Math 5B, Midterm 2 Review Problems

Fall 2006

1. (a) Convert the point $(1,-1,1)$ from rectangular to cylindrical coordinates.

Solution. (It helps to draw pictures!) To convert to cylindrical coordinates, all we need to do is change the x, y-coordinates to polar coordinates: $r=\sqrt{x^{2}+y^{2}}=$ $\sqrt{2}$, and $\theta=\tan ^{-1}(y / x)=\tan ^{-1}(-1)=-\pi / 4$, which is in the same quadrant as $(1,-1)$. So $(1,-1,1)=(\sqrt{2},-\pi / 4,1)$ in cylindrical coordinates.
(b) Convert ($2, \pi / 2,2 \pi / 3$) from spherical to rectangular coordinates.

Solution. $\quad x=\rho \sin \phi \cos \theta=2 \sin (2 \pi / 3) \cos (\pi / 2)=0, y=\rho \sin \phi \sin \theta=$ $2 \sin (2 \pi / 3) \sin (\pi / 2)=\sqrt{3}$, and $z=\rho \cos \phi=2 \cos (2 \pi / 3)=-1$. So $(2, \pi / 2,2 \pi / 3)=$ $(0, \sqrt{3},-1)$ in rectangular coordinates.
2. Suppose z and w are functions of x and y given by the equations $z=\frac{1+y}{y-x}+2$ and $w=e^{x+2 y}-1$. Find the Jacobian matrix of the inverse mapping when $(z, w)=(2,0)$, and simplify your answer.
Solution. Start by finding the Jacobian $\frac{\partial(z, w)}{\partial(x, y)}$ of the given mapping by taking partial derivatives of z and w with respect to x and y. The Jacobian of the inverse mapping will be the inverse of this matrix.

$$
J=\frac{\partial(z, w)}{\partial(x, y)}=\left(\begin{array}{cc}
\frac{1+x}{(x-y)^{2}} & \frac{-x-1}{(x-y)^{2}} \\
e^{x+2 y} & 2 e^{x+2 y}
\end{array}\right)
$$

Before finding the inverse, we can plug in $z=2$ and $w=0$. Since we don't have any z 's or w 's, we must solve for x and y in the two defining equations for z and w :

$$
\begin{gathered}
2=\frac{1+y}{y-x}+2 \Rightarrow \frac{1+y}{y-x}=0 \Rightarrow 1+y=0 \Rightarrow y=-1, \\
0=e^{x+2 y}-1 \Rightarrow x+2 y=0 \Rightarrow x=2 .
\end{gathered}
$$

Thus $\left.J\right|_{(2,-1)}=\left(\begin{array}{cc}0 & -1 / 3 \\ 1 & 2\end{array}\right)$, and $\left.J^{-1}\right|_{(2,-1)}=\left(\begin{array}{cc}6 & 1 \\ -3 & 0\end{array}\right)$.
3. The two equations $x y+u v=1$ and $x u+y v=1$ define u and v implicitly as functions of x and y.
(a) Find the Jacobian matrix $\frac{\partial(u, v)}{\partial(x, y)}$.

Solution. Let $F(x, y, u, v)=x y+u v-1$ and $G(x, y, u, v)=x u+y v-1$. We use the formulas (2.61) to find the partial derivatives.

