Math 5B, Midterm 2 Review Problems Fall 2006

- 1. (a) Convert the point (1, -1, 1) from rectangular to cylindrical coordinates. **Solution.** (It helps to draw pictures!) To convert to cylindrical coordinates, all we need to do is change the x, y-coordinates to polar coordinates: $r = \sqrt{x^2 + y^2} = \sqrt{2}$, and $\theta = \tan^{-1}(y/x) = \tan^{-1}(-1) = -\pi/4$, which is in the same quadrant as (1, -1). So $(1, -1, 1) = (\sqrt{2}, -\pi/4, 1)$ in cylindrical coordinates.
 - (b) Convert $(2, \pi/2, 2\pi/3)$ from spherical to rectangular coordinates. **Solution.** $x = \rho \sin \phi \cos \theta = 2 \sin(2\pi/3) \cos(\pi/2) = 0$, $y = \rho \sin \phi \sin \theta = 2 \sin(2\pi/3) \sin(\pi/2) = \sqrt{3}$, and $z = \rho \cos \phi = 2 \cos(2\pi/3) = -1$. So $(2, \pi/2, 2\pi/3) = (0, \sqrt{3}, -1)$ in rectangular coordinates.
- 2. Suppose z and w are functions of x and y given by the equations $z = \frac{1+y}{y-x} + 2$ and $w = e^{x+2y} 1$. Find the Jacobian matrix of the inverse mapping when (z, w) = (2, 0), and simplify your answer.

Solution. Start by finding the Jacobian $\frac{\partial(z,w)}{\partial(x,y)}$ of the given mapping by taking partial derivatives of z and w with respect to x and y. The Jacobian of the inverse mapping will be the inverse of this matrix.

$$J = \frac{\partial(z, w)}{\partial(x, y)} = \begin{pmatrix} \frac{1+x}{(x-y)^2} & \frac{-x-1}{(x-y)^2} \\ e^{x+2y} & 2e^{x+2y} \end{pmatrix}.$$

Before finding the inverse, we can plug in z = 2 and w = 0. Since we don't have any z's or w's, we must solve for x and y in the two defining equations for z and w:

$$2 = \frac{1+y}{y-x} + 2 \Rightarrow \frac{1+y}{y-x} = 0 \Rightarrow 1+y = 0 \Rightarrow y = -1,$$

$$0 = e^{x+2y} - 1 \Rightarrow x + 2y = 0 \Rightarrow x = 2.$$

Thus $J|_{(2,-1)} = \begin{pmatrix} 0 & -1/3\\ 1 & 2 \end{pmatrix}$, and $J^{-1}|_{(2,-1)} = \begin{pmatrix} 6 & 1\\ -3 & 0 \end{pmatrix}$.

- 3. The two equations xy + uv = 1 and xu + yv = 1 define u and v implicitly as functions of x and y.
 - (a) Find the Jacobian matrix $\frac{\partial(u,v)}{\partial(x,y)}$.

Solution. Let F(x, y, u, v) = xy + uv - 1 and G(x, y, u, v) = xu + yv - 1. We use the formulas (2.61) to find the partial derivatives.

$$\frac{\partial u}{\partial x} = \frac{-\begin{vmatrix} F_x & F_v \\ G_x & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} = \frac{-\begin{vmatrix} y & u \\ u & y \end{vmatrix}}{\begin{vmatrix} v & x \\ u & y \end{vmatrix}} = \frac{u^2 - y^2}{yv - xu}.$$
$$\frac{\partial u}{\partial y} = \frac{-\begin{vmatrix} F_y & F_v \\ G_y & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} = \frac{-\begin{vmatrix} x & v \\ u & y \end{vmatrix}}{\begin{vmatrix} v & x \\ u & y \end{vmatrix}} = \frac{uv - xy}{yv - xu}.$$
$$\frac{\partial v}{\partial x} = \frac{-\begin{vmatrix} F_u & F_x \\ G_u & G_x \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} = \frac{-\begin{vmatrix} v & y \\ x & u \\ v & x \end{vmatrix}}{\begin{vmatrix} v & x \\ u & y \end{vmatrix}} = \frac{xy - uv}{yv - xu}.$$
$$\frac{\partial v}{\partial y} = \frac{-\begin{vmatrix} F_u & F_x \\ F_u & F_v \\ G_u & G_v \end{vmatrix}}{\begin{vmatrix} F_u & F_v \\ G_u & G_v \end{vmatrix}} = \frac{-\begin{vmatrix} v & x \\ v & x \\ u & y \end{vmatrix}} = \frac{xy - uv}{yv - xu}.$$

 So

$$J = \begin{pmatrix} \frac{u^2 - y^2}{yv - xu} & \frac{uv - xy}{yv - xu} \\ \frac{xy - uv}{yv - xu} & \frac{x^2 - v^2}{yv - xu} \end{pmatrix}.$$

A simpler method is to use formula (2.68), which says that the Jacobian matrix

$$\frac{\partial(u,v)}{\partial(x,y)} = -\left(\frac{\partial(F,G)}{\partial(u,v)}\right)^{-1} \left(\frac{\partial(F,G)}{\partial(x,y)}\right) = -\left(\begin{array}{cc}v & u\\x & y\end{array}\right)^{-1} \left(\begin{array}{cc}y & x\\u & v\end{array}\right) = \cdots$$

(b) Calculate $\frac{\partial^2 u}{\partial x^2}$ and $\frac{\partial^2 u}{\partial x \partial y}$. Solution.

