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Abstract. We say that an algebra A is periodic if it has a periodic projective resolution as an (A, A)-

bimodule. We show that any self-injective algebra of finite representation type is periodic. To prove this, we

first apply the theory of smash products to show that for a finite Galois covering B → A, B is periodic if and
only if A is. In addition, when A has finite representation type, we build upon results of Buchweitz to show

that periodicity passes between A and its stable Auslander algebra. Finally, we use Asashiba’s classification

of the derived equivalence classes of self-injective algebras of finite type to compute bounds for the periods
of these algebras, and give an application to stable Calabi-Yau dimensions.

1. Introduction

One of the aims of this article is to investigate periodicity of Hochschild cohomology for a finite-dimensional
algebra A over an algebraically closed field k. Such periodicity is clearly guaranteed if the minimal projective
resolution of the bimodule AAA over the enveloping algebra Ae = Aop ⊗k A is periodic, and we thus say
that an algebra with this property is periodic. It is shown in [18] that periodic algebras are necessarily self-
injective, and numerous examples are known. Schofield has shown that the preprojective algebras associated
to Dynkin graphs are periodic (see [15]), and these results have recently been generalized to deformed
preprojective algebras by Bia lkowski, Erdmann and Skowroński [4]. By direct calculation, Erdmann, Holm
and Snashall have also verified that the self-injective algebras of finite type and tree class An are periodic
[11, 12]. Additional examples, including trivial extensions of path algebras of Dynkin quivers, were discovered
by Brenner, Butler and King [6]. A fairly comprehensive survey of these algebras with still more examples
is given by Erdmann and Skowroński in [14].

Self-injective algebras of finite representation type provide a particularly interesting problem in this con-
text. It is easy to see that every nonprojective indecomposable module M over such an algebra A must
be isomorphic to one of its syzygies. Using this observation, Green, Snashall and Solberg show that some
syzygy of A over Ae is isomorphic to a twisted bimodule 1Aσ for some σ ∈ Aut(A) [18]. This implies that
the minimal projective resolution of A over Ae is very close to being periodic (for instance, the modules
in the resolution repeat). Nevertheless, whether or not A is actually periodic has serious implications for
the structure of the Hochschild cohomology ring of A. In particular, if N denotes the nil radical of the
Hochschild cohomology ring HH∗(A), Green, Snashall and Solberg show that

HH∗(A)/N ∼=
{

k, if A is not periodic
k[x], if A is periodic,

where the degree of x equals the (minimal) period of A.
In this article, we resolve this question, showing that self-injective algebras of finite type are indeed

periodic. Erdmann and Skowroǹski have recently obtained this result for standard algebras not of type
(D3m, s/3, 1) with 3 - s by different means in [14]. In the course of our proof, we expand the known ways
of finding periodic algebras by showing that this periodicity is preserved upon passing between an algebra
and its finite Galois coverings (equivalently, smash products), as well as its stable Auslander algebra when
it has finite type. In particular, these methods allow us to establish a connection between the periodicity
of preprojective algebras and self-injective algebras of finite type. Using this correspondence, we can even
compute the periods of many algebras in the latter class in terms of their types as defined in [1], and obtain
decent bounds for the periods of the rest.
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Recently there has been renewed interest in periodicity questions arising from the study of Calabi-Yau
dimensions of stable module categories [5, 13, 16], and we apply our results to calculate these dimensions for
the standard symmetric algebras of finite type. This work corrects an error in [13], and suggests shortcomings
of the proofs of [5] concerning which finite-type self-injective algebras are Calabi-Yau. We shall return to
this problem in a subsequent paper.

I would like to extend thanks to Hideto Asashiba for some helpful correspondence, and to Kevin Walker
whose examples motivated this work.

2. Preliminaries

All algebras we consider are assumed to be split, basic finite-dimensional algebras over a field k. Such
algebras can always be expressed as path algebras modulo relations kQ/I for a quiver Q, and we will
usually assume that we are given such a presentation. In this case, we write e1, . . . , en for the primitive
idempotents associated to the vertices Q0 of Q, and we write Q1 for the set of arrows of Q. We write mod-A
(resp. Mod-A) for the category of finite-dimensional (resp. all) right A-modules, which we identify with
contravariant representations of Q, and we denote the simple right A-modules (up to isomorphism) as Si for
1 ≤ i ≤ n. We let Ae = Aop ⊗k A be the enveloping algebra for A, and we identify (A,A)-bimodules with
right Ae-modules.

Suppose that A = ⊕g∈GAg is a G-graded algebra for some group G (with identity e). We assume
throughout this article, that the primitive idempotents ei of A are homogeneous of degree e. This ensures
that the indecomposable projective modules are graded. We write J = J(A) for the Jacobson radical of
A and JG = JG(A) for the graded Jacobson radical of A, which can be defined as the intersection of the
maximal graded right ideals of A. We will often assume that the grading is such that JG = J , which we term
a radical grading. When G is finite, Cohen and Montgomery have shown that JG is the largest homogeneous
ideal contained in J [10]; hence in this case, equality of the two radicals is tantamount to homogeneity of
J . Furthermore, this equality is automatic whenever |G| is invertible in A. One significant way of obtaining
radical gradings of A = kQ/I is through a function π : Q1 → G as in [17], whose image generates G and for
which I ⊂ kQ is homogeneous. Here J is a homogeneous ideal containing ⊕g 6=eAg. As illustrated in [17],
these gradings correspond to Galois covers of A.

We write modG-A for the category of finite-dimensional G-graded right A-modules and degree-preserving
morphisms. For a graded A-module M and d ∈ G, we define M [d] to be the graded A-module given by
M [d]g = Md−1g. For a radical grading, the graded simple A-modules, up to isomorphism, are precisely the
Si[d] for 1 ≤ i ≤ n and d ∈ G, and each such has a minimal graded projective resolution. Furthermore,
the minimal graded projective resolution of Si[d] coincides with the minimal projective resolution of Si as a
complex of ungraded modules.

We shall also consider graded (A,A)-bimodules. We say a bimodule AMA is G-graded if M = ⊕g∈GMg

such that AhMg ⊆ Mhg and MgAh ⊆ Mgh for all g, h ∈ G. We let Bimod-A denote the category of (A,A)-
bimodules and BimodG-A denote the category of G-graded bimodules and degree-preserving morphisms.
Both are abelian categories, but unlike usual categories of graded modules, BimodG-A does not appear to be
equivalent to a module category when G is nonabelian. Nevertheless, when A has a radical grading, graded
bimodules admit graded projective covers, and these can be constructed by placing suitable gradings on the
(ungraded) projective covers: if AMA is graded, then its bimodule top M/(JM + MJ) is graded and this
defines a unique grading on the projective cover P of M such that the map P → M preserves degrees.

