## Math 5B, Solutions to Final Review Problems Fall 2006

1. Integrate $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y$.

Solution. Since the integral $\int \frac{\sin x}{x} d x$ is too hard, we change the order of integration so that we integrate with respect to $y$ first. This double integral is taken over a region $R$, which is defined by the inequalities $0 \leq y \leq 1$ and $y \leq x \leq 1$. Graphing this region, it is clear that it is the triangle with vertices $(0,0),(1,0),(1,1)$. Thus it is also defined by the inequalities $0 \leq x \leq 1$ and $0 \leq y \leq x$. Hence

$$
\begin{aligned}
\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} d x d y & =\int_{0}^{1} \int_{0}^{x} \frac{\sin x}{x} d y d x \\
& =\int_{0}^{1} \sin x d x \\
& =1-\cos 1
\end{aligned}
$$

2. Integrate $\iint_{R} \frac{1}{1+x^{2}+y^{2}} d x d y$ where $R$ is the region bounded by the top half of the unit circle and the $x$-axis.
Solution. Convert to Polar Coordinates by making the substitutions $x=r \cos \theta$ and $y=r \sin \theta$. $R$ is then described by the inequalities $0 \leq r \leq 1$ and $0 \leq \theta \leq \pi$. The Jacobian $\left|\frac{\partial(x, y)}{\partial(r, \theta)}\right|=r$, and thus the integral becomes

$$
\begin{aligned}
\iint_{R} \frac{1}{1+r^{2}} r d r d \theta & =\int_{0}^{\pi} \int_{0}^{1} \frac{r}{1+r^{2}} d r d \theta \\
& \left.=\int_{0}^{\pi} \frac{1}{2} \ln \left(1+r^{2}\right)\right]_{0}^{1} d \theta \\
& =\int_{0}^{\pi} \frac{1}{2} \ln 2 d \theta \\
& =\frac{\pi}{2} \ln 2
\end{aligned}
$$

3. Integrate $\iint_{R} 8 x y d x d y$ where $R$ is the interior of the rectangle with vertices $(0,0),(1,1),(2,-2)$ and $(3,-1)$.
Solution. Notice that the sides of the rectangle are not parallel to the $x, y$-axes. Thus we search for a change of variables that will simplify the integral. The sides of the rectangle have equations

- $y=x$ ('left' side from $(0,0)$ to $(1,1)$ ),
- $y=x-4$ ('right' side from $(2,-2)$ to $(3,-1)$ ),
- $y=-x$ ('bottom' from $(0,0)$ to $(2,-2)$ ), and
- $y=-x+2$ ('top' from $(1,1)$ to $(3,-1))$.

So we set $u=x-y$ and $v=x+y$. From the 'left' to 'right' $u$ ranges from 0 to 4 , and from the 'bottom' to 'top' $v$ ranges from 0 to 2 . In order to substitute something into $8 x y$ we need to solve for $x$ and $y$ in terms of $u$ and $v$. Doing so yields $x=(u+v) / 2$ and $y=(v-u) / 2$. So the Jacobian $\left|\frac{\partial(x, y)}{\partial(u, v)}\right|=1 / 2$, and the integral becomes

$$
\begin{aligned}
\int_{0}^{2} \int_{0}^{4} 8\left(\frac{u+v}{2}\right)\left(\frac{v-u}{2}\right)\left(\frac{1}{2}\right) d u d v & =\int_{0}^{2} \int_{0}^{4}\left(v^{2}-u^{2}\right) d u d v \\
& =\int_{0}^{2}\left(4 v^{2}-64 / 3\right) d v \\
& =\frac{32}{3}-\frac{128}{3}=-32
\end{aligned}
$$

4. Consider the surface $z=\frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right)$ above the triangle $R$ with vertices $(0,0),(1,0),(0,1)$ in the $x y$-plane.
(a) Find the volume of the region below the surface and above the triangle $R$.

