
Math 5B, Midterm 2 Review Problems
Fall 2006

1. (a) Convert the point (1,−1, 1) from rectangular to cylindrical coordinates.

Solution. (It helps to draw pictures!) To convert to cylindrical coordinates, all
we need to do is change the x, y-coordinates to polar coordinates: r =

√
x2 + y2 =√

2, and θ = tan−1(y/x) = tan−1(−1) = −π/4, which is in the same quadrant as
(1,−1). So (1,−1, 1) = (

√
2,−π/4, 1) in cylindrical coordinates.

(b) Convert (2, π/2, 2π/3) from spherical to rectangular coordinates.

Solution. x = ρ sin φ cos θ = 2 sin(2π/3) cos(π/2) = 0, y = ρ sin φ sin θ =
2 sin(2π/3) sin(π/2) =

√
3, and z = ρ cos φ = 2 cos(2π/3) = −1. So (2, π/2, 2π/3) =

(0,
√

3,−1) in rectangular coordinates.

2. Suppose z and w are functions of x and y given by the equations z =
1 + y

y − x
+ 2 and

w = ex+2y − 1. Find the Jacobian matrix of the inverse mapping when (z, w) = (2, 0),
and simplify your answer.

Solution. Start by finding the Jacobian ∂(z,w)
∂(x,y)

of the given mapping by taking partial
derivatives of z and w with respect to x and y. The Jacobian of the inverse mapping
will be the inverse of this matrix.

J =
∂(z, w)

∂(x, y)
=

( 1+x
(x−y)2

−x−1
(x−y)2

ex+2y 2ex+2y

)
.

Before finding the inverse, we can plug in z = 2 and w = 0. Since we don’t have any
z’s or w’s, we must solve for x and y in the two defining equations for z and w:

2 =
1 + y

y − x
+ 2 ⇒ 1 + y

y − x
= 0 ⇒ 1 + y = 0 ⇒ y = −1,

0 = ex+2y − 1 ⇒ x + 2y = 0 ⇒ x = 2.

Thus J |(2,−1) =

(
0 −1/3
1 2

)
, and J−1|(2,−1) =

(
6 1
−3 0

)
.

3. The two equations xy + uv = 1 and xu + yv = 1 define u and v implicitly as functions
of x and y.

(a) Find the Jacobian matrix ∂(u,v)
∂(x,y)

.
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Solution. Let F (x, y, u, v) = xy + uv − 1 and G(x, y, u, v) = xu + yv − 1. We
use the formulas (2.61) to find the partial derivatives.

∂u

∂x
=

−
∣∣∣∣ Fx Fv

Gx Gv

∣∣∣∣∣∣∣∣ Fu Fv

Gu Gv

∣∣∣∣ =

−
∣∣∣∣ y u

u y

∣∣∣∣∣∣∣∣ v x
u y

∣∣∣∣ =
u2 − y2

yv − xu
.

∂u

∂y
=

−
∣∣∣∣ Fy Fv

Gy Gv

∣∣∣∣∣∣∣∣ Fu Fv

Gu Gv

∣∣∣∣ =

−
∣∣∣∣ x v

u y

∣∣∣∣∣∣∣∣ v x
u y

∣∣∣∣ =
uv − xy

yv − xu
.

∂v

∂x
=

−
∣∣∣∣ Fu Fx

Gu Gx

∣∣∣∣∣∣∣∣ Fu Fv

Gu Gv

∣∣∣∣ =

−
∣∣∣∣ v y

x u

∣∣∣∣∣∣∣∣ v x
u y

∣∣∣∣ =
xy − uv

yv − xu
.

∂v

∂y
=

−
∣∣∣∣ Fu Fy

Gu Gy

∣∣∣∣∣∣∣∣ Fu Fv

Gu Gv

∣∣∣∣ =

−
∣∣∣∣ v x

x v

∣∣∣∣∣∣∣∣ v x
u y

∣∣∣∣ =
x2 − v2

yv − xu
.

So

J =

(
u2−y2

yv−xu
uv−xy
yv−xu

xy−uv
yv−xu

x2−v2

yv−xu

)
.