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{-\left|\begin{array}{ll}
F_{x} & F_{v} \\
G_{x} & G_{v}
\end{array}\right|}{\left|\begin{array}{cc}
F_{u} & F_{v} \\
G_{u} & G_{v}
\end{array}\right|}=\frac{-\left|\begin{array}{ll}
y & u \\
u & y
\end{array}\right|}{\left|\begin{array}{cc}
v & x \\
u & y
\end{array}\right|}=\frac{u^{2}-y^{2}}{y v-x u} . \\
& \frac{\partial u}{\partial y}=\frac{-\left|\begin{array}{ll}
F_{y} & F_{v} \\
G_{y} & G_{v}
\end{array}\right|}{\left|\begin{array}{ll}
F_{u} & F_{v} \\
G_{u} & G_{v}
\end{array}\right|}=\frac{-\left|\begin{array}{cc}
x & v \\
u & y
\end{array}\right|}{\left|\begin{array}{cc}
v & x \\
u & y
\end{array}\right|}=\frac{u v-x y}{y v-x u} . \\
& \frac{\partial v}{\partial x}=\frac{-\left|\begin{array}{ll}
F_{u} & F_{x} \\
G_{u} & G_{x}
\end{array}\right|}{\left|\begin{array}{ll}
F_{u} & F_{v} \\
G_{u} & G_{v}
\end{array}\right|}=\frac{-\left|\begin{array}{cc}
v & y \\
x & u
\end{array}\right|}{\left|\begin{array}{cc}
v & x \\
u & y
\end{array}\right|}=\frac{x y-u v}{y v-x u} . \\
& \frac{\partial v}{\partial y}=\frac{-\left|\begin{array}{cc}
F_{u} & F_{y} \\
G_{u} & G_{y}
\end{array}\right|}{\left|\begin{array}{ll}
F_{u} & F_{v} \\
G_{u} & G_{v}
\end{array}\right|}=\frac{-\left|\begin{array}{cc}
v & x \\
x & v
\end{array}\right|}{\left|\begin{array}{cc}
v & x \\
u & y
\end{array}\right|}=\frac{x^{2}-v^{2}}{y v-x u} .
\end{aligned}
$$

So

$$
J=\left(\begin{array}{ll}
\frac{u^{2}-y^{2}}{y v-x u} & \frac{u v-x y}{y v-x u} \\
\frac{x y-u v}{y v-x u} & \frac{x^{2}-v^{2}}{y v-x u}
\end{array}\right) .
$$

A simpler method is to use formula (2.68), which says that the Jacobian matrix

$$
\frac{\partial(u, v)}{\partial(x, y)}=-\left(\frac{\partial(F, G)}{\partial(u, v)}\right)^{-1}\left(\frac{\partial(F, G)}{\partial(x, y)}\right)=-\left(\begin{array}{cc}
v & u \\
x & y
\end{array}\right)^{-1}\left(\begin{array}{cc}
y & x \\
u & v
\end{array}\right)=\cdots
$$

(b) Calculate $\frac{\partial^{2} u}{\partial x^{2}}$ and $\frac{\partial^{2} u}{\partial x \partial y}$.

Solution.

$$
\frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{u^{2}-y^{2}}{y v-x u}\right)=\frac{(v y-x u) 2 u u_{x}-\left(u^{2}-y^{2}\right)\left(y v_{x}-u-x u_{x}\right)}{(v y-x u)^{2}}
$$

At this point, we should substitute in u_{x} and v_{x} from part (a) and simplify, but you would not be required to write this out on the test.

$$
\frac{\partial^{2} u}{\partial x \partial y}=\frac{\partial}{\partial y}\left(\frac{u^{2}-y^{2}}{y v-x u}\right)=\frac{(v y-x u)\left(2 u u_{y}-2 y\right)-\left(u^{2}-y^{2}\right)\left(v+y v_{y}-x u_{y}\right)}{(v y-x u)^{2}} .
$$

4. Let S be the surface given by the equation $x^{3}-x y-y z-x z-x+2=0$.
(a) Show that the curve C whose equation is $\mathbf{r}(t)=\left\{\begin{array}{l}x=t+1 \\ y=t^{2} \\ z=2\end{array}\right.$ is contained in the surface S.
Solution. Let $F(x, y, z)=x^{3}-x y-y z-x z-x+2$. We must check that $F\left(t+1, t^{2}, 2\right)=0$. We have $F\left(t+1, t^{2}, 2\right)=(t+1)^{3}-(t+1) t^{2}-2 t^{2}-2(t+1)-$ $(t+1)+2=t^{3}+3 t^{2}+3 t+1-t^{3}-t^{2}-2 t^{2}-2 t-2-t-1+2=0$.
(b) Find the equation of the tangent line to C at the point $(2,1,2)$.

Solution. We first find the value of t that corresponds to the point $(2,1,2)$ on C : we have $x=2=t+1$, so $t=1$. The tangent vector to C when $t=1$ is $\mathbf{v}=\left(x^{\prime}(1), y^{\prime}(1), z^{\prime}(1)\right)=(1,2,0)$. Thus the equation of the tangent line to C at $(2,1,2)$ is $(x, y, z)=(2,1,2)+t(1,2,0)=(2+t, 1+2 t, 2)$.
(c) Find the equation of the tangent plane to S at the point $(2,1,2)$.

