Math 8 - Midterm Solutions

February 8, 2007

1. (8 points) Use a truth table (or other methods) to prove the logical equivalence

$$
(P \Rightarrow Q) \Rightarrow(Q \Rightarrow P) \equiv(Q \Rightarrow P)
$$

Solution.

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$	$(P \Rightarrow Q) \Rightarrow(Q \Rightarrow P)$
T	T	T	T	T
T	F	F	T	T
F	T	T	F	F
F	F	T	T	T

Since the truth values of $(P \Rightarrow Q) \Rightarrow(Q \Rightarrow P)$ and $Q \Rightarrow P$ are the same for all possible truth values of P and Q, these two sentential forms are logically equivalent.

The logical equivalence could also be proved symbolically, as follows:

$$
\begin{aligned}
(P \Rightarrow Q) \Rightarrow(Q \Rightarrow P) & \equiv \sim(P \Rightarrow Q) \vee(Q \Rightarrow P) \\
& \equiv \sim(\sim P \vee Q) \vee(\sim Q \vee P) \\
& \equiv(P \wedge \sim Q) \vee \sim Q \vee P \\
& \equiv(P \vee \sim Q \vee P) \wedge(\sim Q \vee \sim Q \vee P) \\
& \equiv(P \vee \sim Q) \wedge(P \vee \sim Q) \\
& \equiv P \vee \sim Q \\
& \equiv Q \Rightarrow P
\end{aligned}
$$

2. (12 points) The Symmetric Difference of two sets A and B is defined as

$$
A \oplus B=A \cup B-A \cap B
$$

(a) (8 pts) Draw 3 separate Venn diagrams for the sets (i) $A \oplus B$; (ii) $(A \oplus B) \cap C$; and (iii) $(A \oplus B) \oplus C$.
Solution. The X's denote the regions that should be shaded.
(i) $A \oplus B$
(ii) $(A \oplus B) \cap C$
(iii) $(A \oplus B) \oplus C$

(b) (4 pts) If $A=\{0,1\}$ and $B=\{0,2\}$, what is $\mathcal{P}(A) \oplus \mathcal{P}(B)$?

Solution. $\mathcal{P}(A)=\{\emptyset,\{0\},\{1\},\{0,1\}\}$ and $\mathcal{P}(B)=\{\emptyset,\{0\},\{2\},\{0,2\}\}$. So the elements of $\mathcal{P}(A) \oplus \mathcal{P}(B)$ are those sets that belong to $\mathcal{P}(A)$ or to $\mathcal{P}(B)$ but not to both:

$$
\mathcal{P}(A) \oplus \mathcal{P}(B)=\{\{1\},\{2\},\{0,1\},\{0,2\}\}
$$

3. (12 points) State whether the following propositions are True or False, and give a brief justification for your answer (a single example may suffice). In (a)-(c) the domain of interpretation is the set \mathbb{Z} of integers.
(a) $\forall a \forall b \exists c(a \leq c \leq b)$

Solution. False. If $a=2$ and $b=1$, there does not exist a c with $2 \leq c \leq 1$.
(b) $\forall n \exists k[(n=2 k) \vee(n=2 k+1)]$

Solution. True. Every integer is even or odd.
(c) $\exists x \forall y[x y>0]$

Solution. False. For any value of x, letting $y=0$ makes $x y=0$.
(d) If A is any set, then $A \cap \mathcal{P}(A)=\emptyset$.

Solution. False. If $A=\{a,\{a\}\}$ then $\mathcal{P}(A)=\{\emptyset,\{a\},\{\{a\}\},\{a,\{a\}\}\}$. So
$\{a\} \in A \cap \mathcal{P}(A)$ and thus the intersection is not the empty set.
4. (8 points) Let A and B be sets. Prove $A \cup B=A \cap B \Leftrightarrow A=B$. (A picture may help, but it is not a proof.)
Solution. First assume that $A=B$. Then $A \cup B=A \cup A=\{x \mid x \in A \vee x \in A\}=A$, and $A \cap B=A \cap A=\{x \mid x \in A \wedge x \in A\}=A$. Thus $A \cup B=A=A \cap B$.
To prove the converse, assume that $A \cap B=A \cup B$. Then $A \subseteq A \cup B$ and $A \cap B \subseteq B$ imply that $A \subseteq A \cup B=A \cap B \subseteq B$, so $A \subseteq B$. Similarly, we have $B \subseteq A \cup B=$ $A \cap B \subseteq A$, so $B \subseteq A$. Finally, we know that $A \subseteq B$ and $B \subseteq A$ implies that $A=B$.
5. (10 points) Consider the proposition: "For any two real numbers x and y, if the product $x y$ is irrational, then either x or y is irrational."
(a) (3 pts) Write this proposition using only symbols and no words.

Solution. $\forall x \in \mathbb{R} \forall y \in \mathbb{R}[x y \notin \mathbb{Q} \Rightarrow(x \notin \mathbb{Q} \vee y \notin \mathbb{Q})]$
(b) (5 pts) Prove this proposition.

Solution. Let x and y be any real numbers. In order to prove the implication $x y \notin \mathbb{Q} \Rightarrow(x \notin \mathbb{Q} \vee y \notin \mathbb{Q})$, it suffices to prove its contrapositive

$$
(x \in \mathbb{Q} \wedge y \in \mathbb{Q}) \Rightarrow x y \in \mathbb{Q}
$$

If $x \in \mathbb{Q}$ and $y \in \mathbb{Q}$, there exist integers a, b, c, d such that $x=a / b$ and $y=c / d$. Thus $x y=(a / b)(c / d)=a c / b d$ is also a ratio of two integers, and hence it belongs to \mathbb{Q}.
(c) (2 pts) Is the converse of this proposition also true (for all real numbers x, y)? Explain.
Solution. The converse states: "For all real numbers x and y, if x or y is irrational, then the product $x y$ is irrational." But clearly this is false, as can be seen by letting x be any irrational number and $y=0$ (so $x y=0$ is rational), or by letting x be any irrational number and $y=1 / x$ (so $x y=1$ is rational), or by letting $x=y=\sqrt{2}$ (so $x y=2$ is rational), etc.

