Solutions to Final Exam Review Problems
 Math 5C, Winter 2007

1. Let $f(x)=\frac{1}{4+x}$.
(a) Find the Maclaurin series for $f(x)$, and compute its radius of convergence.

Solution. $f(x)=\frac{1}{4(1-(-x / 4))}=\frac{1}{4} \sum_{n=0}^{\infty}(-x / 4)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{4^{n+1}} x^{n}$. Since the infinite series is geometric, with ratio $-x / 4$, it converges for $|-x / 4|<1$, and thus for $|x|<4$. Thus, the radius of convergence is 4 .
(Note: it is also possible to use Taylor's formula, $c_{n}=f^{(n)}(0) / n$!, to determine the coefficients of the Maclaurin series and then use the ratio test to compute the radius of convergence.)
(b) Find the Taylor series for $f(x)$ centered at $x=1$, and compute its radius of convergence.

Solution.

$$
\begin{aligned}
f(x)=\frac{1}{5+(x-1)} & =\frac{1}{5(1--(x-1) / 5)} \\
& =\frac{1}{5} \sum_{n=0}^{\infty} \frac{-(x-1)}{5} \\
& =\sum_{n=0}^{\infty} \frac{(-1)^{n}}{5^{n+1}}(x-1)^{n} .
\end{aligned}
$$

Since the infinite series is geometric with ratio $-(x-1) / 5$, it converges for $\mid-$ $(x-1) / 5 \mid<1$, and thus for $|x-1|<5$. So the radius of convergence is 5 .
(Note: Again, we could have used Taylor's formula $c_{n}=f^{(n)}(1) / n$!, and the ratio test to find the radius of convergence.)
(c) Find the Taylor series for $g(x)=\ln (4+x)$ centered at $x=1$, and compute its radius of convergence.
Solution. Since $g(x)=\int f(x) d x$, we integrate the Taylor series from part (b):

$$
g(x)=\int \sum_{n=0}^{\infty} \frac{(-1)^{n}}{5^{n+1}}(x-1)^{n}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{5^{n+1}(n+1)}(x-1)^{n+1}+C .
$$

To find C, we plug in $x=1$: $C=g(1)=\ln 5$. Thus, replacing $n+1$ by k, $g(x)=\ln 5+\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{5^{k} k}(x-1)^{k}$. The radius of convergence is the same as the series we integrated, and thus equals 5 .
2. For what values of x does the series $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{x}}$ converge? (Bonus: Does it converge uniformly on this entire set?)
Solution. We use the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{x^{n+1} /(n+1)^{x}}{x^{n} / n^{x}}\right| & =\lim _{n \rightarrow \infty}\left|\frac{x}{(1+1 / n)^{x}}\right| \\
& =\left|x / 1^{x}\right| \\
& =|x|<1
\end{aligned}
$$

So it converges for x in the interval $(-1,1)$, but we still need to check whether it converges at the endpoints of this interval: $x= \pm 1$. If $x=1$, the series becomes $\sum_{n=1}^{\infty} \frac{1}{n}$ which diverges by the p-series test. If $x=-1$, the series becomes $\sum_{n=1}^{\infty}(-1)^{n} n$ which diverges by the nth term test, since $\lim _{n \rightarrow \infty}(-1)^{n} n \neq 0$. Thus the series converges only for x in the interval $(-1,1)$.
3. Show that the series of functions $\sum_{n=1}^{\infty} n e^{-n x}$ converges uniformly on $[1 / 2, \infty)$.

Solution. We use the M-test, where $u_{n}(x)=n e^{-n x}$. Since $x \geq 1 / 2$, and each $u_{n}(x)$ is a positive-valued decreasing function, $\left|u_{n}(x)\right|=u_{n}(x) \leq u_{n}(1 / 2)=n e^{-n / 2}$. Thus, we let $M_{n}=n e^{-n / 2}$. To show that the series converges uniformly, we must now check that the series $\sum_{n=1}^{\infty} M_{n}=\sum_{n=1}^{\infty} n / e^{n / 2}$ converges. We can check this by the ratio test:

$$
\begin{aligned}
\lim _{n \rightarrow \infty}\left|\frac{(n+1) / e^{(n+1) / 2}}{n / e^{n / 2}}\right| & =\lim _{n \rightarrow \infty} \frac{1+1 / n}{e^{1 / 2}} \\
& =1 / \sqrt{ } e<1
\end{aligned}
$$

meaning that the series converges by the ratio test.
4. Let $f(x)=\left\{\begin{aligned} 1, & \text { if }-\pi / 2 \leq x \leq \pi / 2 \\ -1, & \text { if }-\pi \leq x<-\pi / 2 \text { or } \pi / 2<x \leq \pi\end{aligned}\right.$
(a) Find the Fourier series for $f(x)$, and sketch its graph.