In [19], Happel describes the terms in the minimal projective resolution P • of A as an (A,A)-bimodule.
The rth term is the projective bimodule P r = ⊕i,j(Aei ⊗ ejA)mij where mij = dimk Extr

A(Si, Sj). This
follows easily once one notices that Si ⊗A P • is a minimal projective resolution of Si. Assuming that
J = JG, it follows from the above remarks that each P r can be graded to give a minimal graded projective
resolution of the graded bimodule AAA. For later reference, the grading on a summand of the form Aei⊗kejA
is obtained by letting deg(ei ⊗ ej) = d for some d ∈ G, which yields

(Aei ⊗ ejA)g =
⊕

s,t∈G, sdt=g

Asei ⊗ ejAt

for each g ∈ G. We denote this graded projective bimodule as Aei ⊗ ejA[d]. Now considering P • with this
grading, we see that Si[d] ⊗A P •

A gives a minimal graded projective resolution for Si[d]. Consequently, as
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a graded bimodule P r = ⊕i,j ⊕d∈G (Aei ⊗ ejA[d])md
ij where md

ij = dimk Extr
A(Si, Sj [d]) in modG-A. In

particular, when Ωr(Si) ∼= Si for all i, we have Ωr
Ae(A) generated in degree e if and only if Ωr(Si) ∼= Si as

graded modules for all i.
When the grading on A is induced by assigning weights to the arrows of Q, Green shows that the category

modG-A is equivalent to mod-B where the quiver and relations for B are a covering of those for A. In this
situation, B is said to be a Galois cover of A. In fact, such an equivalence exists for much more general
gradings, and we employ the language of smash products to give an explicit description of the resulting
algebra B [10]. For simplicity, we assume for the remainder of this article that G is finite. For a ∈ A and
g ∈ G, we write ag for the degree-g component of a, and pg for the function G → k that sends h to δh,g.

Definition 2.1. The smash product of A with G is the k-algebra A#k[G]∗ = ⊕g∈GApg with multiplication
given by

apg · bph = abgh−1ph, ∀a, b ∈ A.

Remark. Even if G is infinite, the smash product construction for categories can be applied to the G-graded
category ind(proj-A) of indecomposable projective A-modules to get a locally finite-dimensional category B
as in [8]. We also note that B is then a Galois cover of ind(proj-A) with group G.

We let B = A#k[G]∗. As each ei is homogeneous, a complete set of pairwise orthogonal primitive
idempotents of B is given by {eipg | 1 ≤ i ≤ n, g ∈ G}. We also observe that {ph | h ∈ G} is a set of
pairwise orthogonal idempotents in B that sum to 1. There is a free right G-action on this set, given by
ph · g = phg, and this induces a right action of G on B. There is a natural embedding of algebras i : A → B,
sending a ∈ A to a · 1 =

∑
h∈G aph ∈ B, and one easily checks that i identifies A with the invariant subring

BG.
As mentioned above, there is an isomorphism of categories Mod-B ∼= ModG-A [10, 8, 17], and we will often

use it to identify graded A-modules with B-modules. We also have a pull-up functor F = −⊗ABB : Mod-A →
Mod-B, which is exact since AB is free. If MA is a right A-module, then F (M) = M ⊗A B = ⊕h∈GMph.
In terms of this decomposition, the right B-module structure on F (M) is given by (mph)(apg) = mahg−1pg.
The push-down functor i∗ : Mod-B → Mod-A is induced by the embedding i : A → B. Since this is
essentially a restriction functor, it is exact and right adjoint to F . As G is finite, these functors restrict to
the full subcategories of finitely-generated modules.

Before stating one last result on smash products, we review the definition of twisted bimodules. If
σ ∈ Aut(A) is a k-algebra automorphism, and AMA is an (A,A)-bimodule, we will write 1Mσ for the
twisted bimodule, where the left action of A is the same as on M but the right action of A is twisted by
σ: m · a = maσ. Equivalently, we have 1Mσ

∼= 1M ⊗A 1Aσ. Concerning twisted bimodules of the form

1Aσ, we have the following simple observations: (1) σ−1 : 1Aσ

∼=→ σ−1A1 is an isomorphism of bimodules; (2)
1Aσ ⊗A 1Aτ

∼= 1Aτσ; and (3) 1Aσ
∼= 1A1 if and only if σ is an inner automorphism.

Lemma 2.2. There is an isomorphism of (B,B)-bimodules BB ⊗A BB
∼=

⊕
x∈G

1Bx.

Proof. We have

BB ⊗A BB
∼=

⊕
s∈G

B ⊗ ps
∼=

⊕
x∈G

⊕
g∈G

Apg ⊗ pgx−1

 .

Finally, the map sending
∑

g agpg ⊗ pgx−1 7→
∑

g agpg is easily seen to give a (B,B)-bimodule isomorphism

⊕g∈GApg ⊗ pgx−1
∼=→ 1Bx for each x ∈ G. �

3. Lifting bimodules and resolutions

Keeping the notation of the previous section, we now specify how to lift a graded (A,A)-bimodule to a
(B,B)-bimodule, and apply this to construct a projective bimodule resolution for B from one for A. When
A is radical graded, we show that one of these resolutions is periodic if and only if the other is. Still the
definitions and basic properties proved below are valid for arbitrary group gradings, and we shall make use
of them in greater generality in Section 6.
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Definition 3.1. Let AMA be a G-graded bimodule, and fix x ∈ G. We let Fx(M) equal F (M) as a right
B-module (even as an (A,B)-bimodule), and we define a left B-module structure on F (M) by the formula

apg ·mkph =
{

amkph, if g = khx
0 if g 6= khx

.

We first check that this defines a left B-action on F (M). For bpl ∈ B and ai ∈ Ai, we have

bpl · (aipg ·mkph) =
{

bpl · (aimkph), if g = khx
0 if g 6= khx

=
{

baimkph, if g = khx, l = ikhx
0 otherwise ,

and

(bpl · aipg) · (mkph) =
{

(baipg) · (mkph), if i = lg−1

0 if i 6= lg−1

=
{

baimkph, if l = ig, g = khx
0 otherwise .

We now check that the left and right B-actions on F (M) commute. We have

apg · (mkph · bpl) = apg · (mkbhl−1pl)

=
{

amkbhl−1pl, if g = khx
0 if g 6= khx

,

and

(apg ·mkph) · bpl =
{

(amkph) · bpl, if g = khx
0 if g 6= khx

=
{

amkbhl−1pl, if g = khx
0 if g 6= khx

.

If f : M → N is a morphism in BimodG-A we can check that F (f) : F (M) → F (N) also respects the left
B-action in this case, and so is a map of (B,B)-bimodules. Hence Fx : BimodG-A → Bimod-B is a functor.

