Math 8 - Final Exam Review Problems Winter 2007

While the final exam will focus on topics covered since the first midterm (Ch. 2.9-2.10, 3.1-3.3, 4.1-4.3, 5.8), you will still be expected to know all the material from chapters 1 and 2 as well. In particular, you should be able to:

- Understand and Prove conditional and biconditional statements (using direct and/or indirect proofs). (Ch. 1.3-1.4)
- Understand and use quantifier notation (Ch. 2.3)
- Understand definitions of sets, and related notation (eg. \in , \subseteq , Ch. 2.1, 2.4)
- Prove that one set is a subset of another, or that two sets are equal.(Ch. 2.4) (One method is using logical equivalence, Ch. 1.5)
- Know the definitions of Unions, Intersections, and Complements. (Ch. 2.5)
- Know the definitions of the Power Set (Ch. 2.7) and Cartesian Product (Ch. 2.8)

New Topics

1. (Equivalence) Relations.

(a) Consider the relation \sim on the power set $\mathcal{P}(\mathbb{N})$ of the set \mathbb{N} of natural numbers, defined by

$$A \sim B \Leftrightarrow A \cup B = \mathbb{N},$$

for subsets $A, B \subseteq \mathbb{N}$. Is ~ an equivalence relation? Justify your answer. If so, describe the equivalence classes.

(b) Consider the relation \approx on the power set $\mathcal{P}(\mathbb{N})$ of the set \mathbb{N} of natural numbers, defined by

$$A \approx B \Leftrightarrow \min A = \min B,$$

for subsets $A, B \subseteq \mathbb{N}$. Here, min A denotes the smallest element of A. Is \approx an equivalence relation? Justify your answer. If so, describe the equivalence classes.

(c) Text: 2.9, Ex. 20.

2. Induction.

(a) Prove that for any integer $n \ge 1$,

$$(x-1)(x^{n}+x^{n-1}+\cdots+x+1) = x^{n+1}-1.$$

(b) Prove that for any integer $n \ge 1$,

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} \le 2 - \frac{1}{n}.$$

3. Binomial Coefficients.

- (a) Prove that for any integers k, n with $1 \le k \le n$, $\binom{n}{k} = \frac{n}{k} \binom{n-1}{k-1}$.
- (b) Prove that for any integer $n \ge 0$,

$$\sum_{k=1}^{n} k \left(\begin{array}{c} n\\ k \end{array} \right) = n2^{n-1}.$$

(4 Hints: 1) use the previous problem; or 2) use induction on n; or 3) use the binomial theorem and some calculus; or 4) show that both sides count the number of ways to choose a committee and chairman from n people.)

- 4. Functions. (a)-(e) Give examples of the following, or explain why no example exists.
 - (a) An injection $f : \mathbb{N} \to \mathbb{N}$ that is not surjective.
 - (b) A surjection $f : \mathbb{N}_n \to \mathbb{N}_n$ that is not injective.
 - (c) An injection $f : \mathbb{R} \to \mathbb{N}$.
 - (d) An injection $f : \mathbb{N} \to [0, 1]$.
 - (e) An injection $f: A \to B$ and a surjection $g: B \to C$ such that $g \circ f$ is not injective.
 - (f) True or False: Let A and B be sets, and suppose $f : A \to B$ is an injection. Then there exists a surjection $g : B \to A$. Give a proof or counterexample.
 - (g) True or False: If $f : A \to B$ is a function such that there are two subsets $C, D \subseteq A$ with $f|_C$ and $f|_D$ injective and $C \cup D = A$, then f is injective. Give a proof or counterexample.
 - (h) If $f : A \to B$, and $X \subseteq A$, and $Y \subseteq B$, we write

$$f^{-1}(Y) = \{a \in A \mid f(a) \in Y\} \subseteq A$$

and

$$f(X) = \{f(x) \mid x \in X\} \subseteq B.$$

- (i) Prove that $f^{-1}(f(X)) \subseteq X$.
- (ii) If f is injective, show that $f^{-1}(f(X)) = X$.
- (iii) Give an example where $f^{-1}(f(X)) \neq X$.

5. Cardinality

- (a) Prove that for finite sets A and B, $|A| \ge |B|$ if and only if there exists a surjection $g: A \to B$.
- (b) Text: Ch. 4.2, Ex. 4, 5, 6.
- (c) Text: Ch. 4.3, Ex. 1, 4, 5, 11.