## Solution.

$$
\begin{aligned}
V & =\iint_{R} \frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right) d x d y \\
& =\int_{0}^{1} \int_{0}^{1-x} \frac{2}{3}\left(x^{3 / 2}+y^{3 / 2}\right) d y d x \\
& =\int_{0}^{1} \frac{2}{3} x^{3 / 2}(1-x)+\frac{4}{15}(1-x)^{5 / 2} d x \\
& \left.=\left(\frac{4}{15} x^{5 / 2}-\frac{4}{21} x^{7 / 2}-\frac{8}{105}(1-x)^{7 / 2}\right)\right]_{0}^{1} \\
& =\frac{4}{15}-\frac{4}{21}+\frac{8}{105}=\frac{16}{105} .
\end{aligned}
$$

(b) Find the surface area of the surface above the triangle $R$.

## Solution.

$$
\begin{aligned}
S & =\iint_{R} \sqrt{1+\left(x^{1 / 2}\right)^{2}+\left(y^{1 / 2}\right)^{2}} d x d y \\
& =\int_{0}^{1} \int_{0}^{1-x} \sqrt{1+x+y} d y d x \\
& \left.=\int_{0}^{1} \frac{2}{3}(1+x+y)^{3 / 2}\right]_{0}^{1-x} d x \\
& =\int_{0}^{1} \frac{2}{3}\left(2^{3 / 2}-(1+x)^{3 / 2}\right) d x \\
& =\frac{2}{3}\left(2^{3 / 2}-\frac{2}{5} 2^{5 / 2}+\frac{2}{5}\right)=\frac{4+4 \sqrt{2}}{15} .
\end{aligned}
$$

5. Find the area inside the closed curve $C$ with parametric equations $x(t)=\left(t-t^{2}\right) \cos (\pi t)$ and $y(t)=\left(t-t^{2}\right) \sin (\pi t)$ for $0 \leq t \leq 1$.

## Solution.

$$
\begin{aligned}
A & =\oint_{C} x d y \\
& =\int_{0}^{1}\left(t-t^{2}\right) \cos (\pi t)\left[(1-2 t) \sin (\pi t)+\pi\left(t-t^{2}\right) \cos (\pi t)\right] d t \\
& =\int_{0}^{1} \frac{1}{2}(1-2 t)\left(t-t^{2}\right) \sin (2 \pi t)+\frac{\pi}{2}\left(t-t^{2}\right)^{2}(1+\cos (2 \pi t)) d t \\
& =\frac{1}{2} \int_{0}^{1}\left[(1-2 t)\left(t-t^{2}\right) \sin (2 \pi t)+\pi\left(t-t^{2}\right)^{2} \cos (2 \pi t)\right] d t+\frac{\pi}{2} \int_{0}^{1}\left(t-t^{2}\right)^{2} d t
\end{aligned}
$$

where we have used the identities $\sin (\pi t) \cos (\pi t)=\frac{1}{2} \sin (2 \pi t)$ and $\cos ^{2}(\pi t)=\frac{1}{2}(1+$ $\cos (2 \pi t))$. We now recognize that the first integrand is the derivative of $\frac{1}{2}\left(t-t^{2}\right)^{2} \sin (2 \pi t)$ (alternatively, if you use integration by parts on the first summand of this integral with $d v=(1-2 t)\left(t-t^{2}\right) d t$ and $u=\sin (2 \pi t)$, some nice cancellation will occur). Thus, we have

$$
\begin{aligned}
A & \left.=\frac{1}{4}\left(\left(t-t^{2}\right)^{2} \sin (2 \pi t)\right)\right]_{0}^{1}+\frac{\pi}{2} \int_{0}^{1}\left(t^{2}-2 t^{3}+t^{4}\right) d t \\
& =0+\frac{\pi}{2}\left(\frac{1}{3}-\frac{1}{2}+\frac{1}{5}\right)=\frac{\pi}{60} .
\end{aligned}
$$

6. Evaluate the line integrals.
(a) $\int_{C} x y^{4} d s$ where $C$ is the top half of the circle $x^{2}+y^{2}=4$ from $(2,0)$ to $(-2,0)$. Solution. Use the parametrization $x=2 \cos t$ and $y=2 \sin t$ for $0 \leq t \leq \pi$. Then

$$
\begin{aligned}
\int_{C} x y^{4} d s & =\int_{0}^{\pi}(2 \cos t)(2 \sin t)^{4} \sqrt{(-2 \sin t)^{2}+(2 \cos t)^{2}} d t \\
& =64 \int_{0}^{\pi} \sin ^{4} t \cos t d t \\
& \left.=\frac{64}{5} \sin ^{5} t\right]_{0}^{\pi}=0
\end{aligned}
$$