We now establish several basic properties of these lifting functors. Throughout, AMA will denote a
G-graded (A,A)-bimodule, and the bimodule AAA is given the same grading as the algebra A.

Lemma 3.2. Fe(1A1) ∼= 1B1.

Proof. Clearly, the natural isomorphism Fe(1A1) = A ⊗A B −→ B is a morphism of right B-modules. We
check that it is also a left B-module morphism. For any a, b ∈ A and any h, g, l ∈ G, we have bpg ·alph = balph

if g = lh and it is 0 otherwise. Similarly, the multiplication in B yields bpgalph = balph if l = gh−1, which
holds if and only if g = lh, and is 0 otherwise. �

Lemma 3.3. If x ∈ G, Fx(M) ∼= 1Fe(M)x
∼= x−1Fe(M)1. In particular, Fx(1A1) ∼= 1Bx.

Proof. Consider the bijective map f : mph 7→ mphx on F (M) = M ⊗A B. We check that this is a bimodule
morphism from Fx(M) to 1Fe(M)x. We have f(apg ·mkph) = f(amkph) = amkphx if g = khx and otherwise
it is 0. We also have apg · f(mkph) = apg ·mkphx = amkphx if g = khx or 0 otherwise. On the right side,
we have f(mphapg) = f(mahg−1pg) = mahg−1pgx and f(mph) · apg = mphxapgx = mahg−1pgx. The second
isomorphism follows from the remarks in Section 2. �

Lemma 3.4. For x ∈ G, the functor Fx is exact and takes projectives to projectives.

Proof. Since the usual pull-up functor F : BimodG-A → Mod-B is exact and equals the composite of Fx and
the forgetful functor Bimod-B → Mod-B, Fx must be exact. Since F is additive, it suffices to show that
Fx(A⊗k A) is projective for any G-grading of the projective bimodule AA⊗k AA. Let BQB = Fx(A⊗k A),
which is isomorphic to A⊗k B as an (A,B)-bimodule. Thus B ⊗A B ⊗B Q ∼= B ⊗A (A⊗k B) ∼= B ⊗k B is
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a projective bimodule. On the other hand, by Lemma 2.2, B ⊗A B ⊗B Q ∼=
⊕
x∈G

xQ1. Since Q is clearly a

summand of the latter, it is projective. �

Remark. For the grading of the indecomposable projective (A,A)-bimodule APA = Aei ⊗k ejA with ei ⊗ ej

in degree e, one can check that there is an isomorphism

Fx(P ) ∼=
⊕
s∈G

Beipsx ⊗k ejpsB

of (B,B)-bimodules.

Lemma 3.5. Let AMA and ANA be G-graded bimodules. If M ∼= N as ungraded bimodules and Fe(M) is
an indecomposable (B,B)-bimodule, then Fe(M) ∼= Fx(N) for some x ∈ G.

Proof. Let f : M → N be an (A,A)-bimodule isomorphism. Tensoring with B, over A, on both sides
yields and isomorphism of (B,B)-bimodules 1B ⊗ f ⊗ 1B : B ⊗A Fe(M) → B ⊗A Fe(N). Since Fe(M) is a
(B,B)-bimodule, we have isomorphisms

B ⊗A Fe(M) ∼= B ⊗A B ⊗B Fe(M) ∼=
⊕
x∈G

xFe(M)1

by Lemma 2.2, and similarly for Fe(N). The indecomposability of Fe(M), along with the Krull-Schmidt
theorem, now implies that Fe(M) ∼= x−1Fe(N)1 ∼= Fx(N) for some x ∈ G. �

If M is a graded bimodule and d ∈ Z(G), we can shift the grading of M by d to get another graded
bimodule M [d] with M [d]g = Md−1g for all g ∈ G. Clearly M [d] ∼= M as ungraded bimodules. In this case
it is easy to see that we have a (B,B)-bimodule isomorphism Fe(M [d]) ∼= Fd(M).

Lemma 3.6. Suppose σ ∈ Aut(A) is a degree preserving automorphism such that Fe(σA1) ∼= 1B1 as (B,B)-
bimodules (we give σA1 the same grading as A). Then σ|G| is an inner automorphism.

Proof. Suppose that an isomorphism f : B → Fe(σA1) is given by sending 1B to
∑

g∈G mgpg for mg ∈ A. We
first claim that each mg is a unit concentrated in degree e. On one hand, we have f(pg) = f(1)pg = mgpg,
and on the other f(pg) = pgf(1) = pg

∑
h∈G mhph =

∑
h∈G mh

gh−1ph. It follows that mg
h = 0 if h 6= e

and mg
e = mg. Now consider f(apg) =

∑
h∈G apgm

hph = aσmgpg. Since f is injective, aσmg 6= 0 for all
nonzero a ∈ A. Surjectivity of f now implies that Amg = A, and hence mg must be a unit. We also have
f(apg) =

∑
h∈G mhphapg =

∑
h∈G mhahg−1pg. Therefore, for all h, g ∈ G and all ah ∈ Ah we have

aσ
h = mhgah(mg)−1.

We now apply this identity to show that the mg commute with each other. Since mg ∈ Ae for all g ∈ G,
we have (mg)σ = mgmg(mg)−1 = mg and (mg)σ = mhmg(mh)−1 for any other h ∈ G. We claim
that σ|G| is conjugation by m =

∏
g∈G mg. Let ah ∈ Ah where h has order r. Then for any x ∈ G,

(ah)σr

= mhrx · · ·mhxah(mx)−1 · · · (mhr−1x)−1, which is conjugation by
∏

g∈〈h〉x mg. Thus, if we repeat as

x runs through a right transversal to 〈h〉 in G, we see that (ah)σ|G|
= mahm−1. �

We now assume that A has a radical grading and show that A is periodic if and only if B is. For
convenience, we assume that both A and B are indecomposable. This ensures that the bimodules AAA and
BBB are indecomposable. (For gradings associated to Galois covers, we know that B is indecomposable if
and only if the grading on A is connected in the terminology of [17], i.e., if for all vertices u, v ∈ Q0 and each
g ∈ G there is an (undirected) walk in Q from u to v of degree g in kQ.) As in the previous section, we let
P • : · · · → P1 → P0 → AAA → 0 be a minimal (graded) projective resolution of A as an (A,A)-bimodule.

Theorem 3.7. Suppose that A is a G-graded k-algebra with homogeneous radical such that B = A#k[G]∗

is indecomposable. Then A has a periodic projective resolution over Ae if and only if B has a periodic
projective resolution over Be. Furthermore, if pA and pB denote the periods of A and B respectively, then
pB | pA exp(G) and pA | pB |G|.

