Math 5B, Solutions to Final Review Problems

Fall 2006

1. Integrate $\int_0^1 \int_y^1 \frac{\sin x}{x} \, dx \, dy$.

Solution. Since the integral $\int \frac{\sin x}{x} dx$ is too hard, we change the order of integration so that we integrate with respect to y first. This double integral is taken over a region R, which is defined by the inequalities $0 \le y \le 1$ and $y \le x \le 1$. Graphing this region, it is clear that it is the triangle with vertices (0,0), (1,0), (1,1). Thus it is also defined by the inequalities $0 \le y \le x$. Hence

$$\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} \, dx \, dy = \int_{0}^{1} \int_{0}^{x} \frac{\sin x}{x} \, dy \, dx$$
$$= \int_{0}^{1} \sin x \, dx$$
$$= 1 - \cos 1.$$

2. Integrate $\int \int_R \frac{1}{1+x^2+y^2} dx dy$ where *R* is the region bounded by the top half of the unit circle and the *x*-axis.

Solution. Convert to Polar Coordinates by making the substitutions $x = r \cos \theta$ and $y = r \sin \theta$. R is then described by the inequalities $0 \le r \le 1$ and $0 \le \theta \le \pi$. The Jacobian $\left|\frac{\partial(x,y)}{\partial(r,\theta)}\right| = r$, and thus the integral becomes

$$\int \int_{R} \frac{1}{1+r^{2}} r \, dr \, d\theta = \int_{0}^{\pi} \int_{0}^{1} \frac{r}{1+r^{2}} \, dr \, d\theta$$
$$= \int_{0}^{\pi} \frac{1}{2} \ln(1+r^{2})]_{0}^{1} \, d\theta$$
$$= \int_{0}^{\pi} \frac{1}{2} \ln 2 \, d\theta$$
$$= \frac{\pi}{2} \ln 2.$$

3. Integrate $\int \int_R 8xy \, dx \, dy$ where *R* is the interior of the rectangle with vertices (0,0), (1,1), (2,-2) and (3,-1).

Solution. Notice that the sides of the rectangle are not parallel to the x, y-axes. Thus we search for a change of variables that will simplify the integral. The sides of the rectangle have equations

- y = x ('left' side from (0,0) to (1,1)),
- y = x 4 ('right' side from (2, -2) to (3, -1)),
- y = -x ('bottom' from (0,0) to (2,-2)), and
- y = -x + 2 ('top' from (1, 1) to (3, -1)).

So we set u = x - y and v = x + y. From the 'left' to 'right' u ranges from 0 to 4, and from the 'bottom' to 'top' v ranges from 0 to 2. In order to substitute something into 8xy we need to solve for x and y in terms of u and v. Doing so yields x = (u + v)/2and y = (v - u)/2. So the Jacobian $|\frac{\partial(x,y)}{\partial(u,v)}| = 1/2$, and the integral becomes

$$\int_{0}^{2} \int_{0}^{4} 8\left(\frac{u+v}{2}\right) \left(\frac{v-u}{2}\right) \left(\frac{1}{2}\right) du dv = \int_{0}^{2} \int_{0}^{4} (v^{2}-u^{2}) du dv$$
$$= \int_{0}^{2} (4v^{2}-64/3) dv$$
$$= \frac{32}{3} - \frac{128}{3} = -32.$$

- 4. Consider the surface $z = \frac{2}{3}(x^{3/2}+y^{3/2})$ above the triangle R with vertices (0,0), (1,0), (0,1) in the xy-plane.
 - (a) Find the volume of the region below the surface and above the triangle *R*. Solution.

$$V = \int \int_{R} \frac{2}{3} (x^{3/2} + y^{3/2}) \, dx \, dy$$

= $\int_{0}^{1} \int_{0}^{1-x} \frac{2}{3} (x^{3/2} + y^{3/2}) \, dy \, dx$
= $\int_{0}^{1} \frac{2}{3} x^{3/2} (1-x) + \frac{4}{15} (1-x)^{5/2} \, dx$
= $(\frac{4}{15} x^{5/2} - \frac{4}{21} x^{7/2} - \frac{8}{105} (1-x)^{7/2})]_{0}^{1}$
= $\frac{4}{15} - \frac{4}{21} + \frac{8}{105} = \frac{16}{105}.$

(b) Find the surface area of the surface above the triangle R.

Solution.

$$\begin{split} S &= \int \int_R \sqrt{1 + (x^{1/2})^2 + (y^{1/2})^2} \, dx \, dy \\ &= \int_0^1 \int_0^{1-x} \sqrt{1 + x + y} \, dy \, dx \\ &= \int_0^1 \frac{2}{3} (1 + x + y)^{3/2}]_0^{1-x} \, dx \\ &= \int_0^1 \frac{2}{3} (2^{3/2} - (1 + x)^{3/2}) \, dx \\ &= \frac{2}{3} (2^{3/2} - \frac{2}{5} 2^{5/2} + \frac{2}{5}) = \frac{4 + 4\sqrt{2}}{15}. \end{split}$$

5. Find the area inside the closed curve C with parametric equations $x(t) = (t-t^2)\cos(\pi t)$ and $y(t) = (t-t^2)\sin(\pi t)$ for $0 \le t \le 1$.