Solution. The normal vector to S at the point $(2,1,2)$ is given by the gradient vector of $F: \nabla F=\left(3 x^{2}-y-z-1,-x-z,-y-x\right)$. So $\left.\nabla F\right|_{(2,1,2)}=(8,-4,-3)$. The equation of the tangent plane is thus $8(x-2)-4(y-1)-3(z-2)=0$.
5. Find all critical points of the function $f(x, y)=3 x^{3}-6 x y+y^{2}$, and classify each as a relative min, relative max, or saddle point.
Solution. To find critical points, we look for where ∇f is $\mathbf{0}$ or undefined. We need to solve $\nabla f=\left(9 x^{2}-6 y,-6 x+2 y\right)=(0,0)$, as we can see that ∇f is never undefined. The second equation implies that $y=3 x$, and plugging this into the first equation we have $9 x^{2}-18 x=9 x(x-2)=0$. So $x=0$ (and $y=0$) or $x=2$ (and $y=6$). So the critical points are $(0,0)$ and $(2,6)$. We now calculate the Hessian matrix of second order partial derivatives

$$
H=\left(\begin{array}{cc}
18 x & -6 \\
-6 & 2
\end{array}\right)
$$

At $(0,0)$, $\operatorname{det} H=0(2)-(-6)^{2}<0$, so f has a saddle point at $(0,0)$. At $(2,6)$, det $H=36(2)-(-6)^{2}>0$ and $\operatorname{tr} H=36+2>0$ so f has a relative minimum at $(2,6)$.
6. Suppose you want to construct a rectangular wooden box without a top so that the volume is 32 cubic feet. What dimensions ($x=$ length, $y=$ width, $z=$ height) of the box will minimize the amount of wood you need to construct it?
Solution. The amount of wood needed to construct the box is $f(x, y, z)=x y+$ $2 x z+2 y z(x y$ is the area of the base, there are 2 sides of area $x z$ and 2 sides of area
$y z$, and no top). So we must minimize the function f subject to the side condition $x y z=32$, which says that the volume of the box is 32 . Let $g(x, y, z)=x y z-32$, so that $g(x, y, z)=0$ expresses the side condition. The method of Lagrange multipliers tells us that this minimum must occur where $\nabla f=\lambda \nabla g$ for some real number λ (notice that there are no boundary points to consider here, since we must have $x>0, y>0, z>0$). This gives us the following four equations (the last one is the side condition) which we must solve for x, y, z.
(1) $y+2 z=\lambda y z$
(2) $x+2 z=\lambda x z$
(3) $2 x+2 y=\lambda x y$
(4) $x y z=32$

One way to solve these is to subtract (2) from (1) to get $y-x=\lambda z(y-x)$. From this equation, we see that either $y-x=0$ or if not, divide both sides by $y-x$, to get $\lambda z=1$. If $\lambda z=1$, equation (1) would become $y+2 z=y$, which means $z=0$, but then $\lambda=1 / z$ is undefined. So we conclude that $y-x=0$, or $x=y$. Equation (3) now becomes $4 x=x^{2}$, and since x cannot be $0, x=4$. Thus $y=x=4$, and $z=32 / x y=32 / 16=2$. So the dimensions that minimize the surface area are $(x, y, z)=(4,4,2)$.
7. Let $\mathbf{v}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}$ be a vector field on \mathbb{R}^{3}.
(a) Find $\operatorname{curl(v).~}$

Solution.

$$
\operatorname{curl}(\mathbf{v})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
x & y & z
\end{array}\right|=\cdots=\mathbf{0} .
$$

One can also see this by realizing that $\mathbf{v}=\nabla f$ for $f(x, y, z)=x^{2} / 2+y^{2} / 2+z^{2} / 2$ and using the fact that $\operatorname{curl}(\nabla f)=0$ for any function f with continuous second order partials.
(b) Show that there is no differentiable vector field \mathbf{u} on \mathbb{R}^{3} such that $\mathbf{v}=\operatorname{curl}(\mathbf{u})$.

