Math 8 - Solutions to Midterm Review Problems Winter 2007

1. Prove the logical equivalence:

$$(P \wedge \sim Q) \wedge (R \Rightarrow Q) \equiv \sim [(P \Rightarrow Q) \lor R].$$

Solution. Starting with the left-hand side and using the identity $A \Rightarrow B \equiv \sim A \lor B$ and then the distributive law, we have

$$(P \land \sim Q) \land (R \Rightarrow Q) \equiv (P \land \sim Q) \land (\sim R \lor Q)$$
$$\equiv (P \land \sim Q \land \sim R) \lor (P \land \sim Q \land Q)$$
$$\equiv (P \land \sim Q \land \sim R) \lor \mathbf{F}$$
$$\equiv P \land \sim Q \land \sim R$$
$$\equiv \sim [\sim (P \land \sim Q) \lor R]$$
$$\equiv \sim [(\sim P \lor Q) \lor R]$$
$$\equiv \sim [(P \Rightarrow Q) \lor R].$$

Alternatively, we could check that the left and right hand sides have identical truth tables: each side is False only when P is True and Q and R are both False. Another method would be to check that the proposition obtained by changing the " \equiv " to a " \Leftrightarrow " is a Tautology, by means of a truth table.

2. Simplify the sentential form $(P \land \sim Q) \Rightarrow (P \lor Q)$ as much as possible. Solution.

$$(P \land \sim Q) \Rightarrow (P \lor Q) \equiv \sim (P \land \sim Q) \lor (P \lor Q)$$
$$\equiv (\sim P \lor Q) \lor (P \lor Q)$$
$$\equiv \sim P \lor P \lor Q \lor Q$$
$$\equiv Q.$$

- 3. Write the following propositions symbolically with no words. (You do not have to prove them.)
 - (a) "There does not exist a largest real number." Solution.

$$\forall x \in \mathbb{R} \; \exists y \in \mathbb{R} \; (y > x)$$

or a more literal version would be $\sim [\exists x \in \mathbb{R} \ \forall y \in \mathbb{R} \ (y \leq x)].$

(b) "The interval strictly between any two distinct real numbers contains at least one rational number."

Solution.

$$\forall x \in \mathbb{R} \ \forall y \in \mathbb{R} \ [(x < y) \Rightarrow \exists z \in \mathbb{Q} \ (x < z < y)]$$

- (c) "Every nonempty set has at least two distinct subsets."
 - **Solution.** (We must assume that some set U of sets is given for the domain of interpretation.)

 $\forall A \ [(A \neq \emptyset) \Rightarrow \exists B \ \exists C \ (B \neq C \land B \subseteq A \land C \subseteq A)]$

- 4. Determine whether the following statements are true or false, where the universe of discourse is the set of all real numbers, and give a brief justification.
 - (a) $\forall x \exists y \ [(y > 0) \Rightarrow (xy > 0)]$ Solution. True. Notice that the implication is automatically true whenever $y \leq 0$. So for any x, one such y that makes the implication true is y = 0.
 - (b) $\forall x \exists y \forall z \ [(x+y)z^2 \leq 0]$ Solution. True. Since $z^2 \geq 0$ for any z, the inequality will be satisfied if and only if $x + y \leq 0$. So for any x, we can choose y = -x (or any y < -x) to make the inequality true for all z.
 - (c) $\exists x \ \forall y \ (xy = 1)$ Solution. False. This says that there is some x that is equal to 1/y for every $y \neq 0$. Clearly that is impossible.
 - (d) $\forall y \exists x \ (x < y < x + 1)$ Solution. True. Any y satisfies the inequality y - 1/2 < y < y + 1/2, so we can take x = y - 1/2.
- 5. Recall that the Sheffer stroke of two propositions P and Q is defined as

$$P \uparrow Q \equiv \sim (P \land Q).$$

If $A = \{x \mid P(x)\}$ and $B = \{x \mid Q(x)\}$, let $S = \{x \mid P(x) \uparrow Q(x)\}$. (Assume everything is contained in a fixed domain of interpretation U.)

(a) Describe the set S in terms of A and B, using the standard set operations (eg. union, intersection, set difference, etc.).Solution.

$$S = \{x \mid P(x) \uparrow Q(x)\} = \{x \mid \sim (P(x) \land Q(x))\} \\ = \{x \mid P(x) \land Q(x)\}' \\ = (A \cap B)'.$$

- (b) Illustrate S using a Venn Diagram.Solution. Everything should be shaded except for the intersection of A and B.
- (c) If we also know that $A \subseteq B$, what else can we say about S? Solution. If $A \subseteq B$, then $A \cap B = A$ (think of a Venn diagram, if you are not sure about this). Thus $S = (A \cap B)' = A'$ is the complement of A.

