Math 5C, Midterm 1 Review Problems

Winter 2007

1. Compute $\int_{C} y z d x+2 x d y-y d z$ where C is the straight line path from $(1,2,1)$ to $(-1,3,0)$.
2. Find the surface area of the surface S, which is parametrized by

$$
\phi(u, v)=\left\{\begin{array}{l}
x(u, v)=u-v \\
y(u, v)=u+v \\
z(u, v)=u v
\end{array}\right.
$$

for all (u, v) with $u^{2}+v^{2} \leq 1$.
3. Let S be the top half of the unit sphere (i.e., S is given by $x^{2}+y^{2}+z^{2}=1$ and $z \geq 0$), oriented by the outer normal. Integrate

$$
\iint_{S} x d y d z+y d z d x+z^{2} d x d y
$$

4. Let S be the surface given by $z=x y^{2}-3 x^{2}$ with upper normal \mathbf{n}, over the square with vertices $(\pm 1, \pm 1)$ in the $x y$-plane. If $\mathbf{w}=\left(z+3 x^{2}\right) \mathbf{i}+y z \mathbf{j}+y^{2} \mathbf{k}$, calculate

$$
\iint_{S} \mathbf{w} \cdot \mathbf{n} d \sigma
$$

5. Let S be the unit sphere, $x^{2}+y^{2}+z^{2}=1$, oriented outward, and let \mathbf{F} be the vector field $\mathbf{F}(x, y, z)=x y^{2} \mathbf{i}-x z^{2} \mathbf{j}+x^{2} z \mathbf{k}$. Use the Divergence Theorem to compute $\iint_{S} \mathbf{F} \cdot \mathbf{n} d \sigma$.
6. Let S be the cone $x^{2}=y^{2}+z^{2}, \quad 0 \leq x \leq 2$, oriented inward (so the normal vectors point toward the x-axis). Use Stokes' Theorem to calculate $\iint_{S}(\nabla \times \mathbf{F}) \cdot \mathbf{n} d \sigma$, where $\mathbf{F}(x, y, z)=x^{2} \mathbf{i}-z \mathbf{j}+\left(y^{2}-z\right) \mathbf{k}$.
7. Let C be the curve given by $x=\sin t, y=\cos t, z=\cos (2 t)$ for $0 \leq t \leq 2 \pi$. Use Stokes' Theorem to evaluate

$$
\oint_{C} x z d x+y^{2} d y+z^{2} d z .
$$

8. Show that the integral

$$
\int_{(-1,1,3)}^{(\pi / 2,0,1)} z^{2} \cos \left(x+y^{2}\right) d x+2 y z^{2} \cos \left(x+y^{2}\right) d y+2 z \sin \left(x+y^{2}\right) d z
$$

is independent of path and evaluate it.
9. Let \mathbf{u} be the vector field

$$
\mathbf{u}(x, y, z)=\frac{y}{x^{2}+y^{2}} \mathbf{i}-\frac{x}{x^{2}+y^{2}} \mathbf{j}+z^{2} \mathbf{k}
$$

on \mathbb{R}^{3} minus the z-axis.
(a) Show that $\operatorname{curl}(\mathbf{u})=\mathbf{0}$ on this domain.
(b) Show that \mathbf{u} is not the gradient vector field of any function F on this domain. (Hint: Find a closed curve C with $\int_{C} u_{T} d s \neq 0$.)