(b) $\int_{C} \mathbf{u} \cdot d \mathbf{r}$ where $\mathbf{u}=\frac{x}{y} \mathbf{i}+\frac{y}{x} \mathbf{j}$ and $C$ is the (shorter) arc of the unit circle from $(\sqrt{3} / 2,1 / 2)$ to $(1 / 2, \sqrt{3} / 2)$.
Solution. We parametrize $C$ by $x=\cos t$ and $y=\sin t$ for $\pi / 6 \leq t \leq \pi / 3$. Then

$$
\begin{aligned}
\int_{C} \mathbf{u} \cdot d \mathbf{r} & =\int_{C} \frac{x}{y} d x+\frac{y}{x} d y \\
& =\int_{\pi / 6}^{\pi / 3}\left(\frac{\cos t}{\sin t}(-\sin t)+\frac{\sin t}{\cos t} \cos t\right) d t \\
& =\int_{\pi / 6}^{\pi / 3}(\sin t-\cos t) d t \\
& =(-\cos t-\sin t)]_{\pi / 6}^{\pi / 3}=-1 / 2-\sqrt{3} 2+1 / 2+\sqrt{3} / 2=0
\end{aligned}
$$

7. Evaluate $\oint_{C} \frac{-y d x+x d y}{x^{2}+y^{2}}$ when (a) $C$ is the unit circle traversed in the counterclockwise direction; and (b) $C$ is the parallelogram with vertices $(2,3),(3,5),(5,2),(6,4)$ traversed in the counter clockwise direction.
Solution. (a) Since the integrand is not continuous at $(0,0)$, which is inside the unit circle $C$, we cannot use Green's Theorem here and must do the integral by hand. Parametrize $C$ by $x=\cos t$ and $y=\sin t$ for $0 \leq t \leq 2 \pi$.

$$
\begin{aligned}
\oint_{C} \frac{-y d x+x d y}{x^{2}+y^{2}} & =\int_{0}^{2 \pi} \frac{\sin ^{2} t+\cos ^{2} t}{\cos ^{2} t+\sin ^{2} t} d t \\
& =\int_{0}^{2 \pi} d t=2 \pi
\end{aligned}
$$

(b) Fortunately, this parallelogram does not contain the origin, and thus we can use Green's Theorem:

$$
\begin{aligned}
\oint_{C} \frac{-y d x+x d y}{x^{2}+y^{2}} & =\iint_{R} \frac{\partial}{\partial x}\left(\frac{x}{x^{2}+y^{2}}\right)+\frac{\partial}{\partial y}\left(\frac{y}{x^{2}+y^{2}}\right) d x d y \\
& =\iint_{R}\left(\frac{y^{2}-x^{2}}{\left(x^{2}+y^{2}\right)^{2}}+\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}}\right) d x d y=0
\end{aligned}
$$

(Notice the integral in this problem will be 0 around any closed curve not containing the origin. It is thus path-independent in any region D without holes and not containing the origin.)
8. Evaluate $\oint_{C} y^{3} d x-x^{3} d y$ where (a) $C$ is the unit circle traversed counter-clockwise; and (b) $C$ is the square with vertices $( \pm 1, \pm 1)$ traversed clockwise.
Solution. (a) The integral does not appear to be path-independent $\left(\frac{\partial}{\partial y}\left(y^{3}\right) \neq \frac{\partial}{\partial x}\left(x^{3}\right)\right)$, so we try Green's Theorem:

$$
\oint_{C} y^{3} d x-x^{3} d y=\iint_{R}-3 x^{2}-3 y^{2} d x d y
$$

where $R$ is the interior of the unit circle. To simplify the integral, we convert to polar coordinates:

$$
\begin{aligned}
\iint_{R}-3 x^{2}-3 y^{2} d x d y & =\int_{0}^{2 \pi} \int_{0}^{1}-3 r^{2} r d r d \theta \\
& =\int_{0}^{2 \pi}-3 / 4 d \theta=\frac{-3 \pi}{2}
\end{aligned}
$$