Solution. Notice that $f(x)$ is an even function (it's graph is symmetric about the y-axis). Thus all the b_{n} 's will equal 0 , and we only need to compute the a_{n} coefficients. We have

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x
$$

$$
\begin{aligned}
& =\frac{1}{\pi}\left[\int_{-\pi}^{-\pi / 2}-\cos (n x) d x+\int_{-\pi / 2}^{\pi / 2} \cos (n x) d x+\int_{\pi / 2}^{\pi}-\cos (n x) d x\right] \\
& \left.\left.\left.=\frac{1}{\pi}\left(-\frac{\sin (n x)}{n}\right]_{-\pi}^{-\pi / 2}+\frac{\sin (n x)}{n}\right]_{-\pi / 2}^{\pi / 2}+-\frac{\sin (n x)}{n}\right]_{\pi / 2}^{\pi}\right) \\
& =\frac{1}{\pi}\left(\frac{4 \sin (n \pi / 2)}{n}\right) \\
& =\left\{\begin{aligned}
0, & n \text { even } \\
4(-1)^{(n-1) / 2} / n \pi, & n \text { odd }
\end{aligned}\right.
\end{aligned}
$$

The above is correct for $n>0$ only. When $n=0$, the three integrals in the second line above evaluate to $-\pi / 2, \pi,-\pi / 2$, respectively. Thus $a_{0}=0$, and the Fourier series is

$$
\begin{aligned}
f(x) \sim \sum_{n=1}^{\infty} a_{n} \cos (n x) & =\sum_{n=1, n \text { odd }}^{\infty} \frac{4(-1)^{(n-1) / 2}}{n \pi} \cos (n x) \\
& =\sum_{k=1}^{\infty} \frac{4(-1)^{k-1}}{(2 k-1) \pi} \cos (2 k-1) x \\
& =\frac{4}{\pi}\left(\cos x-\frac{1}{3} \cos (3 x)+\frac{1}{5} \cos (5 x)-\frac{1}{7} \cos (7 x)+\cdots\right) .
\end{aligned}
$$

(Note: Any of the last 3 expressions would be a correct answer.) Its graph consists of horizontal segments at $y=1$ over the intervals $((2 k-1 / 2) \pi,(2 k+1 / 2) \pi)$ and at $y=-1$ over the intervals $((2 k+1 / 2) \pi,(2 k+3 / 2) \pi)$ for each integer k, and it has points on the x-axis at the endpoints of each of these intervals.
(b) Use part (a) (or other methods) to find the Fourier series for

$$
g(x)=\left\{\begin{aligned}
-\pi-x, & \text { if }-\pi \leq x<-\pi / 2 \\
x, & \text { if }-\pi / 2 \leq x \leq \pi / 2 \\
\pi-x & \text { if } \pi / 2<x \leq \pi
\end{aligned}\right.
$$

Solution. Notice that $g^{\prime}(x)=f(x)$. Thus we can obtain the Fourier series for $g(x)$ by integrating our answer to part (a).

$$
\begin{aligned}
g(x) & \sim \int \sum_{k=1}^{\infty} \frac{4(-1)^{k-1}}{(2 k-1) \pi} \cos (2 k-1) x d x \\
& =C+\sum_{k=1}^{\infty} \frac{4(-1)^{k-1}}{(2 k-1)^{2} \pi} \sin (2 k-1) x \\
& =C+\frac{4}{\pi}\left(\sin x-\frac{1}{3^{2}} \sin (3 x)+\frac{1}{5^{2}} \sin (5 x)-\frac{1}{7^{2}} \sin (7 x)+\cdots\right) .
\end{aligned}
$$

Since $g(x)$ is an odd function, all the a_{n} coefficients, including a_{0}, equal 0 . Thus $C=a_{0} / 2=0$, and removing the C 's from the above yields the correct Fourier series.
(c) Show that $1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\cdots=\frac{\pi}{4}$. (You should practice using one of the Fourier series above, or else one from lecture, rather than a power series.)
Solution. Plug $x=0$ into the Fourier series from (a) to get $f(0)=\frac{4}{\pi}(1-1 / 3+$ $1 / 5-1 / 7+\cdots)$. Since $f(0)=1$, the sum $1-1 / 3+1 / 5-1 / 7+\cdots$ converges to $\pi / 4$.
5. Find the Fourier series of $f(x)=e^{x}$. (Suggestion: use the complex form of the Fourier series.)
Solution. The complex form of the Fourier series is $f(x) \sim \sum_{n=-\infty}^{\infty} c_{n} e^{i n x}$, where the coefficients c_{n} are given by the formula $c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x$. Here,