 $\frac{\partial^2 u}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{u^2 - y^2}{yv - xu} \right) = \frac{(vy - xu)2uu_x - (u^2 - y^2)(yv_x - u - xu_x)}{(vy - xu)^2}.$

At this point, we should substitute in u_x and v_x from part (a) and simplify, but you would not be required to write this out on the test.

$$\frac{\partial^2 u}{\partial x \partial y} = \frac{\partial}{\partial y} \left(\frac{u^2 - y^2}{yv - xu}\right) = \frac{(vy - xu)(2uu_y - 2y) - (u^2 - y^2)(v + yv_y - xu_y)}{(vy - xu)^2}.$$

- 4. Let S be the surface given by the equation $x^3 xy yz xz x + 2 = 0$.
 - (a) Show that the curve C whose equation is $\mathbf{r}(t) = \begin{cases} x = t+1 \\ y = t^2 \\ z = 2 \end{cases}$ is contained in

the surface S.

Solution. Let $F(x, y, z) = x^3 - xy - yz - xz - x + 2$. We must check that $F(t+1, t^2, 2) = 0$. We have $F(t+1, t^2, 2) = (t+1)^3 - (t+1)t^2 - 2t^2 - 2(t+1) - (t+1) + 2 = t^3 + 3t^2 + 3t + 1 - t^3 - t^2 - 2t^2 - 2t - 2 - t - 1 + 2 = 0$.

- (b) Find the equation of the tangent line to C at the point (2, 1, 2). **Solution.** We first find the value of t that corresponds to the point (2, 1, 2) on C: we have x = 2 = t + 1, so t = 1. The tangent vector to C when t = 1 is $\mathbf{v} = (x'(1), y'(1), z'(1)) = (1, 2, 0)$. Thus the equation of the tangent line to C at (2, 1, 2) is (x, y, z) = (2, 1, 2) + t(1, 2, 0) = (2 + t, 1 + 2t, 2).
- (c) Find the equation of the tangent plane to S at the point (2, 1, 2). **Solution.** The normal vector to S at the point (2, 1, 2) is given by the gradient vector of $F: \nabla F = (3x^2 - y - z - 1, -x - z, -y - x)$. So $\nabla F|_{(2,1,2)} = (8, -4, -3)$. The equation of the tangent plane is thus 8(x - 2) - 4(y - 1) - 3(z - 2) = 0.
- 5. Find all critical points of the function $f(x, y) = 3x^3 6xy + y^2$, and classify each as a relative min, relative max, or saddle point.

Solution. To find critical points, we look for where ∇f is **0** or undefined. We need to solve $\nabla f = (9x^2 - 6y, -6x + 2y) = (0, 0)$, as we can see that ∇f is never undefined. The second equation implies that y = 3x, and plugging this into the first equation we have $9x^2 - 18x = 9x(x-2) = 0$. So x = 0 (and y = 0) or x = 2 (and y = 6). So the critical points are (0, 0) and (2, 6). We now calculate the Hessian matrix of second order partial derivatives

$$H = \left(\begin{array}{cc} 18x & -6\\ -6 & 2 \end{array}\right).$$

At (0,0), det $H = 0(2) - (-6)^2 < 0$, so f has a saddle point at (0,0). At (2,6), det $H = 36(2) - (-6)^2 > 0$ and trH = 36 + 2 > 0 so f has a relative minimum at (2,6).

6. Suppose you want to construct a rectangular wooden box without a top so that the volume is 32 cubic feet. What dimensions (x = length, y = width, z = height) of the box will minimize the amount of wood you need to construct it?

Solution. The amount of wood needed to construct the box is f(x, y, z) = xy + 2xz + 2yz (xy is the area of the base, there are 2 sides of area xz and 2 sides of area

yz, and no top). So we must minimize the function f subject to the side condition xyz = 32, which says that the volume of the box is 32. Let g(x, y, z) = xyz-32, so that g(x, y, z) = 0 expresses the side condition. The method of Lagrange multipliers tells us that this minimum must occur where $\nabla f = \lambda \nabla g$ for some real number λ (notice that there are no boundary points to consider here, since we must have x > 0, y > 0, z > 0). This gives us the following four equations (the last one is the side condition) which we must solve for x, y, z.

- (1) $y + 2z = \lambda yz$
- (2) $x + 2z = \lambda xz$
- (3) $2x + 2y = \lambda xy$
- (4) xyz = 32

One way to solve these is to subtract (2) from (1) to get $y - x = \lambda z(y - x)$. From this equation, we see that either y - x = 0 or if not, divide both sides by y - x, to get $\lambda z = 1$. If $\lambda z = 1$, equation (1) would become y + 2z = y, which means z = 0, but then $\lambda = 1/z$ is undefined. So we conclude that y - x = 0, or x = y. Equation (3) now becomes $4x = x^2$, and since x cannot be 0, x = 4. Thus y = x = 4, and z = 32/xy = 32/16 = 2. So the dimensions that minimize the surface area are (x, y, z) = (4, 4, 2).

