Math 8 - Class Work - Solutions
 January 25, 2007

Consider the following functional propositions, where the domain of interpretation for all variables is the set S of people in this room.

- $P(x, y)=$ " x knows y 's name."
- $Q(x, y)=$ " x and y are friends."
- $R(x)=$ " x owns a cell phone."

Express the following propositions in logical symbols:

1. "There is someone in this room who has no friends."

Answer: $\exists x \forall y(\sim Q(x, y))$
Negation: "Everyone has at least one friend" $=\forall x \exists y Q(x, y)$
2. "Someone in this room knows everyone's name."

Answer: $\exists x \forall y P(x, y)$
Negation: "No one knows everyone's name" $=\forall x \exists y(\sim P(x, y))$
3. "Everyone in this room knows somebody's name."

Answer: $\forall x \exists y P(x, y)$
Negation: "Someone knows nobody's name." $=\exists x \forall y(\sim P(x, y))$
4. "Somebody in this room knows nobody's name besides his/her own."

Answer: $\exists x \forall y[(y=x) \vee(\sim P(x, y))]$
Negation: "Everyone knows at least one name besides his/her own"

$$
=\forall x \exists y[(y \neq x) \wedge P(x, y)]
$$

5. "There is someone in this room all of whose friends own cell phones."

Answer: $\exists x \forall y(Q(x, y) \Rightarrow R(y))$
Negation: "Everyone has at least one friend who doesn't own a cell phone"

$$
=\forall x \exists y(Q(x, y) \wedge \sim R(y))
$$

6. "Any two friends know each other's names."

Answer: $\forall x \forall y[Q(x, y) \Rightarrow(P(x, y) \wedge P(y, x))]$

Negation: "There are two friends who don't know each others' names"

$$
=\exists x \exists y[Q(x, y) \wedge(\sim P(x, y) \vee \sim P(y, x))]
$$

7. "Someone in this room knows the names of everyone who knows his/her name."

Answer: $\exists x \forall y(P(y, x) \Rightarrow P(x, y))$
Negation: "Nobody knows the names of everyone who knows his/her name"

$$
=\forall x \exists y(P(y, x) \wedge \sim P(x, y))
$$

8. "Everyone in this room is friends with someone who either does not own a cell phone or has only one friend."

Answer: $\forall x \exists y[Q(x, y) \wedge(\sim R(y) \vee(\forall z(Q(y, z) \Rightarrow z=x)))]$ (The formula simplifies a little since when x and y are friends, " y has only one friend" is the same as saying " x is the only friend of $y . ")$
Negation: "Someone is only friends with people who own a cell phone and have more than one friend"

$$
=\exists x \forall y[Q(x, y) \Rightarrow(R(y) \wedge \exists z(Q(y, z) \wedge z \neq x))]
$$