$$
\begin{aligned}
c_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} e^{(1-i n) x} d x \\
& \left.=\frac{e^{(1-i n) x}}{2 \pi(1-i n)}\right]_{-\pi}^{\pi} \\
& =\frac{e^{(1-i n) \pi}-e^{-(1-i n) \pi}}{2 \pi(1-i n)} \\
& =\frac{e^{\pi}(\cos (-n \pi)+i \sin (-n \pi))-e^{-\pi}(\cos (n \pi)+i \sin (n \pi))}{2 \pi(1-i n)} \\
& =\frac{(-1)^{n} e^{\pi}-(-1)^{n} e^{-\pi}}{2 \pi(1-i n)} \\
& =\frac{(-1)^{n}\left(e^{\pi}-e^{-\pi}\right)(1+i n)}{2 \pi\left(n^{2}+1\right)} \\
& =\frac{(-1)^{n}\left(e^{\pi}-e^{-\pi}\right)}{2 \pi\left(n^{2}+1\right)}+i \frac{(-1)^{n}\left(e^{\pi}-e^{-\pi}\right) n}{2 \pi\left(n^{2}+1\right)}
\end{aligned}
$$

Thus

$$
e^{x} \sim \sum_{n=-\infty}^{\infty}\left(\frac{(-1)^{n}\left(e^{\pi}-e^{-\pi}\right)}{2 \pi\left(n^{2}+1\right)}+i \frac{(-1)^{n}\left(e^{\pi}-e^{-\pi}\right) n}{2 \pi\left(n^{2}+1\right)}\right) e^{i n x}
$$

Since $c_{n}=\left(a_{n}-i b_{n}\right) / 2$ for $n>0$, and $c_{0}=a_{0} / 2$, we see that a_{n} equals twice the real part of c_{n} for each $n \geq 0$, and b_{n} equals (-1) times twice the imaginary part of c_{n} for $n>0$. Thus, in terms of sines and cosines,

$$
e^{x} \sim \frac{e^{\pi}-e^{-\pi}}{\pi}\left(\frac{1}{2}+\sum_{n=1}^{\infty}\left(\frac{(-1)^{n}}{n^{2}+1} \cos (n x)+\frac{(-1)^{n+1} n}{n^{2}+1} \sin (n x)\right)\right) .
$$

6. Find the solution of the wave equation $\frac{\partial^{2} u}{\partial t^{2}}-4 \frac{\partial^{u}}{\partial x^{2}}=0$ with initial displacement given by $f(x)=0$, and initial velocity given by $g(x)=\sin ^{2} x$. (Hint: use a half-angle formula!) Sketch the solution when $t=\pi / 2$.
Solution. Due to an error on my part, the Hint is useless. We have to solve the wave equation with $a=2, f(x)=0$, and $g(x)=\sin ^{2} x$. The solution has the form

$$
u(x, t)=\sum_{n=1}^{\infty} \sin (n x)\left[\alpha_{n} \sin (2 n t)+\beta_{n} \cos (2 n t)\right]
$$

where $2 n \alpha_{n}$ are the Fourier sine coefficients of $g(x)=\sin ^{2} x$ and β_{n} are the Fourier sine coefficients of $f(x)=0$. Thus all the β_{n} are 0 , and the α_{n} 's are computed as in lecture (see the lecture notes pp. 66-7):

$$
\alpha_{n}=\frac{1}{2 n}\left(\frac{2}{\pi} \int_{0}^{\pi} \sin ^{2} x \sin (n x) d x\right)=\left\{\begin{array}{cl}
\frac{0,}{\frac{-4}{n^{2} \pi\left(n^{2}-4\right)},} & n \text { even } \\
\text { odd }
\end{array}\right.
$$

Hence, the solution as a Fourier series is

$$
\begin{aligned}
u(x, t) & =\sum_{n=1, \text { odd }}^{\infty} \frac{-4}{n^{2} \pi\left(n^{2}-4\right)} \sin (n x) \sin (2 n t) \\
& =\sum_{k=1}^{\infty} \frac{-4}{(2 k-1)^{2} \pi\left((2 k-1)^{2}-4\right)} \sin ((2 k-1) x) \sin (2(2 k-1) t)
\end{aligned}
$$

When $t=\pi / 2, \sin (2 n t)=\sin (n \pi)=0$. Thus $u(x, \pi / 2)=0$, and the string is in equilibrium position along the x-axis.

