Math 5C, Homework \#5

Due: February 14, 2007

1. For each of the following sequences, find a formula for the $n^{\text {th }}$ term a_{n} in terms of n, decide whether the sequence converges or diverges, and compute $\lim _{n \rightarrow \infty} a_{n}$ if it converges.
(a) $\frac{1}{3}, \frac{1}{5}, \frac{1}{7}, \frac{1}{9}, \ldots$
(b) $1,-\frac{1}{2}, \frac{1}{3},-\frac{1}{4}, \frac{1}{5}, \ldots$
(c) $\frac{5}{2}, \frac{1}{2}, \frac{1}{10}, \frac{1}{50}, \ldots$
(d) $0, \frac{3}{2}, \frac{3}{4}, \frac{9}{8}, \frac{15}{16}, \frac{33}{32}, \ldots$
2. For each of the following series, compute the first 5 partial sums (or more), and use them to make a guess about the value of the infinite sum (if it appears to converge).
(a) $\sum_{n=1}^{\infty} 3^{-n}$
(b) $\sum_{n=0}^{\infty} \frac{4(-1)^{n}}{2 n+1}$
(c) $\sum_{n=0}^{\infty} \frac{1}{n!}$ (Recall that n !, read " n factorial", is the product $n(n-1)(n-2) \cdots 2 \cdot 1$ of all the integers between 1 and n, and $0!=1$)
3. Let $a_{n}=\ln \left(1+\frac{1}{n}\right)$ for $n \geq 1$.
(a) Does the sequence $\left\{a_{n}\right\}_{n \geq 1}$ converge? If so, what is its limit?
(b) Does $\sum_{n=1}^{\infty} a_{n}$ converge or diverge? (Hint: can you write a_{n} as a difference of two things?)
4. A sequence $\left\{a_{n}\right\}_{n \geq 1}$ can be defined by the following rules: $a_{1}=1$ and $a_{n+1}=\frac{1}{a_{n}+1}$ for all $n \geq 1$ (For example, if $a_{16}=20$ then $a_{17}=1 /(20+1)=1 / 21$).
(a) Calculate the first 5 terms of this sequence. Does it appear to converge to a limit?
(b) Assuming that the sequence does converge, find its limit. (Hint: you may use the fact that $\lim _{n \rightarrow \infty} a_{n}=\lim _{n \rightarrow \infty} a_{n+1}$.)
(c) (Extra Credit): How is this sequence related to the Fibonacci numbers and (more importantly) why?
