
Math 5B, Solutions to Final Review Problems
Fall 2006

1. Integrate

∫ 1

0

∫ 1

y

sin x

x
dx dy.

Solution. Since the integral
∫

sin x
x

dx is too hard, we change the order of integration
so that we integrate with respect to y first. This double integral is taken over a region
R, which is defined by the inequalities 0 ≤ y ≤ 1 and y ≤ x ≤ 1. Graphing this region,
it is clear that it is the triangle with vertices (0, 0), (1, 0), (1, 1). Thus it is also defined
by the inequalities 0 ≤ x ≤ 1 and 0 ≤ y ≤ x. Hence∫ 1

0

∫ 1

y

sin x

x
dx dy =

∫ 1

0

∫ x

0

sin x

x
dy dx

=

∫ 1

0

sin x dx

= 1− cos 1.

2. Integrate

∫ ∫
R

1

1 + x2 + y2
dx dy where R is the region bounded by the top half of the

unit circle and the x-axis.

Solution. Convert to Polar Coordinates by making the substitutions x = r cos θ and
y = r sin θ. R is then described by the inequalities 0 ≤ r ≤ 1 and 0 ≤ θ ≤ π. The
Jacobian |∂(x,y)

∂(r,θ)
| = r, and thus the integral becomes∫ ∫

R

1

1 + r2
r dr dθ =

∫ π

0

∫ 1

0

r

1 + r2
dr dθ

=

∫ π

0

1

2
ln(1 + r2)]10 dθ

=

∫ π

0

1

2
ln 2 dθ

=
π

2
ln 2.

3. Integrate

∫ ∫
R

8xy dx dy where R is the interior of the rectangle with vertices (0, 0), (1, 1), (2,−2)

and (3,−1).

Solution. Notice that the sides of the rectangle are not parallel to the x, y-axes. Thus
we search for a change of variables that will simplify the integral. The sides of the
rectangle have equations
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• y = x (‘left’ side from (0, 0) to (1, 1)),

• y = x− 4 (‘right’ side from (2,−2) to (3,−1)),

• y = −x (‘bottom’ from (0, 0) to (2,−2)), and

• y = −x + 2 (‘top’ from (1, 1) to (3,−1)).

So we set u = x− y and v = x + y. From the ‘left’ to ‘right’ u ranges from 0 to 4, and
from the ‘bottom’ to ‘top’ v ranges from 0 to 2. In order to substitute something into
8xy we need to solve for x and y in terms of u and v. Doing so yields x = (u + v)/2

and y = (v − u)/2. So the Jacobian |∂(x,y)
∂(u,v)

| = 1/2, and the integral becomes∫ 2

0

∫ 4

0

8

(
u + v

2

) (
v − u

2

) (
1

2

)
du dv =

∫ 2

0

∫ 4

0

(v2 − u2) du dv

=

∫ 2

0

(4v2 − 64/3) dv

=
32

3
− 128

3
= −32.

4. Consider the surface z = 2
3
(x3/2+y3/2) above the triangle R with vertices (0, 0), (1, 0), (0, 1)

in the xy-plane.

(a) Find the volume of the region below the surface and above the triangle R.

Solution.

V =

∫ ∫
R

2

3
(x3/2 + y3/2) dx dy

=

∫ 1

0

∫ 1−x

0

2

3
(x3/2 + y3/2) dy dx

=

∫ 1

0

2

3
x3/2(1− x) +

4

15
(1− x)5/2 dx

= (
4

15
x5/2 − 4

21
x7/2 − 8

105
(1− x)7/2)]10

=
4

15
− 4

21
+

8

105
=

16

105
.

(b) Find the surface area of the surface above the triangle R.
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Solution.