- 7. Let $\mathbf{v} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ be a vector field on \mathbb{R}^3 .
 - (a) Find $\operatorname{curl}(\mathbf{v})$.

$$\operatorname{curl}(\mathbf{v}) = \left| egin{array}{cc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ rac{\partial}{\partial x} & rac{\partial}{\partial y} & rac{\partial}{\partial z} \\ x & y & z \end{array}
ight| = \cdots = \mathbf{0}.$$

One can also see this by realizing that $\mathbf{v} = \nabla f$ for $f(x, y, z) = x^2/2 + y^2/2 + z^2/2$ and using the fact that $\operatorname{curl}(\nabla f) = 0$ for any function f with continuous second order partials.

- (b) Show that there is no differentiable vector field \mathbf{u} on \mathbb{R}^3 such that $\mathbf{v} = \operatorname{curl}(\mathbf{u})$. Solution. Rather than trying to find such a \mathbf{u} , recall that $\operatorname{div}(\operatorname{curl}(\mathbf{u})) = 0$ for any vector field \mathbf{u} with continuous second order partials. Since $\operatorname{div}(\mathbf{v}) = 1+1+1 = 3 \neq 0$, \mathbf{v} cannot be equal to $\operatorname{curl}(\mathbf{u})$ for any \mathbf{u} .
- 8. Let $\mathbf{v} = (y-z)\mathbf{i} + (z-x)\mathbf{j} + (x-y)\mathbf{k}$ be a vector field on the surface S defined by the equation $x^2 + y^2 + z^2 = 1$ (i.e., S is the unit sphere in \mathbb{R}^3).

- (a) Show that at each point of S, the vector field \mathbf{v} is tangent to S.
 - **Solution.** Since S is defined by the equation $F(x, y, z) = x^2 + y^2 + z^2 1 = 0$, the normal vector to S at the point (x, y, z) is $\nabla F = (2x, 2y, 2z)$, and $\mathbf{v} = (y - z, z - x, x - y)$ is tangent to S if $\nabla F \cdot \mathbf{v} = 0$. We have $\nabla F \cdot \mathbf{v} = 2x(y - z) + 2y(z - x) + 2z(x - y) = 0$.
- (b) Is $\mathbf{v} = \nabla f$ for some differentiable function f(x, y, z)? Justify your answer. Solution. If $\mathbf{v} = \nabla f$, then $\operatorname{curl}(\mathbf{v}) = \operatorname{curl}(\nabla f) = 0$. So we start by checking whether $\operatorname{curl}(\mathbf{v}) = 0$.

$$\operatorname{curl}(\mathbf{v}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y - z & z - x & x - y \end{vmatrix} = \left(\frac{\partial}{\partial y}(x - y) - \frac{\partial}{\partial z}(z - x)\right)\mathbf{i} + \dots = -2\mathbf{i} + \dots \neq \mathbf{0}.$$

Thus **v** cannot equal ∇f for any f.

(c) Is $\mathbf{v} = \operatorname{curl}(\mathbf{u})$ for some differentiable vector field \mathbf{u} on S? Justify your answer.

Solution. As in 7b, we should start by checking that $\operatorname{div}(\mathbf{v}) = 0$. Since this is true here, there is a good chance that $\mathbf{v} = \operatorname{curl}(\mathbf{u})$ for some $\mathbf{u} = u_x \mathbf{i} + u_y \mathbf{j} + u_z \mathbf{k}$, and we just need to find \mathbf{u} . To simplify things, suppose that $u_z = 0$, so that $\operatorname{curl}(\mathbf{u}) = -\frac{\partial u_y}{\partial z}\mathbf{i} + \frac{\partial u_x}{\partial z}\mathbf{j} + (\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y})\mathbf{k}$. Equating the coordinates of $\operatorname{curl}(\mathbf{u})$ with those of \mathbf{v} we get a system of 3 partial differential equations.

(1) $\frac{\partial u_y}{\partial z} = z - y \Rightarrow u_y = z^2/2 - yz + C(x, y)$ (2) $\frac{\partial u_x}{\partial z} = z - x \Rightarrow u_x = z^2/2 - xz + D(x, y)$ (3) $\frac{\partial u_y}{\partial x} - \frac{\partial u_x}{\partial y} = x - y.$

Integrating (1) and (2) with respect to z gives equations for u_y and u_x as above. We now plug these expressions into (3), and choose the functions C(x, y) and D(x, y) so that (3) is satisfied. Plugging into (3), we have $C_x - D_y = x - y$. So we can choose $C(x, y) = x^2/2$ and $D(x, y) = y^2/2$. Hence, we have shown that $\mathbf{v} = \operatorname{curl}(\mathbf{u})$ for the vector field

$$\mathbf{u} = (z^2/2 + y^2/2 - xz)\mathbf{i} + (z^2/2 + x^2/2 - yz)\mathbf{j} + 0\mathbf{k}.$$