as a relative min, relative max, or saddle point.
- 6. Suppose you want to construct a rectangular wooden box without a top so that the volume is 32 cubic feet. What dimensions (x = length, y = width, z = height) of the box will minimize the amount of wood you need to construct it?

- 7. Let $\mathbf{v} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ be a vector field on \mathbb{R}^3 .
 - (a) Find $\operatorname{curl}(\mathbf{v})$.
 - (b) Show that there is no differentiable vector field \mathbf{u} on \mathbb{R}^3 such that $\mathbf{v} = \operatorname{curl}(\mathbf{u})$.
- 8. Let $\mathbf{v} = (y-z)\mathbf{i} + (z-x)\mathbf{j} + (x-y)\mathbf{k}$ be a vector field on the surface S defined by the equation $x^2 + y^2 + z^2 = 1$ (i.e., S is the unit sphere in \mathbb{R}^3).
 - (a) Show that at each point of S, the vector field \mathbf{v} is tangent to S.
 - (b) Is $\mathbf{v} = \nabla f$ for some differentiable function f(x, y, z)? Justify your answer.
 - (c) Is $\mathbf{v} = \operatorname{curl}(\mathbf{u})$ for some differentiable vector field \mathbf{u} on S? Justify your answer.