5



Proof. First suppose that A is periodic. By lemmas 3.2 and 3.4, Fe(P •) will be a projective resolution
of B. Since Ωr

Ae(A) ∼= A, Lemmas 3.5 and 3.3 show that Ωr
Be(B) ∼= 1Bx for some x ∈ G. If xm = e,

then Ωrm
Be (B) ∼= 1Bxm ∼= B. Conversely, if Ωr

Be(B) ∼= B, then Ωr
B(S) ∼= S for every simple B-module S.

Equivalently, Ωr
A(Si) ∼= Si as graded modules for each simple A-module Si. As remarked in the previous

section, this implies that Ωr
Ae(A) is generated in degree e. By Theorem 1.4 of [18], Ωr

Ae(A) ∼= 1Aσ for
some automorphism σ of A. Moreover, in our case, the proof of this theorem easily yields that σ preserves
the grading on A and this bimodule isomorphism is degree-preserving (where 1Aσ has the same grading
as A). Comparing the projective resolution Fe(P •) to a minimal projective resolution of B, we see that
Fe(1Aσ) ∼= Ωr

Be(B) ∼= B. Thus, by Lemma 3.6 σ|G| is inner, and hence Ωr|G|
Ae (A) ∼= 1Aσ|G| ∼= A. �

It would be interesting to determine whether we always have pA | pB . Such a relation appears plausible
and would make the computation of the periods of standard self-injective algebras of finite type significantly
more tractable. However, the following example shows that an automorphism σ satisfying the hypotheses
of Lemma 3.6 is not necessarily inner. We let A = P (Ln) be the preprojective algebra associated to the
generalized Dynkin graph Ln [4], i.e., it has quiver and relations

0ε=ε̄
$$ a0 // 1

a1 //
ā0

oo 2
ā1

oo ··· n− 2
an−2 // n− 1

ān−2

oo ,
∑

s(α)=u

ᾱα = 0 (0 ≤ u ≤ n− 1),

where we adopt the convention that ¯̄α = α. We give A the Z/〈2〉-grading induced by the path length
grading. It is easy to see that B = A#k[Z/〈2〉]∗ is then the preprojective algebra associated to the Dynkin
graph A2n (see Section 5). If the characteristic of k is not 2, then both algebras are periodic of period
6 [4]. Moreover, we have Ω3

Ae(A) ∼= 1Aσ where σ is the automorphism of A induced by multiplying all
arrows by −1. In the notation of the proof of Lemma 3.6, if we let me = 1 and mx = −1, then we have
a (B,B)-bimodule isomorphism Fe(1Aσ) ∼= B when 1Aσ is given the same grading as A. However, since
B has period 6, we can conclude that as graded bimodules Ω3

Ae(A) ∼= 1Aσ[x], and hence Ω3
Be(B) ∼= 1Bx.

It is well-known that x is in fact a Nakayama automorphism of B = P (A2n), induced by the reflection of A2n.

Given the algebra B = A#k[G]∗, we can recover A, up to Morita equivalence, as the skew group algebra
B ∗ G [8, 10]. Recall that B ∗ G is a free B-module on G with multiplication given by ag · bh = abg−1

gh
where the action of G on B is as described following Definition 2.1. Thus, rephrasing the above theorem for
skew group algebras yields the following.

Corollary 3.8. Suppose the finite group G acts via automorphisms on a basic k-algebra B with a free action
on a complete set of pairwise orthogonal primitive idempotents for B. Then B is periodic if and only if B ∗G
is periodic.

Proof. In [8], Cibils and Marcos show that such a B is isomorphic to the smash product of B ∗G with G,
where B ∗G is a basic version of B ∗G. We claim that the assumption that B is basic forces the G-grading
on A = B ∗G to be a radical grading. If it is not a radical grading, then we must have a strict inequality
JG(A) ⊂ J(A) and J(B) =

∑
g∈G JG(A)pg by [10]. Thus

dimk B/J(B) > dimk B/J(A)B = dimk(A/J(A)⊗A B) = |G| · dimk A/J(A),

which equals the cardinality of a complete set of pairwise orthogonal primitive idempotents of B = A#k[G]∗.
But this would contradict the assumption that B is basic. �

In [9], Cibils and Redondo establish a spectral sequence for Hochschild cohomology associated to a Galois
covering B → A. Our approach provides information on how the minimal projective resolutions for A and
B are related in this case, and could perhaps be applied to give a more direct comparison between the
Hochschild (co)homology of the two algebras.

4. Stable Auslander Algebras

We now assume that A is a self-injective algebra of finite representation type in order to compare peri-
odicity properties of A and its stable Auslander algebra. This problem is explored in greater generality in
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[7], and we now review Buchweitz’s results in our simplified context. We let MA be a (basic) representation
generator for A, i.e., M is the direct sum of one representative from each isomorphism class of indecompos-
able right A-modules, and let M ′ denote the direct sum of all nonprojective indecomposable summands of
M . We let Λ = EndA(M) be the Auslander algebra of A, and we let Γ = EndA(M) ∼= EndA(M ′) be the
stable Auslander algebra of A. Note that Γ is just the quotient of Λ by the ideal ΛπΛ where π ∈ EndA(M)
denotes the projection from M onto A. It follows from results of [3], and is proved directly in [7], that Γ is
also self-injective. The functor HomA(M,−) : mod-A → proj-Λ is an equivalence and induces an equivalence
HomA(M,−) : mod-A → proj-Γ. It follows that the quiver of Λ is the AR-quiver of A, and the quiver of
Γ is the stable AR-quiver of A. Furthermore, if A is standard, then the relations for Λ and Γ are just the
mesh relations associated with these translation quivers.

As shown in sections 5 and 6 of [7], the natural ring homomorphism Λ → Γ is pseudoflat and L =
TorΛ2 (Γ, Γ) ∼= Ω3

Γe(Γ) as (Γ, Γ)-bimodules. Thus, tensoring with L induces Ω3
Γ on mod-Γ. Furthermore,

we have (Γ, Γ)-bimodule isomorphisms L⊗i ∼= HomA(M, ΩiM) ∼= HomA(M ′, ΩiM ′) for i ≥ 0. The left Γ-
module structure on ΩiM ′ is given via an isomorphism ΩiM ′ ∼= M ′, which exists since M is a representation
generator and A is self-injective.

Proposition 4.1. The following are equivalent for an integer n ≥ 1:

(1) Ω3n
Γe(Γ) ∼= Γ.

(2) ΩnM ′ ∼= M ′ as (Γ, A)-bimodules.
(3) There is an isomorphism Ωn

A
∼= 1mod-A of functors on mod-A.

