
Math 8 - Solutions to Midterm Review Problems
Winter 2007

1. Prove the logical equivalence:

(P∧ ∼ Q) ∧ (R ⇒ Q) ≡∼ [(P ⇒ Q) ∨R].

Solution. Starting with the left-hand side and using the identity A ⇒ B ≡∼ A ∨ B
and then the distributive law, we have

(P∧ ∼ Q) ∧ (R ⇒ Q) ≡ (P∧ ∼ Q) ∧ (∼ R ∨Q)

≡ (P∧ ∼ Q∧ ∼ R) ∨ (P∧ ∼ Q ∧Q)

≡ (P∧ ∼ Q∧ ∼ R) ∨ F

≡ P∧ ∼ Q∧ ∼ R

≡ ∼ [∼ (P∧ ∼ Q) ∨R]

≡ ∼ [(∼ P ∨Q) ∨R]

≡ ∼ [(P ⇒ Q) ∨R].

Alternatively, we could check that the left and right hand sides have identical truth
tables: each side is False only when P is True and Q and R are both False. Another
method would be to check that the proposition obtained by changing the “≡” to a
“⇔” is a Tautology, by means of a truth table.

2. Simplify the sentential form (P∧ ∼ Q) ⇒ (P ∨Q) as much as possible.

Solution.

(P∧ ∼ Q) ⇒ (P ∨Q) ≡ ∼ (P∧ ∼ Q) ∨ (P ∨Q)

≡ (∼ P ∨Q) ∨ (P ∨Q)

≡ ∼ P ∨ P ∨Q ∨Q

≡ Q.

3. Write the following propositions symbolically with no words. (You do not have to
prove them.)

(a) “There does not exist a largest real number.”

Solution.
∀x ∈ R ∃y ∈ R (y > x)

or a more literal version would be ∼ [∃x ∈ R ∀y ∈ R (y ≤ x)].

(b) “The interval strictly between any two distinct real numbers contains at least one
rational number.”

Solution.
∀x ∈ R ∀y ∈ R [(x < y) ⇒ ∃z ∈ Q (x < z < y)]
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(c) “Every nonempty set has at least two distinct subsets.”

Solution. (We must assume that some set U of sets is given for the domain of
interpretation.)

∀A [(A 6= ∅) ⇒ ∃B ∃C (B 6= C ∧B ⊆ A ∧ C ⊆ A)]

4. Determine whether the following statements are true or false, where the universe of
discourse is the set of all real numbers, and give a brief justification.

(a) ∀x ∃y [(y > 0) ⇒ (xy > 0)]

Solution. True. Notice that the implication is automatically true whenever
y ≤ 0. So for any x, one such y that makes the implication true is y = 0.

(b) ∀x ∃y ∀z [(x + y)z2 ≤ 0]

Solution. True. Since z2 ≥ 0 for any z, the inequality will be satisfied if and
only if x + y ≤ 0. So for any x, we can choose y = −x (or any y < −x) to make
the inequality true for all z.

(c) ∃x ∀y (xy = 1)

Solution. False. This says that there is some x that is equal to 1/y for every
y 6= 0. Clearly that is impossible.

(d) ∀y ∃x (x < y < x + 1)

Solution. True. Any y satisfies the inequality y − 1/2 < y < y + 1/2, so we can
take x = y − 1/2.

5. Recall that the Sheffer stroke of two propostions P and Q is defined as

P ↑ Q ≡∼ (P ∧Q).

If A = {x | P (x)} and B = {x | Q(x)}, let S = {x | P (x) ↑ Q(x)}. (Assume everything
is contained in a fixed domain of interpretation U .)

(a) Describe the set S in terms of A and B, using the standard set operations (eg.
union, intersection, set difference, etc.).

Solution.

S = {x | P (x) ↑ Q(x)} = {x | ∼ (P (x) ∧Q(x))}
= {x | P (x) ∧Q(x)}′

= (A ∩B)′.

(b) Illustrate S using a Venn Diagram.

Solution. Everything should be shaded except for the intersection of A and B.

(c) If we also know that A ⊆ B, what else can we say about S?