A simpler method is to use formula (2.68), which says that the Jacobian matrix

∂(u, v)

∂(x, y)
= −

(
∂(F, G)

∂(u, v)

)−1(
∂(F, G)

∂(x, y)

)
= −

(
v u
x y

)−1(
y x
u v

)
= · · ·

(b) Calculate ∂2u
∂x2 and ∂2u

∂x∂y
.

Solution.

∂2u

∂x2
=

∂

∂x
(
u2 − y2

yv − xu
) =

(vy − xu)2uux − (u2 − y2)(yvx − u− xux)

(vy − xu)2
.

At this point, we should substitute in ux and vx from part (a) and simplify, but
you would not be required to write this out on the test.

∂2u

∂x∂y
=

∂

∂y
(
u2 − y2

yv − xu
) =

(vy − xu)(2uuy − 2y)− (u2 − y2)(v + yvy − xuy)

(vy − xu)2
.
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4. Let S be the surface given by the equation x3 − xy − yz − xz − x + 2 = 0.

(a) Show that the curve C whose equation is r(t) =


x = t + 1
y = t2

z = 2
is contained in

the surface S.

Solution. Let F (x, y, z) = x3 − xy − yz − xz − x + 2. We must check that
F (t + 1, t2, 2) = 0. We have F (t + 1, t2, 2) = (t + 1)3 − (t + 1)t2 − 2t2 − 2(t + 1)−
(t + 1) + 2 = t3 + 3t2 + 3t + 1− t3 − t2 − 2t2 − 2t− 2− t− 1 + 2 = 0.

(b) Find the equation of the tangent line to C at the point (2, 1, 2).

Solution. We first find the value of t that corresponds to the point (2, 1, 2) on
C: we have x = 2 = t + 1, so t = 1. The tangent vector to C when t = 1 is
v = (x′(1), y′(1), z′(1)) = (1, 2, 0). Thus the equation of the tangent line to C at
(2, 1, 2) is (x, y, z) = (2, 1, 2) + t(1, 2, 0) = (2 + t, 1 + 2t, 2).

(c) Find the equation of the tangent plane to S at the point (2, 1, 2).

Solution. The normal vector to S at the point (2, 1, 2) is given by the gradient
vector of F : ∇F = (3x2− y− z− 1,−x− z,−y− x). So ∇F |(2,1,2) = (8,−4,−3).
The equation of the tangent plane is thus 8(x− 2)− 4(y − 1)− 3(z − 2) = 0.

5. Find all critical points of the function f(x, y) = 3x3 − 6xy + y2, and classify each as a
relative min, relative max, or saddle point.

Solution. To find critical points, we look for where ∇f is 0 or undefined. We need to
solve ∇f = (9x2 − 6y,−6x + 2y) = (0, 0), as we can see that ∇f is never undefined.
The second equation implies that y = 3x, and plugging this into the first equation we
have 9x2 − 18x = 9x(x − 2) = 0. So x = 0 (and y = 0) or x = 2 (and y = 6). So
the critical points are (0, 0) and (2, 6). We now calculate the Hessian matrix of second
order partial derivatives

H =

(
18x −6
−6 2

)
.

At (0, 0), det H = 0(2) − (−6)2 < 0, so f has a saddle point at (0, 0). At (2, 6),
det H = 36(2) − (−6)2 > 0 and trH = 36 + 2 > 0 so f has a relative minimum at
(2, 6).

6. Suppose you want to construct a rectangular wooden box without a top so that the
volume is 32 cubic feet. What dimensions (x = length, y = width, z = height) of the
box will minimize the amount of wood you need to construct it?

Solution. The amount of wood needed to construct the box is f(x, y, z) = xy +
2xz + 2yz (xy is the area of the base, there are 2 sides of area xz and 2 sides of area
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yz, and no top). So we must minimize the function f subject to the side condition
xyz = 32, which says that the volume of the box is 32. Let g(x, y, z) = xyz−32, so that
g(x, y, z) = 0 expresses the side condition. The method of Lagrange multipliers tells us
that this minimum must occur where ∇f = λ∇g for some real number λ (notice that
there are no boundary points to consider here, since we must have x > 0, y > 0, z > 0).
This gives us the following four equations (the last one is the side condition) which we
must solve for x, y, z.