S =

∫ ∫
R

√
1 + (x1/2)2 + (y1/2)2 dx dy

=

∫ 1

0

∫ 1−x

0

√
1 + x + y dy dx

=

∫ 1

0

2

3
(1 + x + y)3/2]1−x

0 dx

=

∫ 1

0

2

3
(23/2 − (1 + x)3/2) dx

=
2

3
(23/2 − 2

5
25/2 +

2

5
) =

4 + 4
√

2

15
.

5. Find the area inside the closed curve C with parametric equations x(t) = (t−t2) cos(πt)
and y(t) = (t− t2) sin(πt) for 0 ≤ t ≤ 1.

Solution.

A =

∮
C

x dy

=

∫ 1

0

(t− t2) cos(πt)[(1− 2t) sin(πt) + π(t− t2) cos(πt)] dt

=

∫ 1

0

1

2
(1− 2t)(t− t2) sin(2πt) +

π

2
(t− t2)2(1 + cos(2πt)) dt

=
1

2

∫ 1

0

[(1− 2t)(t− t2) sin(2πt) + π(t− t2)2 cos(2πt)] dt +
π

2

∫ 1

0

(t− t2)2 dt,

where we have used the identities sin(πt) cos(πt) = 1
2
sin(2πt) and cos2(πt) = 1

2
(1 +

cos(2πt)). We now recognize that the first integrand is the derivative of 1
2
(t−t2)2 sin(2πt)

(alternatively, if you use integration by parts on the first summand of this integral with
dv = (1− 2t)(t− t2)dt and u = sin(2πt), some nice cancellation will occur). Thus, we
have

A =
1

4
((t− t2)2 sin(2πt))]10 +

π

2

∫ 1

0

(t2 − 2t3 + t4) dt

= 0 +
π

2
(
1

3
− 1

2
+

1

5
) =

π

60
.

6. Evaluate the line integrals.
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(a)

∫
C

xy4 ds where C is the top half of the circle x2 + y2 = 4 from (2, 0) to (−2, 0).

Solution. Use the parametrization x = 2 cos t and y = 2 sin t for 0 ≤ t ≤ π.
Then ∫

C

xy4 ds =

∫ π

0

(2 cos t)(2 sin t)4
√

(−2 sin t)2 + (2 cos t)2 dt

= 64

∫ π

0

sin4 t cos t dt

=
64

5
sin5 t]π0 = 0.

(b)

∫
C

u · dr where u =
x

y
i +

y

x
j and C is the (shorter) arc of the unit circle from

(
√

3/2, 1/2) to (1/2,
√

3/2).

Solution. We parametrize C by x = cos t and y = sin t for π/6 ≤ t ≤ π/3. Then∫
C

u · dr =

∫
C

x

y
dx +

y

x
dy

=

∫ π/3

π/6

(
cos t

sin t
(− sin t) +

sin t

cos t
cos t) dt

=

∫ π/3

π/6

(sin t− cos t) dt

= (− cos t− sin t)]
π/3
π/6 = −1/2−

√
32 + 1/2 +

√
3/2 = 0.

7. Evaluate

∮
C

−y dx + x dy

x2 + y2
when (a) C is the unit circle traversed in the counter-

clockwise direction; and (b) C is the parallelogram with vertices (2, 3), (3, 5), (5, 2), (6, 4)
traversed in the counter clockwise direction.

Solution. (a) Since the integrand is not continuous at (0, 0), which is inside the unit
circle C, we cannot use Green’s Theorem here and must do the integral by hand.
Parametrize C by x = cos t and y = sin t for 0 ≤ t ≤ 2π.∮

C

−y dx + x dy

x2 + y2
=

∫ 2π

0

sin2 t + cos2 t

cos2 t + sin2 t
dt

=

∫ 2π

0

dt = 2π.
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(b) Fortunately, this parallelogram does not contain the origin, and thus we can use
Green’s Theorem:∮

C

−y dx + x dy

x2 + y2
=

∫ ∫
R

∂

∂x
(

x

x2 + y2
) +

∂

∂y
(

y

x2 + y2
) dx dy

=

∫ ∫
R

(
y2 − x2

(x2 + y2)2
+

x2 − y2

(x2 + y2)2
) dx dy = 0.