Solution.

$$\begin{aligned} A &= \oint_C x \, dy \\ &= \int_0^1 (t - t^2) \cos(\pi t) [(1 - 2t) \sin(\pi t) + \pi (t - t^2) \cos(\pi t)] \, dt \\ &= \int_0^1 \frac{1}{2} (1 - 2t) (t - t^2) \sin(2\pi t) + \frac{\pi}{2} (t - t^2)^2 (1 + \cos(2\pi t)) \, dt \\ &= \frac{1}{2} \int_0^1 [(1 - 2t) (t - t^2) \sin(2\pi t) + \pi (t - t^2)^2 \cos(2\pi t)] \, dt + \frac{\pi}{2} \int_0^1 (t - t^2)^2 \, dt, \end{aligned}$$

where we have used the identities $\sin(\pi t) \cos(\pi t) = \frac{1}{2} \sin(2\pi t)$ and $\cos^2(\pi t) = \frac{1}{2}(1 + \cos(2\pi t))$. We now recognize that the first integrand is the derivative of $\frac{1}{2}(t-t^2)^2 \sin(2\pi t)$ (alternatively, if you use integration by parts on the first summand of this integral with $dv = (1 - 2t)(t - t^2)dt$ and $u = \sin(2\pi t)$, some nice cancellation will occur). Thus, we have

$$A = \frac{1}{4}((t-t^2)^2\sin(2\pi t))]_0^1 + \frac{\pi}{2}\int_0^1(t^2-2t^3+t^4) dt$$
$$= 0 + \frac{\pi}{2}(\frac{1}{3}-\frac{1}{2}+\frac{1}{5}) = \frac{\pi}{60}.$$

6. Evaluate the line integrals.

(a) $\int_C xy^4 ds$ where C is the top half of the circle $x^2 + y^2 = 4$ from (2,0) to (-2,0). Solution. Use the parametrization $x = 2\cos t$ and $y = 2\sin t$ for $0 \le t \le \pi$. Then

$$\int_C xy^4 \, ds = \int_0^{\pi} (2\cos t)(2\sin t)^4 \sqrt{(-2\sin t)^2 + (2\cos t)^2} \, dt$$
$$= 64 \int_0^{\pi} \sin^4 t \cos t \, dt$$
$$= \frac{64}{5} \sin^5 t]_0^{\pi} = 0.$$

(b) $\int_C \mathbf{u} \cdot d\mathbf{r}$ where $\mathbf{u} = \frac{x}{y}\mathbf{i} + \frac{y}{x}\mathbf{j}$ and C is the (shorter) arc of the unit circle from $(\sqrt{3}/2, 1/2)$ to $(1/2, \sqrt{3}/2)$.

Solution. We parametrize C by $x = \cos t$ and $y = \sin t$ for $\pi/6 \le t \le \pi/3$. Then

$$\int_{C} \mathbf{u} \cdot d\mathbf{r} = \int_{C} \frac{x}{y} \, dx + \frac{y}{x} \, dy$$

$$= \int_{\pi/6}^{\pi/3} (\frac{\cos t}{\sin t} (-\sin t) + \frac{\sin t}{\cos t} \cos t) \, dt$$

$$= \int_{\pi/6}^{\pi/3} (\sin t - \cos t) \, dt$$

$$= (-\cos t - \sin t)]_{\pi/6}^{\pi/3} = -1/2 - \sqrt{3}2 + 1/2 + \sqrt{3}/2 = 0.$$

7. Evaluate $\oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2}$ when (a) *C* is the unit circle traversed in the counterclockwise direction; and (b) *C* is the parallelogram with vertices (2, 3), (3, 5), (5, 2), (6, 4) traversed in the counter clockwise direction.

Solution. (a) Since the integrand is not continuous at (0,0), which is inside the unit circle C, we cannot use Green's Theorem here and must do the integral by hand. Parametrize C by $x = \cos t$ and $y = \sin t$ for $0 \le t \le 2\pi$.

$$\oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2} = \int_0^{2\pi} \frac{\sin^2 t + \cos^2 t}{\cos^2 t + \sin^2 t} \, dt$$
$$= \int_0^{2\pi} dt = 2\pi.$$

(b) Fortunately, this parallelogram does not contain the origin, and thus we can use Green's Theorem:

$$\oint_C \frac{-y \, dx + x \, dy}{x^2 + y^2} = \int \int_R \frac{\partial}{\partial x} (\frac{x}{x^2 + y^2}) + \frac{\partial}{\partial y} (\frac{y}{x^2 + y^2}) \, dx \, dy$$
$$= \int \int_R (\frac{y^2 - x^2}{(x^2 + y^2)^2} + \frac{x^2 - y^2}{(x^2 + y^2)^2}) \, dx \, dy = 0.$$

(Notice the integral in this problem will be 0 around any closed curve not containing the origin. It is thus path-independent in any region D without holes and not containing the origin.)

