
Solutions to Final Exam Review Problems
Math 5C, Winter 2007

1. Let f(x) = 1
4+x

.

(a) Find the Maclaurin series for f(x), and compute its radius of convergence.

Solution. f(x) =
1

4(1− (−x/4))
=

1

4

∞∑
n=0

(−x/4)n =
∞∑

n=0

(−1)n

4n+1
xn. Since the

infinite series is geometric, with ratio −x/4, it converges for | − x/4| < 1, and
thus for |x| < 4. Thus, the radius of convergence is 4.

(Note: it is also possible to use Taylor’s formula, cn = f (n)(0)/n!, to determine
the coefficients of the Maclaurin series and then use the ratio test to compute the
radius of convergence.)

(b) Find the Taylor series for f(x) centered at x = 1, and compute its radius of
convergence.

Solution.

f(x) =
1

5 + (x− 1)
=

1

5(1−−(x− 1)/5)

=
1

5

∞∑
n=0

−(x− 1)

5

=
∞∑

n=0

(−1)n

5n+1
(x− 1)n.

Since the infinite series is geometric with ratio −(x − 1)/5, it converges for | −
(x− 1)/5| < 1, and thus for |x− 1| < 5. So the radius of convergence is 5.

(Note: Again, we could have used Taylor’s formula cn = f (n)(1)/n!, and the ratio
test to find the radius of convergence.)

(c) Find the Taylor series for g(x) = ln(4 + x) centered at x = 1, and compute its
radius of convergence.

Solution. Since g(x) =
∫

f(x) dx, we integrate the Taylor series from part (b):

g(x) =

∫ ∞∑
n=0

(−1)n

5n+1
(x− 1)n =

∞∑
n=0

(−1)n

5n+1(n + 1)
(x− 1)n+1 + C.

To find C, we plug in x = 1: C = g(1) = ln 5. Thus, replacing n + 1 by k,

g(x) = ln 5 +
∞∑

k=1

(−1)k−1

5kk
(x− 1)k. The radius of convergence is the same as the

series we integrated, and thus equals 5.
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2. For what values of x does the series
∞∑

n=1

xn

nx
converge? (Bonus: Does it converge

uniformly on this entire set?)

Solution. We use the ratio test:

lim
n→∞

∣∣∣∣xn+1/(n + 1)x

xn/nx

∣∣∣∣ = lim
n→∞

∣∣∣∣ x

(1 + 1/n)x

∣∣∣∣
= |x/1x|
= |x| < 1

So it converges for x in the interval (−1, 1), but we still need to check whether it con-

verges at the endpoints of this interval: x = ±1. If x = 1, the series becomes
∞∑

n=1

1

n

which diverges by the p-series test. If x = −1, the series becomes
∞∑

n=1

(−1)nn which

diverges by the nth term test, since limn→∞(−1)nn 6= 0. Thus the series converges only
for x in the interval (−1, 1).

3. Show that the series of functions
∑∞

n=1 ne−nx converges uniformly on [1/2,∞).

Solution. We use the M-test, where un(x) = ne−nx. Since x ≥ 1/2, and each un(x) is
a positive-valued decreasing function, |un(x)| = un(x) ≤ un(1/2) = ne−n/2. Thus, we
let Mn = ne−n/2. To show that the series converges uniformly, we must now check that
the series

∑∞
n=1 Mn =

∑∞
n=1 n/en/2 converges. We can check this by the ratio test:

lim
n→∞

∣∣∣∣(n + 1)/e(n+1)/2

n/en/2

∣∣∣∣ = lim
n→∞

1 + 1/n

e1/2

= 1/
√

e < 1,

meaning that the series converges by the ratio test.

4. Let f(x) =

{
1, if − π/2 ≤ x ≤ π/2

−1, if − π ≤ x < −π/2 or π/2 < x ≤ π

(a) Find the Fourier series for f(x), and sketch its graph.

Solution. Notice that f(x) is an even function (it’s graph is symmetric about
the y-axis). Thus all the bn’s will equal 0, and we only need to compute the an

coefficients. We have

an =
1

π

∫ π

−π

f(x) cos(nx) dx
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=
1

π

[∫ −π/2

−π

− cos(nx) dx +

∫ π/2

−π/2

cos(nx) dx +

∫ π

π/2

− cos(nx) dx

]

=
1

π

(
−sin(nx)

n

]−π/2

−π

+
sin(nx)

n

]π/2

−π/2

+ −sin(nx)

n

]π

π/2

)

=
1

π

(
4 sin(nπ/2)

n

)
=

{
0, n even

4(−1)(n−1)/2/nπ, n odd

The above is correct for n > 0 only. When n = 0, the three integrals in the second
line above evaluate to −π/2, π,−π/2, respectively. Thus a0 = 0, and the Fourier
series is

f(x) ∼
∞∑

n=1

an cos(nx) =
∞∑

n=1, n odd

4(−1)(n−1)/2

nπ
cos(nx)

=
∞∑

k=1

4(−1)k−1

(2k − 1)π
cos(2k − 1)x

=
4

π

(
cos x− 1

3
cos(3x) +

1

5
cos(5x)− 1

7
cos(7x) + · · ·

)
.