Proof. The equivalence of (2) and (3) follows from the definition Γ = EndA(M ′), while (2) ⇒ (1) follows from
the isomorphisms cited above. For (1) ⇒ (2), the isomorphism Ω3n

Γe(Γ) ∼= L⊗n ∼= Γ yields an isomorphism
ξ : HomA(M ′, ΩnM ′) → HomA(M ′,M ′) of (Γ, Γ)-bimodules. Now let ϕ = ξ−1(1M ′) : M ′ → ΩnM ′. Then ϕ
is a (Γ, A)-bimodule homomorphism. By Yoneda’s lemma ξ is induced by a morphism χ : ΩnM ′ → M ′ in
mod-A, and since χϕ = 1M ′ , ϕ must be an isomorphism. �

In order to state the main result of this section we need a simple definition. We say that A is Schurian if
dimk eiAej ≤ 1 for all ei, ej belonging to a complete set of pairwise orthogonal primitive idempotents for A
(i.e., the entries of the Cartan matrix of A are 0 or 1).

Theorem 4.2. Let A be a basic, indecomposable self-injective k-algebra of finite representation type, and Γ
its stable Auslander algebra.

(1) If Ωn
Ae(A) ∼= A, then Ω3n

Γe(Γ) ∼= Γ.
(2) If A is Schurian and Ω3n

Γe(Γ) ∼= Γ, then Ωn
Ae(A) ∼= A.

Remark. We note that the period of Γ is divisible by 3 as long as the tree class of A is not A1 or A2. In this
case, A has an almost split sequences with at least 2 indecomposable nonprojective summands in the middle
term, and hence the projective resolution for the corresponding simple Γ-module (cf. section I.3 of [3]) has
a decomposable nth term if and only if n ≡ 1 mod 3. On the other hand, since the preprojective algebra
P (A2) has period 2 [15], the results of the previous section imply that the period of the mesh algebra of
ZA2/〈τm〉, which is an m-fold covering of P (A2) (see below), is not divisible by 3 whenever 3 - m.

The first part of the theorem follows from the proposition and the comments preceding it. For the second
part, we need to investigate automorphisms of Schurian algebras and the corresponding twisted bimodules.
We thus suppose that A is Schurian and that σ ∈ Aut(A) is an automorphism fixing ei for each i. We fix a
presentation of A as a path algebra of a quiver Q = (Q0, Q1) with relations, where the vertex set Q0 of the
quiver is identified with the complete set of primitive idempotents {ei}1≤i≤n and the arrows correspond to
chosen elements of ejJAei/ejJ

2
Aei. For each arrow α of Q, there exists cα ∈ k∗ such that σ(α) = cαα.

Lemma 4.3. Let σ ∈ Aut(A) be as above. Then 1Aσ
∼= 1A1 if and only if there exist di ∈ k∗ for each i ∈ Q0

such that cα = dj/di for all i, j ∈ Q0 and all arrows α from i to j.

Proof. For the forward direction, assume that f : 1Aσ → 1A1 is a bimodule isomorphism. We have
f(ei) = eif(ei)ei, which implies that f(ei) = diei for some di ∈ k∗. If α is an arrow from i to j, we have
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α = ejαei, and thus f(α) = f(ejα) = f(ej)c−1
α α = c−1

α djα. Similarly, we get f(α) = f(αei) = αf(ei) = diα.
This shows that cα = dj/di.

Conversely, suppose that nonzero scalars di exist so that cα = dj/di for all i, j ∈ Q0 and all arrows α from
i to j. Then ασ = djαd−1

i = uαu−1, where u =
∑

i∈Q0
diei is a unit. Hence σ is an inner automorphism

and the result follows. �

Lemma 4.4. Suppose A is self-injective and Schurian, and σ ∈ Aut(A) fixes ei for all i. If − ⊗A Aσ :
mod-A → mod-A is isomorphic to Idmod-A, then 1Aσ

∼= 1A1 as bimodules.

Proof. Let η : − ⊗A Aσ → Idmod-A be an isomorphism. For any indecomposable, nonprojective A-module
MA, ηM : Mσ = M ⊗A 1Aσ → M is an isomorphism in the stable category. Thus any lift of ηM to mod-A
is an isomorphism, and we fix such a lift for each M and continue to denote these as ηM .

Now consider two arrows α and β from j to l and from i to j, respectively, such that αβ 6= 0. We consider
the surjective map fα : βA → αβA between indecomposable nonprojective A-modules, which is given by
left-multiplication by α, and the inclusion gβ : αβA → αA. Abbreviating ηαA as ηα etc., we have diagrams
which are commutative in the stable category:

βAσ
fα //

ηβ ∼=
��

αβAσ

gβ //

ηαβ ∼=
��

αAσ

ηα ∼=
��

βA
fα

// αβA
gβ

// αA

Since A is Schurian and βA has a simple top, ηβ must be multiplication by some nonzero scalar cβ . Defining
cαβ and cα similarly, the commutativity of the left square shows that cαβ = cβ , since otherwise the difference
of the two maps would be surjective and thus could not factor through a projective. The same reasoning
shows that cβ = cp for any nonzero path p starting at i. Similarly, the commutativity of the right square
shows cβ = cαc−1

β , otherwise the difference of the two maps would be injective and hence could not factor
through a projective. We now have cβ = cα/cβ = dj/di where we let di = cβ , which only depends on i as
noted above, and dj = cα, which only depends on j. From the previous lemma, we conclude that 1Aσ

∼= 1A1

as bimodules. �

Remark. We do not know whether the assumptions on A in the above lemma are truly necessary.

Proof of Theorem 4.2. It remains to prove (2). According to Proposition 4.1, we have an isomorphism of
functors Ωn

A
∼= Idmod-A on mod-A. Since we have Ωn(S) ∼= S for all simples S, Theorem 1.4 in [18] shows

that Ωn
Ae(A) ∼= 1Aσ for some σ ∈ Aut(A), which fixes each ei. Finally, since − ⊗A 1Aσ

∼= − ⊗A Ωn
Ae(A) ∼=

Ωn
A
∼= Idmod-A, Lemma 4.4 implies that Ωn

Ae(A) ∼= A. �

5. Self-injective algebras of finite representation type

We now combine the results of the previous two sections to show that any standard self-injective algebra
A of finite representation type has a periodic projective resolution over its enveloping algebra Ae. Not only
does this imply that the Hochschild (co)homology groups of such an algebra are periodic, but by the results
of [18] we can conclude that the Hochschild cohomology ring modulo the ideal generated by homogeneous
nilpotent elements is isomorphic to k[x] where the degree of x is the period of the resolution. As usual, all
algebras we consider are assumed to be basic and indecomposable.

