Midterm 1 Solutions

1. [10 Points] Evaluate $\int_{C} y d x+y d y+x d z$ where C is the straight line path from $(3,-1,2)$ to $(2,1,-1)$. Does this integral depend on the path from $(3,-1,2)$ to $(2,1,-1)$? Explain.

Solution: Parametrize the curve by $x=3-t, y=-1+2 t, z=2-3 t$ for $0 \leq t \leq 1$. So $d x=-d t, d y=2 d t$, and $d z=-3 d t$. Therefore

$$
\begin{gathered}
\int_{C} y d x+y d y+x d z=\int_{0}^{1}(-1+2 t)(-d t)+(-1+2 t)(2 d t)+(3-t)(-3 d t) \\
=\int_{0}^{1}(5 t-10) d t=\frac{-15}{2}
\end{gathered}
$$

The integral does depend on the path because $\operatorname{curl}(y, y, x)=(0,-1,-1) \neq$ $(0,0,0)$. Another way to argue this is to pick another path connecting the two points, evaluate the integral, and if you're lucky you'll get a different answer.

2. [10 Points]

(a) Show that the vector field $v=\left(e^{x} \sin y, e^{x} \cos y, 3\right)$ is irrotational.

Solution: Calculate $\nabla \times v$.

$$
\nabla \times v=\left|\begin{array}{ccc}
i & j & k \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
e^{x} \sin y & e^{x} \cos y & 3
\end{array}\right|=0 i+0 j+0 k
$$

(b) Find a smooth function $f(x, y, z)$ so that $\nabla f=v$.

Solution: $f(x, y, z)=e^{x} \sin y+3 z$
3. [10 Points] Verify Stokes' theorem for the vector field $v=\left(2 y, 3 x,-z^{2}\right)$, where S is the upper half surface of the sphere $x^{2}+y^{2}+z^{2}=9$ and C is its boundary.

Solution: Parametrize C by $x=3 \operatorname{cost}, y=3 \operatorname{sint}, z=0$ for $0 \leq t \leq 2 \pi$.
Thus $d x=-3 \operatorname{sint} d t, d y=3 \operatorname{cost} d t$, and $d z=0$. Thus

$$
\begin{aligned}
\int_{C} 2 y d x+3 x d y-z^{2} d z & =\int_{0}^{2 \pi}\left(-18 \sin ^{2} t+27 \cos ^{2} t\right) d t \\
& =\int_{0}^{2 \pi}\left(-9+9 \cos (2 t)+\frac{27}{2}+\frac{27}{2} \cos (2 t)\right) d t \\
& =2 \pi\left(-9+\frac{27}{2}\right) \\
& =9 \pi
\end{aligned}
$$

Now use Stokes' Theorem: Parametrize S by $\Phi(u, w)=(u, w, f(u, w))$ where $f(u, w)=\sqrt{1-u^{2}-w^{2}}$ and (u, w) is in the disk $R_{u w}$ of radius 3 centered about $(0,0)$. Thus $P_{1}=\left(1,0, f_{u}\right)$ and $P_{2}=\left(0,1, f_{w}\right)$. So $P_{1} \times P_{2}=\left(-f_{u},-f_{w}, 1\right)$. Also we have $\operatorname{curl}(v)=(0,0,1)$. So $\operatorname{curl}(v)$. $\left(P_{1} \times P_{2}\right)=1$. By Stokes' Theorem, we have

$$
\begin{aligned}
\iint_{S} \operatorname{curl}(v) \cdot n d \sigma & =\iint_{R_{u w}} \operatorname{curl}(v) \cdot\left(P_{1} \times P_{2}\right) d u d w \\
& =\iint_{R_{u w}} d u d w \\
& =\text { area of disk of radius } 3 \\
& =9 \pi
\end{aligned}
$$

4. [10 Points] Show that $\iint_{S}(\nabla \times v) \cdot n d \sigma=0$ where S is the boundary surface of a region R in \mathbb{R}^{3}, n is directed outward with respect to R, and v is any smooth vector field defined on \mathbb{R}^{3}.

Solution: By the divergence theorem,

$$
\iint_{S}(\nabla \times v) \cdot n d \sigma=\iiint_{R}(\nabla \cdot(\nabla \times v)) d x d y d z
$$

For any smooth vector field v, the divergence of the curl of v is zero. Therefore, the above integral is zero.
5. [10 Points] Let $v=\left(2 x y+z, y^{2},-(x+3 y)\right)$ be the velocity vector field, given in meters/second, of a fluid flowing in \mathbb{R}^{3}. What is the flow rate through the region bounded by the planes $x=0, x=3, y=0, z=0$, $y+z=1$?

Solution: The flow rate is the flux of v through the boundary surface S of the region R.

$$
\text { flow rate }=\iint_{S} v \cdot n d \sigma
$$

By the divergence theorem, this is equal to $\iiint_{R} \operatorname{div}(v) d x d y d z$. The divergence of v is $4 y$. So the flow rate is

$$
\begin{aligned}
\iiint_{R} 4 y d x d y d z & =\int_{0}^{1} \int_{0}^{1-z} \int_{0}^{3} 4 y d x d y d z \\
& =\cdots \\
& =2 \text { meters }^{3} / \text { second }
\end{aligned}
$$

6. [10 Points] Evaluate the integral

$$
\oint_{C} \frac{y^{3} d x-x y^{2} d y}{\left(x^{2}+y^{2}\right)^{2}}
$$

where C is the square having vertices $(-1,-1),(-1,1),(1,1),(1,-1)$ oriented counterclockwise. (Hint: $P_{y}=Q_{x}$.)

Solutions: Integrate instead around the circle of radius 1 centered about $(0,0)$. As a consequence of Green's Theorem, this is valid. Parametrize the circle by $x=\cos (t), y=\sin (t)$ for $0 \leq t \leq 2 \pi$. The integral becomes $\oint_{\text {circle }}\left(-\sin ^{4} t-\sin ^{2} t \cos ^{2} t\right) d t=\cdots=-\pi$