(Note: Any of the last 3 expressions would be a correct answer.) Its graph consists
of horizontal segments at y = 1 over the intervals ((2k − 1/2)π, (2k + 1/2)π) and
at y = −1 over the intervals ((2k + 1/2)π, (2k + 3/2)π) for each integer k, and it
has points on the x-axis at the endpoints of each of these intervals.

(b) Use part (a) (or other methods) to find the Fourier series for

g(x) =


−π − x, if − π ≤ x < −π/2

x, if − π/2 ≤ x ≤ π/2
π − x if π/2 < x ≤ π

Solution. Notice that g′(x) = f(x). Thus we can obtain the Fourier series for
g(x) by integrating our answer to part (a).

g(x) ∼
∫ ∞∑

k=1

4(−1)k−1

(2k − 1)π
cos(2k − 1)x dx

= C +
∞∑

k=1

4(−1)k−1

(2k − 1)2π
sin(2k − 1)x

= C +
4

π

(
sin x− 1

32
sin(3x) +

1

52
sin(5x)− 1

72
sin(7x) + · · ·

)
.
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Since g(x) is an odd function, all the an coefficients, including a0, equal 0. Thus
C = a0/2 = 0, and removing the C’s from the above yields the correct Fourier
series.

(c) Show that 1− 1
3
+ 1

5
− 1

7
+ · · · = π

4
. (You should practice using one of the Fourier

series above, or else one from lecture, rather than a power series.)

Solution. Plug x = 0 into the Fourier series from (a) to get f(0) = 4
π
(1− 1/3 +

1/5− 1/7 + · · ·). Since f(0) = 1, the sum 1− 1/3 + 1/5− 1/7 + · · · converges to
π/4.

5. Find the Fourier series of f(x) = ex. (Suggestion: use the complex form of the Fourier
series.)

Solution. The complex form of the Fourier series is f(x) ∼
∞∑

n=−∞

cne
inx, where the

coefficients cn are given by the formula cn = 1
2π

∫ π

−π
f(x)e−inx dx. Here,

cn =
1

2π

∫ π

−π

e(1−in)x dx

=
e(1−in)x

2π(1− in)

]π

−π

=
e(1−in)π − e−(1−in)π

2π(1− in)

=
eπ(cos(−nπ) + i sin(−nπ))− e−π(cos(nπ) + i sin(nπ))

2π(1− in)

=
(−1)neπ − (−1)ne−π

2π(1− in)

=
(−1)n(eπ − e−π)(1 + in)

2π(n2 + 1)

=
(−1)n(eπ − e−π)

2π(n2 + 1)
+ i

(−1)n(eπ − e−π)n

2π(n2 + 1)

Thus

ex ∼
∞∑

n=−∞

(
(−1)n(eπ − e−π)

2π(n2 + 1)
+ i

(−1)n(eπ − e−π)n

2π(n2 + 1)

)
einx.

Since cn = (an − ibn)/2 for n > 0, and c0 = a0/2, we see that an equals twice the real
part of cn for each n ≥ 0, and bn equals (-1) times twice the imaginary part of cn for
n > 0. Thus, in terms of sines and cosines,

ex ∼ eπ − e−π

π

(
1

2
+

∞∑
n=1

(
(−1)n

n2 + 1
cos(nx) +

(−1)n+1n

n2 + 1
sin(nx)

))
.
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6. Find the solution of the wave equation
∂2u

∂t2
− 4

∂u

∂x2
= 0 with initial displacement

given by f(x) = 0, and initial velocity given by g(x) = sin2 x. (Hint: use a half-angle
formula!) Sketch the solution when t = π/2.

Solution. Due to an error on my part, the Hint is useless. We have to solve the wave
equation with a = 2, f(x) = 0, and g(x) = sin2 x. The solution has the form

u(x, t) =
∞∑

n=1

sin(nx)[αn sin(2nt) + βn cos(2nt)]

where 2nαn are the Fourier sine coefficients of g(x) = sin2 x and βn are the Fourier
sine coefficients of f(x) = 0. Thus all the βn are 0, and the αn’s are computed as in
lecture (see the lecture notes pp. 66-7):

αn =
1

2n

(
2

π

∫ π

0

sin2 x sin(nx) dx

)
=

{
0, n even
−4

n2π(n2−4)
, n odd

Hence, the solution as a Fourier series is

u(x, t) =
∞∑

n=1, odd

−4

n2π(n2 − 4)
sin(nx) sin(2nt)

=
∞∑

k=1

−4

(2k − 1)2π((2k − 1)2 − 4)
sin((2k − 1)x) sin(2(2k − 1)t).

When t = π/2, sin(2nt) = sin(nπ) = 0. Thus u(x, π/2) = 0, and the string is in
equilibrium position along the x-axis.
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