(Notice the integral in this problem will be 0 around any closed curve not containing the
origin. It is thus path-independent in any region D without holes and not containing
the origin.)

8. Evaluate

∮
C

y3 dx − x3 dy where (a) C is the unit circle traversed counter-clockwise;

and (b) C is the square with vertices (±1,±1) traversed clockwise.

Solution. (a) The integral does not appear to be path-independent ( ∂
∂y

(y3) 6= ∂
∂x

(x3)),
so we try Green’s Theorem:∮

C

y3 dx− x3 dy =

∫ ∫
R

−3x2 − 3y2 dx dy,

where R is the interior of the unit circle. To simplify the integral, we convert to polar
coordinates: ∫ ∫

R

−3x2 − 3y2 dx dy =

∫ 2π

0

∫ 1

0

−3r2r dr dθ

=

∫ 2π

0

−3/4 dθ =
−3π

2
.

(b) Again using Green’s Theorem, and inserting a minus sign because we are traversing
the square in the clockwise direction, we have∮

C

y3 dx− x3 dy = −
∫ ∫

R

−3x2 − 3y2 dx dy

= 3

∫ 1

−1

∫ 1

−1

(x2 + y2) dx dy

= 3

∫ 1

−1

2

3
+ 2y2 dy

= (
2

3
y − y3

3
)]1−1 = 2.
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9. Evaluate the following integrals.

(a)

∫
C

3x2

y
dx− x3

y2
dy where C is the parabola y = 2 + x2 from (0, 2) to (1, 3).

Solution. Notice 3x2

y
= ∂

∂x
(x3

y
) and −x3

y2 = ∂
∂y

(x3

y
). Thus the integral is path-

independent and can be evaluated by plugging in the endpoints into F (x, y) = x3

y

and subtracting: ∫
C

3x2

y
dx− x3

y2
dy = F (1, 3)− F (0, 2) =

1

3
.

(b)

∫
C

sec2 x tan y dx + sec2 y tan x dy where C is the curve y = 16x3/π2 from (0, 0)

to (π/4, π/4).

Solution. Notice sec2 x tan y = ∂
∂x

(tan x tan y) and sec2 y tan x = ∂
∂y

(tan x tan y).
Thus the integral is path-independent and we have:∫

C

sec2 x tan y dx + sec2 y tan x dy = (tan x tan y)]
(π/4,π/4)
(0,0) = 1.

(c)

∮
C

[sin(xy) + xy cos(xy)] dx + x2 cos(xy) dy where C is the unit circle in the

counter-clockwise direction.

Solution. We check for path-independence (or just apply Green’s Theorem):

∂

∂y
(sin(xy) + xy cos(xy)) = x cos(xy) + x cos(xy)− x2y sin(xy),

∂

∂x
(x2 cos(xy)) = 2x cos(xy)− x2y sin(xy).

Since these are equal at every point of R2, the integral is path-independent, and
thus it equals 0.

(d)

∮
C

xy6 dx + (3x2y5 + 6x) dy where C is the ellipse x2 + 4y4 = 4 traversed in the

counter-clockwise direction. (Hint: the area of the ellipse x2/a2 + y2/b2 = 1 is
abπ.)
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Solution. We can check for path-independence again, but

∂

∂y
(xy6) = 6xy5 6= ∂

∂x
(3x2y5 + 6x) = 6xy5 + 6,

so we just use Green’s Theorem:∮
C

xy6 dx + (3x2y5 + 6x) dy =

∫ ∫
R

(6xy5 + 6− 6xy5) dx dy

= 6

∫ ∫
R

dx dy

= 6 ∗ (Area of ellipse) = 6 ∗ 2 ∗ 1 ∗ π = 12π.
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