Solution. If A ⊆ B, then A ∩ B = A (think of a Venn diagram, if you are not
sure about this). Thus S = (A ∩B)′ = A′ is the complement of A.
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6. Let A be a finite set, and let B be a subset of A. Prove that A = B if and only if
|A| = |B|. (Recall, |A| is the cardinality of A, i.e., the number of elements of A.)

Solution. If A = B, then A and B have exactly the same elements, and so they must
have equal numbers of elements. Conversely, suppose that |A| = |B|, and assume by
way of contradiction that A 6= B. Since B ⊂ A, there exists an x ∈ A−B, and A has
at least one more element than B: |A| ≥ |B|+ 1. This contradicts the fact that A and
B have the same cardinality.

7. Let A, B, C be sets. Prove:

(a) If A ⊆ B and A ⊆ C, then A ⊆ B ∩ C.

Solution. Let x be an element of A. Since A ⊆ B, we know that x ∈ B, and
since A ⊆ C we know that x ∈ C. Since x ∈ B and x ∈ C, we know x ∈ B ∩ C.
This shows that any element of A belongs also to B ∩ C, and hence A ⊆ B ∩ C.

(b) If A ⊆ C and B ⊆ C, then A ∪B ⊆ C.

Solution. Let x be an element of A ∪ B. Then x ∈ A or x ∈ B. If x ∈ A, then
A ⊆ C implies that x ∈ C. If, on the other hand, x ∈ B, then B ⊆ C implies
that x ∈ C. Thus, we see that any element of A ∪ B is also an element of C. In
other words, A ∪B ⊆ C.

8. Consider the proposition: “Every nonzero rational number is equal to a product of two
irrational numbers.”

(a) Write this proposition using only symbols and no words.

Solution. ∀x ∈ Q [(x 6= 0) ⇒ ∃y ∈ R ∃z ∈ R[(y /∈ Q) ∧ (z /∈ Q) ∧ (x = yz)]]

(b) Prove this proposition.

Solution. Let x 6= 0 be a rational number, and let y be any nonzero irrational
number (for example, let y =

√
2). Then x = y(x/y). We claim that x/y is

also an irrational number. We prove this fact indirectly. Assume, by way of
contradiction, that x/y is rational. This means that there are integers a 6= 0 and
b 6= 0 such that x/y = a/b. Since x is rational and nonzero, there are integers
c 6= 0 and d 6= 0 such that x = c/d. Solving for y we get y = xb/a = cb/ad ∈ Q.
This contradicts the fact that y is irrational. Hence x = y(x/y) is a product of
two irrational numbers.

9. Consider the family {An}n∈N of subsets

An = {x ∈ R | nx ∈ Z }

of R, indexed by the set N of natural numbers. Prove:

(a)
⋃
n∈N

An = Q.
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Solution. We must show two set inclusions
⋃
n∈N

An ⊆ Q and Q ⊆
⋃
n∈N

An to

establish the equality of these two sets. For the first inclusion, it suffices to show
that each An is a subset of Q. To see this, let x ∈ An. Thus nx = m ∈ Z and
x = m/n ∈ Q since m, n ∈ Z. Thus An ⊆ Q for all n, and it follows (by essentially
the same argument as in 7b) that the union of the An’s is a subset of Q. To prove
the reverse inclusion, let x ∈ Q. Then x can be written as a fraction x = a/b with
a ∈ Z and b ∈ N. Thus bx = a ∈ Z and it follows that x ∈ Ab for the natural
number b. Hence, x also belongs to the union of all the An’s. This completes the
proof.

(b)
⋂
n∈N

An = Z.

Solution. As above, in order to prove that these two sets are equal, we must

prove the two inclusions:
⋂
n∈N

An ⊆ Z and Z ⊆
⋂
n∈N

An. To prove the first, suppose

that x belongs to An for every n ∈ N (that is, x belongs to the intersection).
Then, in particular, letting n = 1 we have x ∈ A1 = {y | 1y ∈ Z} = Z. To prove
the reverse inclusion, let x ∈ Z. Then nx ∈ Z for any n ∈ N. Thus x ∈ An

for every n ∈ N, and this is exactly the same as saying that x belongs to the
intersection of all the An’s, as required.

4