6. Let A be a finite set, and let B be a subset of A. Prove that A = B if and only if |A| = |B|. (Recall, |A| is the cardinality of A, i.e., the number of elements of A.)

Solution. If A = B, then A and B have exactly the same elements, and so they must have equal numbers of elements. Conversely, suppose that |A| = |B|, and assume by way of contradiction that $A \neq B$. Since $B \subset A$, there exists an $x \in A - B$, and A has at least one more element than B: $|A| \ge |B| + 1$. This contradicts the fact that A and B have the same cardinality.

- 7. Let A, B, C be sets. Prove:
 - (a) If $A \subseteq B$ and $A \subseteq C$, then $A \subseteq B \cap C$.

Solution. Let x be an element of A. Since $A \subseteq B$, we know that $x \in B$, and since $A \subseteq C$ we know that $x \in C$. Since $x \in B$ and $x \in C$, we know $x \in B \cap C$. This shows that any element of A belongs also to $B \cap C$, and hence $A \subseteq B \cap C$.

- (b) If $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$. Solution. Let x be an element of $A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$, then $A \subseteq C$ implies that $x \in C$. If, on the other hand, $x \in B$, then $B \subseteq C$ implies that $x \in C$. Thus, we see that any element of $A \cup B$ is also an element of C. In other words, $A \cup B \subseteq C$.
- 8. Consider the proposition: "Every nonzero rational number is equal to a product of two irrational numbers."
 - (a) Write this proposition using only symbols and no words. **Solution.** $\forall x \in \mathbb{Q} \ [(x \neq 0) \Rightarrow \exists y \in \mathbb{R} \ \exists z \in \mathbb{R} [(y \notin \mathbb{Q}) \land (z \notin \mathbb{Q}) \land (x = yz)]]$
 - (b) Prove this proposition.

Solution. Let $x \neq 0$ be a rational number, and let y be any nonzero irrational number (for example, let $y = \sqrt{2}$). Then x = y(x/y). We claim that x/y is also an irrational number. We prove this fact indirectly. Assume, by way of contradiction, that x/y is rational. This means that there are integers $a \neq 0$ and $b \neq 0$ such that x/y = a/b. Since x is rational and nonzero, there are integers $c \neq 0$ and $d \neq 0$ such that x = c/d. Solving for y we get $y = xb/a = cb/ad \in \mathbb{Q}$. This contradicts the fact that y is irrational. Hence x = y(x/y) is a product of two irrational numbers.

9. Consider the family $\{A_n\}_{n\in\mathbb{N}}$ of subsets

$$A_n = \{ x \in \mathbb{R} \mid nx \in \mathbb{Z} \}$$

of \mathbb{R} , indexed by the set \mathbb{N} of natural numbers. Prove:

(a) $\bigcup_{n \in \mathbb{N}} A_n = \mathbb{Q}.$

Solution. We must show two set inclusions $\bigcup_{n\in\mathbb{N}} A_n \subseteq \mathbb{Q}$ and $\mathbb{Q} \subseteq \bigcup_{n\in\mathbb{N}} A_n$ to establish the equality of these two sets. For the first inclusion, it suffices to show that each A_n is a subset of \mathbb{Q} . To see this, let $x \in A_n$. Thus $nx = m \in \mathbb{Z}$ and $x = m/n \in \mathbb{Q}$ since $m, n \in \mathbb{Z}$. Thus $A_n \subseteq \mathbb{Q}$ for all n, and it follows (by essentially the same argument as in 7b) that the union of the A_n 's is a subset of \mathbb{Q} . To prove the reverse inclusion, let $x \in \mathbb{Q}$. Then x can be written as a fraction x = a/b with $a \in \mathbb{Z}$ and $b \in \mathbb{N}$. Thus $bx = a \in \mathbb{Z}$ and it follows that $x \in A_b$ for the natural number b. Hence, x also belongs to the union of all the A_n 's. This completes the proof.

(b) $\bigcap_{n \in \mathbb{N}} A_n = \mathbb{Z}.$

Solution. As above, in order to prove that these two sets are equal, we must prove the two inclusions: $\bigcap_{n \in \mathbb{N}} A_n \subseteq \mathbb{Z}$ and $\mathbb{Z} \subseteq \bigcap_{n \in \mathbb{N}} A_n$. To prove the first, suppose that x belongs to A_n for every $n \in \mathbb{N}$ (that is, x belongs to the intersection).

Then, in particular, letting n = 1 we have $x \in A_1 = \{y \mid 1y \in \mathbb{Z}\} = \mathbb{Z}$. To prove the reverse inclusion, let $x \in \mathbb{Z}$. Then $nx \in \mathbb{Z}$ for any $n \in \mathbb{N}$. Thus $x \in A_n$ for every $n \in \mathbb{N}$, and this is exactly the same as saying that x belongs to the intersection of all the A_n 's, as required.