We briefly review the definitions of preprojective algebras first. If ∆ is a Dynkin graph, we can obtain a
quiver Q∆ by replacing each edge with a pair of arrows α and α in opposite directions. We regard α 7→ α
as an involution on the arrows of Q∆ with α = α. The preprojective algebra P (∆) is then defined to be the
path algebra modulo relations kQ∆/I where I is the ideal generated by the sums

∑
s(α)=u αα which range

over all arrows α of Q∆ with source s(α) = u, for each vertex u of Q∆. For any integer m > 1, we can
give P (∆) a Z/〈m〉-grading by assigning to each pair of arrows α, α degrees 0 and 1. The smash product
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P (∆)#k[Z/〈m〉]∗ is then easily seen to be isomorphic to the mesh algebra associated to the translation
quiver Z∆/〈τm〉. Since P (∆) is known to be periodic, so are these mesh algebras by Theorem 3.7. In fact,
they were originally shown to be periodic in [6] using the fact that they are almost Koszul.

Theorem 5.1 (cf. 3.10 in [14]). Any standard self-injective algebra A of finite representation type is periodic.

Proof. In [20], Mart́ınez-Villa and de la Peña prove that any basic, indecomposable standard algebra A of
finite representation type admits a finite Galois cover p : B → A with B Schurian. Hence, by Theorem 3.7,
we may assume that A is Schurian. If Γ is the stable Auslander algebra of A, by Theorem 4.2 it suffices to
prove that Γ is periodic. Since A is standard, Γ is isomorphic to the path algebra of the AR-quiver of A
modulo the ideal of mesh relations I. By Riedtmann’s structure theorem [22], the AR-quiver of A has the
form Z∆/〈ζτ−r〉, where ∆ is the tree class of A (an oriented Dynkin graph), ζ is an admissible automorphism
of Z∆ of finite order t, and τ is the translation. Moreover, as ζ commutes with τ and 〈ζτ−r〉 is infinite
cyclic, it follows that there is a finite Galois covering Γ̃ = k(Z∆/〈τ rt〉)/I ′ → Γ, where I ′ is the ideal of
mesh relations for the new quiver. As noted above, we also have a Galois Z/〈rt〉-covering Γ̃ → P (∆) of the
preprojective algebra of ∆, which is obtained by factoring out the group of automorphisms of Γ̃ generated
by τ . Since P (∆) is periodic with period dividing 6 (this was originally proved by Schofield, but see [15]),
Theorem 3.7 implies that Γ̃ and Γ are as well. �

We conclude this section by applying the strategy of the above proof to calculate upper bounds for the
periods of the standard self-injective algebras of finite type. Since the period of such an algebra is invariant
under derived equivalence (cf. 2.2 in [6]), it suffices to look at one representative algebra from each derived
equivalence class. Such a list is given in [1], and we refer the reader to the appendix of [2] for presentations
of these algebras by quivers and relations. These algebras are distinguished by their type (∆, f, t), where ∆
is the tree-class, f = r/m∆ is the frequency, and t is the order of ζ as in the above proof. Here m∆ equals
n, (2n− 3), 11, 17 or 29 when ∆ is An, Dn, E6, E7 or E8 respectively. Note that the Coxeter number of ∆ is
h∆ = m∆ + 1. We compile our results in the table at the end of the section. The groups occuring below are
all cyclic and we shall break with our previous notation to write them additively.

The precise periods are already known for algebras of tree class An [11, 12] (see Table 5.2). In order to
bound the periods of the remaining algebras with tree class D or E, we first focus on the mesh algebras Γ
of translation quivers of the form Z∆/〈τm〉. As noted above, such a Γ is isomorphic to the smash product
of the preprojective algebra P (∆) with Z/〈m〉, where the grading on P (∆) is given by assigning degrees 0
and 1 to each pair of arrows associated to an edge of ∆. With respect to the usual path-length grading,
P (∆) is (h∆ − 2, 2)-Koszul, and thus Ω3(P (∆)) is generated in degree h∆ and Ω6(P (∆)) ∼= P (∆)[2h∆] as
graded bimodules [6]. With respect to our “half-grading”, however, it is not difficult to see that Ω6(P (∆)) ∼=
P (∆)[h∆]. Thus, by the remarks following Lemma 3.5, Ω6(Γ) ∼= 1Γh∆ , and it follows that pΓ|6m/(h∆,m).
To see that equality holds (assuming char(k) 6= 2), we look at two cases. First, if ∆ is Dn with n odd or
E6, then the sixth syzygy of P (∆) is the first to fix all simple P (∆)-modules. It follows that 6m/(h∆,m)
is the smallest simultaneous period of all graded simple P (∆)-modules, and thus of all simple Γ-modules.
Hence pΓ = 6m/(h∆,m). Now suppose that ∆ = D2n, E7 or E8. Here, we have Ω3(S) ∼= S[h∆/2] for each
simple P (∆)-module S, and thus 3m/(h∆/2,m)|pΓ. Notice that if m is even, this agrees with our upper
bound for pΓ. If m is odd we have pP (∆) = 6|mpΓ by Theorem 3.7, and hence 2|pΓ. Thus, we again have
pΓ = 6m/(h∆,m).

In case the characteristic is 2 and ∆ = D2n, E7 or E8, P (∆) has period 3 [15], and we have Ω3(P (∆)) ∼=
P (∆)[h∆/2]. Similar to before, the upper bound we obtain for pΓ is now 3m/(h∆/2,m), which coincides
with the lower bound computed above. Thus pΓ = 3m/(h∆/2,m) in these cases (note that this value differs
from the previous one only when m is odd).

If A has type (∆, f, 1), its stable Auslander algebra Γ is the mesh algebra of Z∆/〈τm∆f 〉. Thus, provided
A is Schurian, its period will be pΓ/3 by Theorem 4.2 (see Table 5.2 for precise values). It is straightforward
to check that the representative algebras are Schurian precisely when f > 1. If f ≤ 1, then we have only
found the period of the syzygy functor on mod-A. Upper bounds for the actual periods of non-Schurian
algebras can of course be obtained by passing to a Schurian cover, in which case we have to multiply the
upper bound for the Schurian algebra by the degree of the covering. This appears to yield poor upper bounds
in general and so we omit them.

