Math 8 - Final Exam Review Problems

Winter 2007
While the final exam will focus on topics covered since the first midterm (Ch. 2.9-2.10, 3.1-3.3, 4.1-4.3, 5.8), you will still be expected to know all the material from chapters 1 and 2 as well. In particular, you should be able to:

- Understand and Prove conditional and biconditional statements (using direct and/or indirect proofs). (Ch. 1.3-1.4)
- Understand and use quantifier notation (Ch. 2.3)
- Understand definitions of sets, and related notation (eg. $\in \subseteq$, Ch. 2.1, 2.4)
- Prove that one set is a subset of another, or that two sets are equal.(Ch. 2.4) (One method is using logical equivalence, Ch. 1.5)
- Know the definitions of Unions, Intersections, and Complements. (Ch. 2.5)
- Know the definitions of the Power Set (Ch. 2.7) and Cartesian Product (Ch. 2.8)

New Topics

1. (Equivalence) Relations.

(a) Consider the relation \sim on the power set $\mathcal{P}(\mathbb{N})$ of the set \mathbb{N} of natural numbers, defined by

$$
A \sim B \Leftrightarrow A \cup B=\mathbb{N},
$$

for subsets $A, B \subseteq \mathbb{N}$. Is \sim an equivalence relation? Justify your answer. If so, describe the equivalence classes.
(b) Consider the relation \approx on the power set $\mathcal{P}(\mathbb{N})$ of the set \mathbb{N} of natural numbers, defined by

$$
A \approx B \Leftrightarrow \min A=\min B,
$$

for subsets $A, B \subseteq \mathbb{N}$. Here, $\min A$ denotes the smallest element of A. Is \approx an equivalence relation? Justify your answer. If so, describe the equivalence classes.
(c) Text: 2.9, Ex. 20.

2. Induction.

(a) Prove that for any integer $n \geq 1$,

$$
(x-1)\left(x^{n}+x^{n-1}+\cdots+x+1\right)=x^{n+1}-1 .
$$

(b) Prove that for any integer $n \geq 1$,

$$
1+\frac{1}{2^{2}}+\frac{1}{3^{2}}+\cdots+\frac{1}{n^{2}} \leq 2-\frac{1}{n} .
$$

3. Binomial Coefficients.

(a) Prove that for any integers k, n with $1 \leq k \leq n,\binom{n}{k}=\frac{n}{k}\binom{n-1}{k-1}$.
(b) Prove that for any integer $n \geq 0$,

$$
\sum_{k=1}^{n} k\binom{n}{k}=n 2^{n-1}
$$

(4 Hints: 1) use the previous problem; or 2) use induction on n; or 3) use the binomial theorem and some calculus; or 4) show that both sides count the number of ways to choose a committee and chairman from n people.)
4. Functions. (a)-(e) Give examples of the following, or explain why no example exists.
(a) An injection $f: \mathbb{N} \rightarrow \mathbb{N}$ that is not surjective.
(b) A surjection $f: \mathbb{N}_{n} \rightarrow \mathbb{N}_{n}$ that is not injective.
(c) An injection $f: \mathbb{R} \rightarrow \mathbb{N}$.
(d) An injection $f: \mathbb{N} \rightarrow[0,1]$.
(e) An injection $f: A \rightarrow B$ and a surjection $g: B \rightarrow C$ such that $g \circ f$ is not injective.
(f) True or False: Let A and B be sets, and suppose $f: A \rightarrow B$ is an injection. Then there exists a surjection $g: B \rightarrow A$. Give a proof or counterexample.
(g) True or False: If $f: A \rightarrow B$ is a function such that there are two subsets $C, D \subseteq A$ with $\left.f\right|_{C}$ and $\left.f\right|_{D}$ injective and $C \cup D=A$, then f is injective. Give a proof or counterexample.
(h) If $f: A \rightarrow B$, and $X \subseteq A$, and $Y \subseteq B$, we write

$$
f^{-1}(Y)=\{a \in A \mid f(a) \in Y\} \subseteq A
$$

and

$$
f(X)=\{f(x) \mid x \in X\} \subseteq B
$$

(i) Prove that $f^{-1}(f(X)) \subseteq X$.
(ii) If f is injective, show that $f^{-1}(f(X))=X$.
(iii) Give an example where $f^{-1}(f(X)) \neq X$.

5. Cardinality

(a) Prove that for finite sets A and $B,|A| \geq|B|$ if and only if there exists a surjection $g: A \rightarrow B$.
(b) Text: Ch. 4.2, Ex. 4, 5, 6.
(c) Text: Ch. 4.3, Ex. 1, 4, 5, 11.

