
Math 5C, Midterm 2 Review Problems
Winter 2007

1. The first several terms of a sequence are given. Find a formula in terms of n for the
nth term of the sequence (be sure to say what value n starts at). Then find the limit
of the sequence as n tends towards infinity, if one exists.
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2. Find the sum of the infinite series, or show that it diverges:
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3. Do the following series converge or diverge? Justify your answers.
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4. Find the interval of convergence of the following power series:
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5. Suppose that the power series
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n=0 cn(x − 1)n converges when x = 2 and diverges
when x = −3. For each of the following values of x, state whether the series converges
or diverges, or whether you can’t tell: (a) x = 1; (b) x = 0; (c) x = 1/2; (d) x = 3; (e)
x = 5; (f) x = 6.

6. Find the MacLaurin series and its interval of convergence for the function f(x) =
x2

(1 + x)2
.

7. Find the sum of the series
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. (Hint: This sum can be realized as the MacLaurin

series of some function f(x) evaluated at a certain value of x.)
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