9



Type of A Additional Cases Period pA

(An, s/n, 1) char k = 2, n = 1 and 2 - s s

otherwise 2s
(s,n+1)

(A2m+1, s, 2) char k = 2 and 2| s+m+1
(s,m+1)

s(2m+1)
(s,m+1)

otherwise 2s(2m+1)
(s,m+1)

(Dn, s, 1) char k = 2, 2|n and 2 - s s(2n−3)
(s,2n−2)

otherwise 2s(2n−3)
(s,2n−2)

(Dn, s, 2) 2 - n and 2 | s+n−1
(s,n−1)

s(2n−3)
(s,n−1) , 2s(2n−3)

(s,n−1) or 4s(2n−3)
(s,n−1)

otherwise 2s(2n−3)
(s,n−1) or 4s(2n−3)

(s,n−1)

(D3m, s/3, 1) char k = 2, 2|m and 2 - s s(2m−1)
(s,6m−2)

otherwise 2s(2m−1)
(s,6m−2)

(D3m, 1/3, 1) A nonstandard 2m−1, 2(2m−1) or 4(2m−1)

(D4, s, 3) char k = 2 and 2 - s 5s or 15s

otherwise 10s
(s,2) or 30s

(s,2)

(E6, s, 1) - 22s
(s,12)

(E6, s, 2) s ≡ 2 mod 4 11s
(s,6) ,

22s
(s,6) or 44s

(s,6)

s 6≡ 2 mod 4 22s
(s,6) or 44s

(s,6)

(E7, s, 1) char k = 2 and 2 - s 17s
(s,18)

otherwise 34s
(s,18)

(E8, s, 1) char k = 2 and 2 - s 29s
(s,30)

otherwise 58s
(s,30)

Table 5.2. Periods of self-injective algebras of finite type in terms of their type (∆, f, t).
For f ≤ 1 and ∆ 6= An the values shown for the standard algebras only apply to the
functorial period of Ω. When t > 1 or the algebra is nonstandard, we do not know if all
possibilities occur.

We now consider those algebras of tree class D or E with torsion order t > 1, which occur when the type
of A is (Dn, s, 2), (D4, s, 3) or (E6, s, 2). As in the proof of Theorem 5.1, the mesh algebra Γ̃ of the translation
quiver Z∆/〈τm∆ft〉 is a t-fold cover of the stable Auslander algebra of A. The period of A is thus at most
t/3 times the period of Γ̃, which was calculated above (see Table 5.2 for precise upper bounds). Notice that
for type (Dn, s, 2) this upper bound is independent of the characteristic since m∆ft is even.

In order to compute lower bounds, we treat each algebra separately and use functorial isomorphisms on
their universal covers to deduce the order of Ω as a permutation on isomorphism classes of modules. For type
(Dn, s, 2), τ has order 2s(2n − 3) and τ (2n−3)s induces a permutation σ of order 2 on the indecomposable
nonprojective A-modules (cf. proof of Prop. 2.5 in [5]), while Ω coincides with τn−1 if n is even and with
στn−1 if n is odd (cf. Prop. 4.2 in [13]). If n is even, we see that Ω has order 2s(2n−3)/(s, n−1). If n is odd,
Ω(2n−3)s/(s,n−1) = σ((2n−3)s+n−1)/(s,n−1), and thus Ω has order s(2n− 3)/(s, n− 1) if (s + n− 1)/(s, n− 1)
is even, and it has order 2s(2n− 3)/(s, n− 1) otherwise.
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For type (D4, s, 3), τ has order 15s and Ω = τ3 on objects by Proposition 4.2 in [13]. Thus Ω has order
5s. However, when char(k) 6= 2, the functorial period of Ω must be even since the period of P (D4) is even.
Hence, in this case, we get the lower bound 10s/(s, 2).

Type (E6, s, 2) is similar to (Dn, s, 2). Here, τ has order 22s, τ11s induces a permutation σ of order 2, and
Ω coincides with στ6 on objects (cf. Prop. 2.5 in [5] and Prop. 4.2 in [13]). Thus Ω11s/(s,6) = σ(11s+6)/(s,6),
and Ω has order 11s/(s, 6) if (s + 6)/(s, 6) is even (if and only if s ≡ 2 mod 4) or order 22s/(s, 6) otherwise.

Finally, recall that a self-injective algebra A is said to be stably d-Calabi-Yau if there is an isomorphism
of triangulated functors ν ∼= Ω−(d+1) on mod-A, where ν = − ⊗A DA is the Nakayama equivalence. If A
is symmetric, then ν ∼= Idmod-A and hence A is d-Calabi-Yau if and only if d + 1 equals the order of Ω
as a functor on mod-A. In particular, the algebra A = P (L2) is a finite-type symmetric algebra of type
(D6, 1/3, 1). If char(k) 6= 2 we find that the syzygy functor has order 6, even though Ω3(M) ∼= M for every
nonprojective indecomposable A-module M [4]. It follows that A is stably 5-Calabi-Yau and not stably
2-Calabi-Yau as claimed in [13]. In fact, the same is true for the algebras P (Ln), as it can be directly
verified that Ω3 6∼= Idmod-A for these algebras using the description of Ω3 in [4]. Theorem 4.3 of [13] includes
similar errors for the symmetric algebras of tree classes D2n, E7 and E8 when char(k) 6= 2. As can be gleaned
from Table 5.2, the stable Calabi-Yau dimension of the standard symmetric algebra with type (∆, 1/r, 1)
is 2m∆/r − 1, or else m∆/r − 1 for ∆ = A1, D2n, E7 or E8 in characteristic 2. The error appears to arise
from the (mistaken) assumption that an isomorphism of functors on the stable category of the universal
cover of A induces an isomorphism between the induced functors on the stable category of A. For instance,
for A = P (L2) one has Ω ∼= τ5 over the universal cover of A, but not over A. Earlier we saw that P (A4)
is a double cover of A, and it is stably 2-Calabi-Yau since Ω3 is isomorphic to the Nakayama functor on
mod-P (A4). Thus we see that stable Calabi-Yau dimensions may indeed increase upon passage to the orbit
algebra in a Galois cover.

6. Nonstandard algebras

Finally, we turn to the class of nonstandard indecomposable self-injective algebras of finite representation
type. These algebras arise only in characteristic 2 as socle deformations of standard self-injective algebras of
type (D3m, 1/3, 1) for m ≥ 2. In particular, each has type (D3m, 1/3, 1) for some m ≥ 2, and Asashiba has
shown that two such are derived equivalent if and only if they have the same type [1]. We thus focus on one
representative algebra of each type, and these are given by the quivers

