Math 8 - Solutions to Midterm Review Problems

Winter 2007

1. Prove the logical equivalence:

$$
(P \wedge \sim Q) \wedge(R \Rightarrow Q) \equiv \sim[(P \Rightarrow Q) \vee R]
$$

Solution. Starting with the left-hand side and using the identity $A \Rightarrow B \equiv \sim A \vee B$ and then the distributive law, we have

$$
\begin{aligned}
(P \wedge \sim Q) \wedge(R \Rightarrow Q) & \equiv(P \wedge \sim Q) \wedge(\sim R \vee Q) \\
& \equiv(P \wedge \sim Q \wedge \sim R) \vee(P \wedge \sim Q \wedge Q) \\
& \equiv(P \wedge \sim Q \wedge \sim R) \vee \mathbf{F} \\
& \equiv P \wedge \sim Q \wedge \sim R \\
& \equiv \sim[\sim(P \wedge \sim Q) \vee R] \\
& \equiv \sim[(\sim P \vee Q) \vee R] \\
& \equiv \sim[(P \Rightarrow Q) \vee R] .
\end{aligned}
$$

Alternatively, we could check that the left and right hand sides have identical truth tables: each side is False only when P is True and Q and R are both False. Another method would be to check that the proposition obtained by changing the "三" to a " \Leftrightarrow " is a Tautology, by means of a truth table.
2. Simplify the sentential form $(P \wedge \sim Q) \Rightarrow(P \vee Q)$ as much as possible.

Solution.

$$
\begin{aligned}
(P \wedge \sim Q) \Rightarrow(P \vee Q) & \equiv \sim(P \wedge \sim Q) \vee(P \vee Q) \\
& \equiv(\sim P \vee Q) \vee(P \vee Q) \\
& \equiv \sim P \vee P \vee Q \vee Q \\
& \equiv Q .
\end{aligned}
$$

3. Write the following propositions symbolically with no words. (You do not have to prove them.)
(a) "There does not exist a largest real number."

Solution.

$$
\forall x \in \mathbb{R} \exists y \in \mathbb{R}(y>x)
$$

or a more literal version would be $\sim[\exists x \in \mathbb{R} \forall y \in \mathbb{R}(y \leq x)]$.
(b) "The interval strictly between any two distinct real numbers contains at least one rational number."

Solution.

$$
\forall x \in \mathbb{R} \forall y \in \mathbb{R}[(x<y) \Rightarrow \exists z \in \mathbb{Q}(x<z<y)]
$$

(c) "Every nonempty set has at least two distinct subsets."

Solution. (We must assume that some set U of sets is given for the domain of interpretation.)

$$
\forall A[(A \neq \emptyset) \Rightarrow \exists B \exists C(B \neq C \wedge B \subseteq A \wedge C \subseteq A)]
$$

4. Determine whether the following statements are true or false, where the universe of discourse is the set of all real numbers, and give a brief justification.
(a) $\forall x \exists y[(y>0) \Rightarrow(x y>0)]$

Solution. True. Notice that the implication is automatically true whenever $y \leq 0$. So for any x, one such y that makes the implication true is $y=0$.
(b) $\forall x \exists y \forall z\left[(x+y) z^{2} \leq 0\right]$

Solution. True. Since $z^{2} \geq 0$ for any z, the inequality will be satisfied if and only if $x+y \leq 0$. So for any x, we can choose $y=-x$ (or any $y<-x$) to make the inequality true for all z.
(c) $\exists x \forall y(x y=1)$

Solution. False. This says that there is some x that is equal to $1 / y$ for every $y \neq 0$. Clearly that is impossible.
(d) $\forall y \exists x(x<y<x+1)$

Solution. True. Any y satisfies the inequality $y-1 / 2<y<y+1 / 2$, so we can take $x=y-1 / 2$.
5. Recall that the Sheffer stroke of two propostions P and Q is defined as

$$
P \uparrow Q \equiv \sim(P \wedge Q)
$$

If $A=\{x \mid P(x)\}$ and $B=\{x \mid Q(x)\}$, let $S=\{x \mid P(x) \uparrow Q(x)\}$. (Assume everything is contained in a fixed domain of interpretation U.)
(a) Describe the set S in terms of A and B, using the standard set operations (eg. union, intersection, set difference, etc.).

Solution.

$$
\begin{aligned}
S=\{x \mid P(x) \uparrow Q(x)\} & =\{x \mid \sim(P(x) \wedge Q(x))\} \\
& =\{x \mid P(x) \wedge Q(x)\}^{\prime} \\
& =(A \cap B)^{\prime}
\end{aligned}
$$

(b) Illustrate S using a Venn Diagram.

Solution. Everything should be shaded except for the intersection of A and B.
(c) If we also know that $A \subseteq B$, what else can we say about S ?