(b) Again using Green's Theorem, and inserting a minus sign because we are traversing the square in the clockwise direction, we have

$$
\begin{aligned}
\oint_{C} y^{3} d x-x^{3} d y & =-\iint_{R}-3 x^{2}-3 y^{2} d x d y \\
& =3 \int_{-1}^{1} \int_{-1}^{1}\left(x^{2}+y^{2}\right) d x d y \\
& =3 \int_{-1}^{1} \frac{2}{3}+2 y^{2} d y \\
& \left.=\left(\frac{2}{3} y-\frac{y^{3}}{3}\right)\right]_{-1}^{1}=2 .
\end{aligned}
$$

9. Evaluate the following integrals.
(a) $\int_{C} \frac{3 x^{2}}{y} d x-\frac{x^{3}}{y^{2}} d y$ where $C$ is the parabola $y=2+x^{2}$ from $(0,2)$ to $(1,3)$.

Solution. Notice $\frac{3 x^{2}}{y}=\frac{\partial}{\partial x}\left(\frac{x^{3}}{y}\right)$ and $-\frac{x^{3}}{y^{2}}=\frac{\partial}{\partial y}\left(\frac{x^{3}}{y}\right)$. Thus the integral is pathindependent and can be evaluated by plugging in the endpoints into $F(x, y)=\frac{x^{3}}{y}$ and subtracting:

$$
\int_{C} \frac{3 x^{2}}{y} d x-\frac{x^{3}}{y^{2}} d y=F(1,3)-F(0,2)=\frac{1}{3} .
$$

(b) $\int_{C} \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y$ where $C$ is the curve $y=16 x^{3} / \pi^{2}$ from ( 0,0 ) to $(\pi / 4, \pi / 4)$.
Solution. Notice $\sec ^{2} x \tan y=\frac{\partial}{\partial x}(\tan x \tan y)$ and $\sec ^{2} y \tan x=\frac{\partial}{\partial y}(\tan x \tan y)$. Thus the integral is path-independent and we have:

$$
\left.\int_{C} \sec ^{2} x \tan y d x+\sec ^{2} y \tan x d y=(\tan x \tan y)\right]_{(0,0)}^{(\pi / 4, \pi / 4)}=1
$$

(c) $\oint_{C}[\sin (x y)+x y \cos (x y)] d x+x^{2} \cos (x y) d y$ where $C$ is the unit circle in the counter-clockwise direction.
Solution. We check for path-independence (or just apply Green's Theorem):

$$
\begin{aligned}
\frac{\partial}{\partial y}(\sin (x y)+x y \cos (x y)) & =x \cos (x y)+x \cos (x y)-x^{2} y \sin (x y) \\
\frac{\partial}{\partial x}\left(x^{2} \cos (x y)\right) & =2 x \cos (x y)-x^{2} y \sin (x y)
\end{aligned}
$$

Since these are equal at every point of $\mathbb{R}^{2}$, the integral is path-independent, and thus it equals 0 .
(d) $\oint_{C} x y^{6} d x+\left(3 x^{2} y^{5}+6 x\right) d y$ where $C$ is the ellipse $x^{2}+4 y^{4}=4$ traversed in the counter-clockwise direction. (Hint: the area of the ellipse $x^{2} / a^{2}+y^{2} / b^{2}=1$ is $a b \pi$.)

Solution. We can check for path-independence again, but

$$
\frac{\partial}{\partial y}\left(x y^{6}\right)=6 x y^{5} \neq \frac{\partial}{\partial x}\left(3 x^{2} y^{5}+6 x\right)=6 x y^{5}+6
$$

so we just use Green's Theorem:

$$
\begin{aligned}
\oint_{C} x y^{6} d x+\left(3 x^{2} y^{5}+6 x\right) d y & =\iint_{R}\left(6 x y^{5}+6-6 x y^{5}\right) d x d y \\
& =6 \iint_{R} d x d y \\
& =6 *(\text { Area of ellipse })=6 * 2 * 1 * \pi=12 \pi
\end{aligned}
$$