8. Evaluate $\oint_C y^3 dx - x^3 dy$ where (a) C is the unit circle traversed counter-clockwise; and (b) C is the square with vertices $(\pm 1, \pm 1)$ traversed clockwise.

Solution. (a) The integral does not appear to be path-independent $\left(\frac{\partial}{\partial y}(y^3) \neq \frac{\partial}{\partial x}(x^3)\right)$, so we try Green's Theorem:

$$\oint_C y^3 \, dx - x^3 \, dy = \int \int_R -3x^2 - 3y^2 \, dx \, dy,$$

where R is the interior of the unit circle. To simplify the integral, we convert to polar coordinates:

$$\int \int_{R} -3x^{2} - 3y^{2} \, dx \, dy = \int_{0}^{2\pi} \int_{0}^{1} -3r^{2}r \, dr \, d\theta$$
$$= \int_{0}^{2\pi} -3/4 \, d\theta = \frac{-3\pi}{2}$$

(b) Again using Green's Theorem, and inserting a minus sign because we are traversing the square in the clockwise direction, we have

$$\oint_C y^3 \, dx - x^3 \, dy = -\int \int_R -3x^2 - 3y^2 \, dx \, dy$$
$$= 3 \int_{-1}^1 \int_{-1}^1 (x^2 + y^2) \, dx \, dy$$
$$= 3 \int_{-1}^1 \frac{2}{3} + 2y^2 \, dy$$
$$= (\frac{2}{3}y - \frac{y^3}{3})]_{-1}^1 = 2.$$

- 9. Evaluate the following integrals.
 - (a) $\int_C \frac{3x^2}{y} dx \frac{x^3}{y^2} dy$ where C is the parabola $y = 2 + x^2$ from (0,2) to (1,3). **Solution.** Notice $\frac{3x^2}{y} = \frac{\partial}{\partial x} (\frac{x^3}{y})$ and $-\frac{x^3}{y^2} = \frac{\partial}{\partial y} (\frac{x^3}{y})$. Thus the integral is pathindependent and can be evaluated by plugging in the endpoints into $F(x,y) = \frac{x^3}{y}$ and subtracting:

$$\int_C \frac{3x^2}{y} \, dx - \frac{x^3}{y^2} \, dy = F(1,3) - F(0,2) = \frac{1}{3}$$

(b) $\int_C \sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy$ where C is the curve $y = 16x^3/\pi^2$ from (0,0) to $(\pi/4, \pi/4)$.

Solution. Notice $\sec^2 x \tan y = \frac{\partial}{\partial x} (\tan x \tan y)$ and $\sec^2 y \tan x = \frac{\partial}{\partial y} (\tan x \tan y)$. Thus the integral is path-independent and we have:

$$\int_C \sec^2 x \tan y \, dx + \sec^2 y \tan x \, dy = (\tan x \tan y) \Big]_{(0,0)}^{(\pi/4,\pi/4)} = 1$$

(c) $\oint_C [\sin(xy) + xy\cos(xy)] dx + x^2\cos(xy) dy$ where C is the unit circle in the counter-clockwise direction.

Solution. We check for path-independence (or just apply Green's Theorem):

$$\frac{\partial}{\partial y}(\sin(xy) + xy\cos(xy)) = x\cos(xy) + x\cos(xy) - x^2y\sin(xy),$$
$$\frac{\partial}{\partial x}(x^2\cos(xy)) = 2x\cos(xy) - x^2y\sin(xy).$$

Since these are equal at every point of \mathbb{R}^2 , the integral is path-independent, and thus it equals 0.

(d) $\oint_C xy^6 dx + (3x^2y^5 + 6x) dy$ where C is the ellipse $x^2 + 4y^4 = 4$ traversed in the counter-clockwise direction. (Hint: the area of the ellipse $x^2/a^2 + y^2/b^2 = 1$ is $ab\pi$.)

 ${\bf Solution.}$ We can check for path-independence again, but

$$\frac{\partial}{\partial y}(xy^6) = 6xy^5 \neq \frac{\partial}{\partial x}(3x^2y^5 + 6x) = 6xy^5 + 6,$$

so we just use Green's Theorem:

$$\oint_C xy^6 dx + (3x^2y^5 + 6x) dy = \iint_R (6xy^5 + 6 - 6xy^5) dx dy$$

= $6 \iint_R dx dy$
= $6 * (Area of ellipse) = 6 * 2 * 1 * \pi = 12\pi.$