Math 5C, Midterm 2 Review Problems

1. The first several terms of a sequence are given. Find a formula in terms of n for the $n^{t h}$ term of the sequence (be sure to say what value n starts at). Then find the limit of the sequence as n tends towards infinity, if one exists.
(a) $-4,1, \frac{-1}{4}, \frac{1}{16}, \ldots$
(b) $\frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \frac{7}{9}, \ldots$
(c) $1,-3,8,-24,35,-48,63 \ldots$
(d) $1, \frac{3}{2}, \frac{5}{4}, \frac{7}{8}, \frac{9}{16}, \ldots$
2. Find the sum of the infinite series, or show that it diverges:

$$
\text { (a) } \sum_{n=1}^{\infty} 2^{1-2 n} \quad \sum_{n=1}^{\infty}\left(\frac{\sqrt{2 n+1}}{n}-\frac{\sqrt{2 n+3}}{n+1}\right)
$$

3. Do the following series converge or diverge? Justify your answers.
(a) $\sum_{n=1}^{\infty} \sqrt{\frac{n+1}{3 n^{2}}}$
(b) $\sum_{n=2}^{\infty} \frac{1}{n \ln n}$
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n} \ln n}{n}$
(d) $\sum_{n=1}^{\infty} \frac{n^{n}}{2 \cdot 4 \cdot 6 \cdots(2 n)}$
4. Find the interval of convergence of the following power series:

$$
\text { (a) } \sum_{n=0}^{\infty} \frac{(x-3)^{n}}{4^{n}} \quad \sum_{n=0}^{\infty} \frac{x^{2 n}}{n+1}
$$

5. Suppose that the power series $\sum_{n=0}^{\infty} c_{n}(x-1)^{n}$ converges when $x=2$ and diverges when $x=-3$. For each of the following values of x, state whether the series converges or diverges, or whether you can't tell: (a) $x=1$; (b) $x=0$; (c) $x=1 / 2$; (d) $x=3$; (e) $x=5$; (f) $x=6$.
6. Find the MacLaurin series and its interval of convergence for the function $f(x)=$ $\frac{x^{2}}{(1+x)^{2}}$.
7. Find the sum of the series $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$. (Hint: This sum can be realized as the MacLaurin series of some function $f(x)$ evaluated at a certain value of x.)