(1) y + 2z = λyz

(2) x + 2z = λxz

(3) 2x + 2y = λxy

(4) xyz = 32

One way to solve these is to subtract (2) from (1) to get y− x = λz(y− x). From this
equation, we see that either y−x = 0 or if not, divide both sides by y−x, to get λz = 1.
If λz = 1, equation (1) would become y+2z = y, which means z = 0, but then λ = 1/z
is undefined. So we conclude that y − x = 0, or x = y. Equation (3) now becomes
4x = x2, and since x cannot be 0, x = 4. Thus y = x = 4, and z = 32/xy = 32/16 = 2.
So the dimensions that minimize the surface area are (x, y, z) = (4, 4, 2).

7. Let v = xi + yj + zk be a vector field on R3.

(a) Find curl(v).

Solution.

curl(v) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

x y z

∣∣∣∣∣∣ = · · · = 0.

One can also see this by realizing that v = ∇f for f(x, y, z) = x2/2+ y2/2+ z2/2
and using the fact that curl(∇f) = 0 for any function f with continuous second
order partials.

(b) Show that there is no differentiable vector field u on R3 such that v = curl(u).

Solution. Rather than trying to find such a u, recall that div(curl(u)) = 0 for
any vector field u with continuous second order partials. Since div(v) = 1+1+1 =
3 6= 0, v cannot be equal to curl(u) for any u.

8. Let v = (y− z)i + (z− x)j + (x− y)k be a vector field on the surface S defined by the
equation x2 + y2 + z2 = 1 (i.e., S is the unit sphere in R3).
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(a) Show that at each point of S, the vector field v is tangent to S.

Solution. Since S is defined by the equation F (x, y, z) = x2 + y2 + z2 − 1 = 0,
the normal vector to S at the point (x, y, z) is ∇F = (2x, 2y, 2z), and v =
(y− z, z − x, x− y) is tangent to S if ∇F · v = 0. We have ∇F · v = 2x(y− z) +
2y(z − x) + 2z(x− y) = 0.

(b) Is v = ∇f for some differentiable function f(x, y, z)? Justify your answer.

Solution. If v = ∇f , then curl(v) = curl(∇f) = 0. So we start by checking
whether curl(v) = 0.

curl(v) =

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

y − z z − x x− y

∣∣∣∣∣∣ = (
∂

∂y
(x−y)− ∂

∂z
(z−x))i+· · · = −2i+· · · 6= 0.

Thus v cannot equal ∇f for any f .

(c) Is v = curl(u) for some differentiable vector field u on S? Justify your answer.

Solution. As in 7b, we should start by checking that div(v) = 0. Since this is true
here, there is a good chance that v = curl(u) for some u = uxi + uyj + uzk, and
we just need to find u. To simplify things, suppose that uz = 0, so that curl(u) =
−∂uy

∂z
i + ∂ux

∂z
j + (∂uy

∂x
− ∂ux

∂y
)k. Equating the coordinates of curl(u) with those of v we

get a system of 3 partial differential equations.

(1) ∂uy

∂z
= z − y ⇒ uy = z2/2− yz + C(x, y)

(2) ∂ux

∂z
= z − x ⇒ ux = z2/2− xz + D(x, y)

(3) ∂uy

∂x
− ∂ux

∂y
= x− y.

Integrating (1) and (2) with respect to z gives equations for uy and ux as above. We
now plug these expressions into (3), and choose the functions C(x, y) and D(x, y) so
that (3) is satisfied. Plugging into (3), we have Cx − Dy = x − y. So we can choose
C(x, y) = x2/2 and D(x, y) = y2/2. Hence, we have shown that v = curl(u) for the
vector field

u = (z2/2 + y2/2− xz)i + (z2/2 + x2/2− yz)j + 0k.
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