Math 5B Midterm Exam
Spring 2006
Your name:
Your perm.:
Your signature:

Scores:
1.
2.
3.
4.
5.

Total: (out of 100)
Note: 12 extra credit points are included.

1. (22 points) 1$)(15$ points) Find the differential $d w$ of the function

$$
w=f(x, y, z)=x^{2} y z+x y^{3} e^{z} .
$$

$2)\left(4\right.$ points) What is the value of this differential at $x_{0}=1, y_{0}=1, z_{0}=0$ when $\Delta x=0.1, \Delta y=0.1, \Delta z=0.2$?
3) (3 points) Find an approximate value for $f(1.1,1.1,0.2$).

Solution 1) We have

$$
f_{x}=2 x y z+y^{3} e^{z}, f_{y}=x^{2} z+3 x y^{2} e^{z}, f_{z}=x^{2} y+x y^{3} e^{z} .
$$

Hence
$d w=f_{x} d x+f_{y} d y+f_{z} d z=\left(2 x y z+y^{3} e^{z}\right) d x+\left(x^{2} z+3 x y^{2} e^{z}\right) d y+\left(x^{2} y+x y^{3} e^{z}\right) d z$.
2) At $x_{0}=1, y_{0}=1, z_{0}=0$ we have by the above result $d w=\left(2 \cdot 1 \cdot 1 \cdot 0+1^{3} \cdot e^{0}\right) d x+\left(1^{2} \cdot 0+3 \cdot 1 \cdot 1^{2} \cdot e^{0}\right) d y+\left(1^{2} \cdot 1+1 \cdot 1^{3} \cdot e^{0}\right) d z=d x+3 d y+2 d z$.

When $d x=\Delta x=0.1, d y=\Delta y=0.1$ and $d z=\Delta z=0.2$ we obtain

$$
d w=0.1+0.3+0.4=0.8
$$

3) We have

$$
f(1.1,1.1,0.2)=f(1,1,0)+\Delta w \approx f(1,1,0)+d w
$$

where $\Delta w=f(1.1,1.1,0.2)-f(1,1,0)$ and $d w$ is at $(1,1,0)$ for $d x=0.1, d y=$ $0.1, d z=0.2$. We have $f(1,1,0)=1$. By 2$)$ we then deduce

$$
f(1.1,1.1,0.2) \approx 1+0.8=1.8
$$

2. (30 points) Do any two. Do not do three. Only the first two problems will be graded if you do three.
1) (15 points) Find the equation of the plane which contains the points $A=(3,1,1), B=(1,2,3)$ and $C=(2,0,2)$.
$2)(15$ points $)$ Find the equation of the tangent plane for the level surface $x^{2} y+y^{2} z+z^{2} x=3$ at $(1,1,1)$.
2) (15 points) Find the equation of the tangent plane of the graph of $z=$ $x^{2}+3 y^{2}$ at $x=1, y=1$.

Solution 1) Let \mathbf{v} denote the vector from A to B, and \mathbf{w} the vector from A to C. Then

$$
\mathbf{v}=-2 \mathbf{i}+\mathbf{j}+2 \mathbf{k}, \mathbf{w}=-\mathbf{i}-\mathbf{j}+\mathbf{k}
$$

We have

$$
\mathbf{v} \times \mathbf{w}=\left(\begin{array}{ccc}
\mathbf{i} & \mathbf{j} & \mathbf{k} \\
-2 & 1 & 2 \\
-1 & -1 & 1
\end{array}\right)=3 \mathbf{i}+3 \mathbf{k}
$$

It follows that the desired equation is

$$
3(x-3)+3(z-1)=0, \text { i.e. } x+z=4 .
$$

2) Set $f(x, y, z)=x^{2} y+y^{2} z+z^{2} x$. Then

$$
\nabla f=\left(2 x y+z^{2}, x^{2}+2 y z, y^{2}+2 z x\right)
$$

and

$$
\nabla f(1,1,1)=(3,3,3)
$$

It follows that the desired equation is

$$
3(x-1)+3(y-1)+3(z-1)=0, \text { i.e. } x+y+z=1 .
$$

3) We have $z_{x}=2 x, z_{y}=6 y$ and hence $z_{x}(1,1)=2, z_{y}(1,1)=6$. We also have $z(1,1)=1+3=4$. It follows that the desired equation is

$$
z=4+2(x-1)+6(y-1)=2 x+6 y-4 .
$$

3. (18 points) Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$, where x, y and z satisfy $\ln (x y+1)+\ln (y z+1)+\ln (x y+1)=1$.