Solution. If $A \subseteq B$, then $A \cap B=A$ (think of a Venn diagram, if you are not sure about this). Thus $S=(A \cap B)^{\prime}=A^{\prime}$ is the complement of A.
6. Let A be a finite set, and let B be a subset of A. Prove that $A=B$ if and only if $|A|=|B|$. (Recall, $|A|$ is the cardinality of A, i.e., the number of elements of A.)
Solution. If $A=B$, then A and B have exactly the same elements, and so they must have equal numbers of elements. Conversely, suppose that $|A|=|B|$, and assume by way of contradiction that $A \neq B$. Since $B \subset A$, there exists an $x \in A-B$, and A has at least one more element than $B:|A| \geq|B|+1$. This contradicts the fact that A and B have the same cardinality.
7. Let A, B, C be sets. Prove:
(a) If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Solution. Let x be an element of A. Since $A \subseteq B$, we know that $x \in B$, and since $A \subseteq C$ we know that $x \in C$. Since $x \in B$ and $x \in C$, we know $x \in B \cap C$. This shows that any element of A belongs also to $B \cap C$, and hence $A \subseteq B \cap C$.
(b) If $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Solution. Let x be an element of $A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$, then $A \subseteq C$ implies that $x \in C$. If, on the other hand, $x \in B$, then $B \subseteq C$ implies that $x \in C$. Thus, we see that any element of $A \cup B$ is also an element of C. In other words, $A \cup B \subseteq C$.
8. Consider the proposition: "Every nonzero rational number is equal to a product of two irrational numbers."
(a) Write this proposition using only symbols and no words.

Solution. $\forall x \in \mathbb{Q}[(x \neq 0) \Rightarrow \exists y \in \mathbb{R} \exists z \in \mathbb{R}[(y \notin \mathbb{Q}) \wedge(z \notin \mathbb{Q}) \wedge(x=y z)]]$
(b) Prove this proposition.

Solution. Let $x \neq 0$ be a rational number, and let y be any nonzero irrational number (for example, let $y=\sqrt{2}$). Then $x=y(x / y)$. We claim that x / y is also an irrational number. We prove this fact indirectly. Assume, by way of contradiction, that x / y is rational. This means that there are integers $a \neq 0$ and $b \neq 0$ such that $x / y=a / b$. Since x is rational and nonzero, there are integers $c \neq 0$ and $d \neq 0$ such that $x=c / d$. Solving for y we get $y=x b / a=c b / a d \in \mathbb{Q}$. This contradicts the fact that y is irrational. Hence $x=y(x / y)$ is a product of two irrational numbers.
9. Consider the family $\left\{A_{n}\right\}_{n \in \mathbb{N}}$ of subsets

$$
A_{n}=\{x \in \mathbb{R} \mid n x \in \mathbb{Z}\}
$$

of \mathbb{R}, indexed by the set \mathbb{N} of natural numbers. Prove:
(a) $\bigcup_{n \in \mathbb{N}} A_{n}=\mathbb{Q}$.

Solution. We must show two set inclusions $\bigcup_{n \in \mathbb{N}} A_{n} \subseteq \mathbb{Q}$ and $\mathbb{Q} \subseteq \bigcup_{n \in \mathbb{N}} A_{n}$ to establish the equality of these two sets. For the first inclusion, it suffices to show that each A_{n} is a subset of \mathbb{Q}. To see this, let $x \in A_{n}$. Thus $n x=m \in \mathbb{Z}$ and $x=m / n \in \mathbb{Q}$ since $m, n \in \mathbb{Z}$. Thus $A_{n} \subseteq \mathbb{Q}$ for all n, and it follows (by essentially the same argument as in 7b) that the union of the A_{n} 's is a subset of \mathbb{Q}. To prove the reverse inclusion, let $x \in \mathbb{Q}$. Then x can be written as a fraction $x=a / b$ with $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Thus $b x=a \in \mathbb{Z}$ and it follows that $x \in A_{b}$ for the natural number b. Hence, x also belongs to the union of all the A_{n} 's. This completes the proof.
(b) $\bigcap_{n \in \mathbb{N}} A_{n}=\mathbb{Z}$.

Solution. As above, in order to prove that these two sets are equal, we must prove the two inclusions: $\bigcap_{n \in \mathbb{N}} A_{n} \subseteq \mathbb{Z}$ and $\mathbb{Z} \subseteq \bigcap_{n \in \mathbb{N}} A_{n}$. To prove the first, suppose that x belongs to A_{n} for every $n \in \mathbb{N}$ (that is, x belongs to the intersection). Then, in particular, letting $n=1$ we have $x \in A_{1}=\{y \mid 1 y \in \mathbb{Z}\}=\mathbb{Z}$. To prove the reverse inclusion, let $x \in \mathbb{Z}$. Then $n x \in \mathbb{Z}$ for any $n \in \mathbb{N}$. Thus $x \in A_{n}$ for every $n \in \mathbb{N}$, and this is exactly the same as saying that x belongs to the intersection of all the A_{n} 's, as required.