Solution. Rather than trying to find such a \mathbf{u}, recall that $\operatorname{div}(\operatorname{curl}(\mathbf{u}))=0$ for any vector field \mathbf{u} with continuous second order partials. Since $\operatorname{div}(\mathbf{v})=1+1+1=$ $3 \neq 0, \mathbf{v}$ cannot be equal to $\operatorname{curl}(\mathbf{u})$ for any \mathbf{u}.
8. Let $\mathbf{v}=(y-z) \mathbf{i}+(z-x) \mathbf{j}+(x-y) \mathbf{k}$ be a vector field on the surface S defined by the equation $x^{2}+y^{2}+z^{2}=1$ (i.e., S is the unit sphere in \mathbb{R}^{3}).
(a) Show that at each point of S, the vector field \mathbf{v} is tangent to S.

Solution. Since S is defined by the equation $F(x, y, z)=x^{2}+y^{2}+z^{2}-1=0$, the normal vector to S at the point (x, y, z) is $\nabla F=(2 x, 2 y, 2 z)$, and $\mathbf{v}=$ $(y-z, z-x, x-y)$ is tangent to S if $\nabla F \cdot \mathbf{v}=0$. We have $\nabla F \cdot \mathbf{v}=2 x(y-z)+$ $2 y(z-x)+2 z(x-y)=0$.
(b) Is $\mathbf{v}=\nabla f$ for some differentiable function $f(x, y, z)$? Justify your answer.

Solution. If $\mathbf{v}=\nabla f$, then $\operatorname{curl}(\mathbf{v})=\operatorname{curl}(\nabla f)=0$. So we start by checking whether $\operatorname{curl}(\mathbf{v})=0$.

$$
\operatorname{curl}(\mathbf{v})=\left|\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
y-z & z-x & x-y
\end{array}\right|=\left(\frac{\partial}{\partial y}(x-y)-\frac{\partial}{\partial z}(z-x)\right) \mathbf{i}+\cdots=-2 \mathbf{i}+\cdots \neq \mathbf{0} .
$$

Thus \mathbf{v} cannot equal ∇f for any f.
(c) Is $\mathbf{v}=\operatorname{curl}(\mathbf{u})$ for some differentiable vector field \mathbf{u} on S ? Justify your answer.

Solution. As in 7 b , we should start by checking that $\operatorname{div}(\mathbf{v})=0$. Since this is true here, there is a good chance that $\mathbf{v}=\operatorname{curl}(\mathbf{u})$ for some $\mathbf{u}=u_{x} \mathbf{i}+u_{y} \mathbf{j}+u_{z} \mathbf{k}$, and we just need to find \mathbf{u}. To simplify things, suppose that $u_{z}=0$, so that $\operatorname{curl}(\mathbf{u})=$ $-\frac{\partial u_{y}}{\partial z} \mathbf{i}+\frac{\partial u_{x}}{\partial z} \mathbf{j}+\left(\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}\right) \mathbf{k}$. Equating the coordinates of $\operatorname{curl}(\mathbf{u})$ with those of \mathbf{v} we get a system of 3 partial differential equations.
(1) $\frac{\partial u_{y}}{\partial z}=z-y \Rightarrow u_{y}=z^{2} / 2-y z+C(x, y)$
(2) $\frac{\partial u_{x}}{\partial z}=z-x \Rightarrow u_{x}=z^{2} / 2-x z+D(x, y)$
(3) $\frac{\partial u_{y}}{\partial x}-\frac{\partial u_{x}}{\partial y}=x-y$.

Integrating (1) and (2) with respect to z gives equations for u_{y} and u_{x} as above. We now plug these expressions into (3), and choose the functions $C(x, y)$ and $D(x, y)$ so that (3) is satisfied. Plugging into (3), we have $C_{x}-D_{y}=x-y$. So we can choose $C(x, y)=x^{2} / 2$ and $D(x, y)=y^{2} / 2$. Hence, we have shown that $\mathbf{v}=\operatorname{curl}(\mathbf{u})$ for the vector field

$$
\mathbf{u}=\left(z^{2} / 2+y^{2} / 2-x z\right) \mathbf{i}+\left(z^{2} / 2+x^{2} / 2-y z\right) \mathbf{j}+0 \mathbf{k} .
$$