m
αm

~~~~
~~

~~
~~

αm−1oo

1β
$$

α1
��?

??
??

??
?

2 α2
// 3 ••

••
••
••
••
••

••
•

and relations (i) αm · · ·α1 = β2; (ii)
m+1︷ ︸︸ ︷

αi · · ·αi+1αi = 0 for all i ∈ {1, . . . ,m} = Z/〈m〉; and (iii) α1αm =
α1βαm [2]. Henceforth, we fix m, denote this algebra as A, and assume char(k) = 2. It is well-known that A
admits no proper connected Galois covers. In fact, it has no nontrivial radical gradings. However, there does
exist a non-radical Z/〈2〉-grading of A, and we will show that the corresponding smash product is Morita
equivalent to a Brauer tree algebra.

Note that A is generated as a k-algebra by {e1 +β, ei, αi | 1 ≤ i ≤ m}. Since relation (iii) can be expressed
α1(e1 + β)αm = 0 and relation (ii) can be rewritten αm · · ·α1 + (e1 + β)2 + e1 = 0, we see that we obtain
a Z/〈2〉-grading on A with ei, αi ∈ A0 for all i and e1 + β ∈ A1. One easily checks that with respect to
this grading, JG = (α1, . . . , αm). Consequently, the graded simples, up to isomorphism, are the simples Si

concentrated in degree 0, for 2 ≤ i ≤ m, and their shifts Si[1], as well as the module e1A/(αmA + βαmA),
which is isomorphic to its shift as a graded module. Likewise, up to isomorphism the indecomposable graded
projectives are eiA, eiA[1] for 2 ≤ i ≤ m and e1A ∼= e1A[1].

11



We let B = A#k[G]∗. From [10], we know that J(B) = JG(A)B, and hence a k-basis of B/J(B) is
given by the residue classes of {βpg, eipg | 1 ≤ i ≤ m, g ∈ Z/〈2〉}. From this, one easily establishes a ring
isomorphism B/J(B) ∼= M2(k)× k2m−2 by mapping

b0βp0 + b1βp1 +
∑
i,g

cg
i eipg 7→

 c0
1 b1 + c1

1

b0 + c0
1 c1

1

 , c0
2, c

1
2, . . . , c

1
m

 .

To compute a basic version of B, we can thus take the corner ring B′ associated to the full idempotent
1− e1p1. We make the following observations.

• eip1Bejp0 = eiA1ejp0 = 0 for all i, j > 1.
• eip0Bejp1 = eiA1ejp1 = 0 for all i, j > 1.
• eipgJ(B)ejpg = eiJG(A)0ejpg is 1-dimensional for all i, j > 1 and g ∈ Z/〈2〉.
• J(B′)/J(B′)2 has a k-basis consisting of the residue classes of {α1(e1+β)p0, (e1+β)αmp1, αipg | (i, g) 6=

(1, 1), (m, 1)}.
Hence we can define an isomorphism between B′ and the algebra B′′ given by the quiver

3′
••••••••••••••

2′
α′

2oo m
αm

����
��

��
��

αm−1oo

1

α′
1

``@@@@@@@@

α1
��?

??
??

??
?

α′
m−1

// m′
α′

m

>>~~~~~~~~
2 α2

// 3 ••
••
••
••
••
••

••
•

and relations
m+1︷ ︸︸ ︷

αi · · ·αi+1αi =

m+1︷ ︸︸ ︷
α′

i · · ·α′
i+1α

′
i = 0 for all i, α′

1αm = α1α
′
m = 0 and α′

m · · ·α′
1 = αm · · ·α1. An

isomorphism ϕ : B′′ → B′ is given by

ϕ(ei) = eip0, 1 ≤ i ≤ m;

ϕ(ei′) = eip1, 2 ≤ i ≤ m;

ϕ(αi) = αip0, 1 ≤ i ≤ m;

ϕ(α′
i) =


αip1, 2 ≤ i ≤ m− 1,

α1(e1 + β)p0, i = 1,

(e1 + β)αmp1, i = m.

Theorem 6.1. The nonstandard indecomposable self-injective algebra A of finite representation type and
type (D3m, 1/3, 1) is periodic. Moreover, its period pA satisfies (2m− 1) | pA | 4(2m− 1).

Proof. We consider A with the Z/〈2〉-grading described above, and let B = A#k[G]∗, which we have shown
is Morita equivalent to a Brauer tree algebra B′. Since B′ has 2m− 1 simples and exceptional multiplicity
1, it is derived equivalent to the symmetric Nakayama algebra with 2m − 1 simples and Loewy length 2m
[21], and hence has type (A2m−1,

2m−1
2m−1 , 1). From Table 5.2, we see that the period of B is r := 2(2m− 1).

We now follow the strategy of the proof of Theorem 3.7, using special arguments for various details. First,
since A is socle equivalent to the standard algebra of type (D3m, 1/3, 1), it follows that the the two algebras
have the same nonprojective indecomposable modules, and the action of the syzygy functor on objects is the
same over either algebra. Since the standard algebra has period dividing 2(2m − 1) in this case, all simple
A-modules are fixed by Ωr. Hence Ωr

Ae(A) ∼= 1Aσ for some automorphism σ. As before, we want to know
that σ is degree-preserving and that Ωr

Ae(A) is a graded bimodule generated in degree 0. Once we have
established these facts, we can apply Lemma 3.6 to conclude that σ2 is inner. This yields the stated upper
bound of 4(2m− 1) for the period of A, and the lower bound of (2m− 1) follows from pB |2pA which can be
proved as in Theorem 3.7.

We first address the existence of a graded projective resolution of the bimodule AAA (note that the
argument in Section 2 was for radical gradings only). In this case, however, since G is abelian, one easily
sees that bimodG-A is equivalent to modG-Ae where Ae is given the grading Ae

g = ⊕h∈GAh ⊗ Ah−1g.
Thus it is also equivalent to mod-(Ae#k[G]∗), which clearly has projective covers. Furthermore, since
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J(Ae#k[G]∗) = JG(Ae) · (Ae#k[G]∗) ⊆ J(Ae) ·Ae#k[G]∗, a graded projective cover will remain a projective
cover in the category of (ungraded) bimodules.

As before, that the automorphism σ preserves the grading is a consequence of Ωr
Ae(A) being generated

in degree 0. To prove the latter, we note that the period of B being r implies that Ωr(S) ∼= S as graded
modules for each graded simple A-module S. It follows that for Pr = ⊕m

i=1Aei ⊗k eiA, each summand with
2 ≤ i ≤ m is generated in degree 0, while Ae1 ⊗k e1A can be generated in degree 0 or 1 (since eiA can be).
Thus we see that Ωr

Ae(A) can be generated in degree 0 as desired. �

As with the standard algebras of torsion order t > 1, determining the exact periods of the nonstandard
algebras is complicated by the difficulty of detecting whether or not the automorphism σ in the 2(2m− 1)th

syzygy is inner. To give one example, when m = 2 the standard algebra of type (D6, 1/3, 1) has period 3 in
characteristic 2, while the nonstandard algebra A of the same type has period 6. In fact, a computation of
the beginning of a minimal projective resolution of A yields Ω3

Ae(A) ∼= 1Aσ where σ is the automorphism of
order 2 given by σ(α1) = α1(e1 + β), σ(α2) = (e1 + β)α2 and σ(β) = β + β2 + β3.

By the results of Section 4, it follows that the stable Auslander algebra of A is also periodic. We expect
that it is a Galois cover of a deformation of the preprojective algebra P (D3m). We hope to explore this
connection in greater detail, and also investigate similar uses of smash products over deformed preprojective
algebras in a future work.
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