Solution Method 1 We set $F(x, y, z)=\ln (x y+1)+\ln (y z+1)+\ln (x y+$ 1) $-1=2 \ln (x y+1)+\ln (y z+1)-1$. Then

$$
F_{x}=\frac{2 y}{x y+1}, F_{y}=\frac{2 x}{x y+1}+\frac{z}{y z+1}, F_{z}=\frac{y}{y z+1} .
$$

Then we have

$$
z_{x}=-\frac{F_{x}}{F_{z}}=-\frac{2(y z+1)}{x y+1}, z_{y}=-\frac{F_{y}}{F_{z}}=-\frac{2 x(y z+1)}{y(x y+1)}-\frac{z}{y} .
$$

Method 2 We use differentials. Taking differentials of the given equation we obtain

$$
2 \frac{x d y+y d x}{x y+1}+\frac{z d y+y d z}{y z+1}=0 .
$$

It follows that

$$
2 \frac{y}{x y+1} d x+\left(2 \frac{x}{x y+1}+\frac{z}{y z+1}\right) d y+\frac{y}{y z+1} d z=0 .
$$

Hence

$$
d z=-2 \frac{y z+1}{x y+1} d x-\left(\frac{2 x(y z+1)}{y(x y+1)}+\frac{z}{y}\right) d y .
$$

Since $d z=z_{x} d x+z_{y} d y$ we infer the same formulas for z_{x} and z_{y} as above.
The corrected version:

$$
\ln (x y+1)+\ln (y z+1)+\ln (x z+1)=1 .
$$

Solution Set $F(x, y, z)=\ln (x y+1)+\ln (y z+1)+\ln (x z+1)-1$. Then

$$
F_{x}=\frac{y}{x y+1}+\frac{z}{x z+1}, F_{y}=\frac{x}{x y+1}+\frac{z}{y z+1}, F_{z}=\frac{y}{y z+1}+\frac{x}{x z+1} .
$$

Then

$$
z_{x}=-\frac{F_{x}}{F_{z}}=-\frac{\frac{y}{x y+1}+\frac{z}{x z+1}}{\frac{y}{y z+1}+\frac{x}{x z+1}}, z_{y}=-\frac{F_{y}}{F_{z}}=-\frac{\frac{x}{x y+1}+\frac{z}{y z+1}}{\frac{y}{y z+1}+\frac{x}{x z+1}} .
$$

(One can also use Method 2.)
4. (20 points) Consider the function $F(u, v)=\left(e^{u v}, e^{2 u-3 v}\right)$. Let (u, v) be given by a function $G(x, y)=\left(g_{1}(x, y), g_{2}(x, y)\right)$, such that

$$
\frac{\partial g_{1}}{\partial x}=x y^{2}, \frac{\partial g_{1}}{\partial y}=x^{2} y
$$

and

$$
\frac{\partial g_{2}}{\partial x}=x+y, \frac{\partial g_{2}}{\partial y}=x
$$

1) (17 points) Use the chain rule to find the Jacobian matrix of the composite function $F \circ G$, i.e. $F\left(g_{1}(x, y), g_{2}(x, y)\right)$.
2) (3points) Find the Jacobian determinant of $F \circ G$.

Solution 1) We have

$$
D F=\left(\begin{array}{cc}
\frac{\partial}{\partial u} e^{u v} & \frac{\partial}{\partial v} e^{u v} \\
\frac{\partial}{\partial u} e^{2 u-3 v} & \frac{\partial}{\partial v} e^{2 u-3 v}
\end{array}\right)=\left(\begin{array}{cc}
v e^{u v} & u e^{u v} \\
2 e^{2 u-3 v} & -3 e^{2 u-3 v}
\end{array}\right) .
$$

By the chain rule we then have

$$
\begin{gathered}
D(F \circ G)=D F \cdot D G=\left(\begin{array}{cc}
v e^{u v} & u e^{u v} \\
2 e^{2 u-3 v} & -3 e^{2 u-3 v}
\end{array}\right) \cdot\left(\begin{array}{cc}
x y^{2} & x^{2} y \\
x+y & x
\end{array}\right) \\
=\left(\begin{array}{cc}
\left(x y^{2} v+(x+y) u\right) e^{u v} & x(x y v+u) e^{u v} \\
\left(2 x y^{2}-3(x+y)\right) e^{2 u-3 v} & x(2 x y-3) e^{2 u-3 v}
\end{array}\right),
\end{gathered}
$$

where $u=g_{1}(x, y)$ and $v=g_{2}(x, y)$. (Note: It is not hard to show that $g_{1}(x, y)=\frac{1}{2} x^{2} y^{2}+C_{1}$ and $g_{2}(x, y)=\frac{1}{2} x^{2}+x y+C_{2}$ for some constants C_{1} and C_{2}.)
2) We have

$$
J_{F \circ G}=J_{F} \cdot J_{G}=-(3 v+2 u) e^{u v+2 u-3 v} \cdot\left(-x^{3} y\right)=x^{3} y(2 u+3 v) e^{u v+2 u-3 v}
$$

where $u=g_{1}(x, y)$ and $v=g_{2}(x, y)$.
5. (22 points) 1)(20 points) Find all the second order partial derivatives of the function

$$
z=f(x, y)=\ln \left(x^{2}+y^{2}\right) .
$$

2) (2 points) Show that f satisfies the Laplace equation $\Delta f=0$.

Solution 1) We have

$$
z_{x}=\frac{2 x}{x^{2}+y^{2}}, z_{y}=\frac{2 y}{x^{2}+y^{2}} .
$$

Hence

$$
\begin{gathered}
z_{x x}=\frac{2}{x^{2}+y^{2}}-\frac{4 x^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}, \\
z_{x y}=z_{y x}=-\frac{4 x y}{\left(x^{2}+y^{2}\right)^{2}}, \\
z_{y y}=\frac{2}{x^{2}+y^{2}}-\frac{4 y^{2}}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}} .
\end{gathered}
$$

2) We have

$$
\Delta z=z_{x x}+z_{y y}=\frac{2\left(y^{2}-x^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

