Differential Equations

Paul J. Atzberger Department of Mathematics University of California Santa Barbara

Separation of Variables

Separation of Variables

(ousider X=X(s), Y=Y(s) $\frac{dy}{dx} = f(x,y)$ $M(\hat{x}) \frac{d\hat{x}}{ds} + N(\hat{y}) \frac{d\hat{y}}{ds} = 0$ $\int_{0}^{5} M(\hat{x}) \frac{k_{1}^{2}}{4s} d\hat{s} + \int_{0}^{5} N(\hat{y}) \frac{k_{1}^{2}}{4s} d\hat{s} = 0$ Consider the specialized case when $f(x_{y}) = -\frac{M(x)}{N(y)} .$ $d\hat{x} = \frac{d\hat{x}}{d\hat{y}} d\hat{s}, d\hat{y} = \frac{d\hat{y}}{d\hat{s}} d\hat{s}$ We call such opés separable. $\widehat{X}(5_0) = X_0, \widehat{X}(5) = X$ Remark! M(.) only depends on X. $\hat{y}(\xi_0) = y_0, \quad \hat{y}(\xi) = y$ N(.) only depends on y. $(F(X,Y|X)) = \int_{X_0}^{X} M(\widehat{X}) A \widehat{X} + \int_{Y_0}^{Y} N(\widehat{Y}) d \widehat{Y} = 0$ General Method This gives relationship between $dy = f(x,y) = -\frac{m(x)}{N(y)} = N(y) dy = -m(y) dx$ Y and x. = M(x)dx + N(y)dy = 0This ian be used to determine This can be used to obtain an $\gamma(x)$. implicit equation for y(+).

Separation of Variables

$$\begin{aligned} \underbrace{\mathsf{Exi}}_{\{\frac{1}{4x} = -\frac{x}{y}, j \in \mathbb{N} \text{ parable } f(x_{j}y) = -\frac{M(x)}{N(y)} = -\frac{x}{y}, \frac{M(x)}{N(y)} = x, \\ (y_{lb}) = \ge \epsilon \text{ initial} \\ (y_{lb}) = \ge \epsilon \text{ initial} \\ (y_{lb}) = \ge \epsilon \text{ initial} \\ (x_{l}, y_{l}, x) = 0, \quad G(x_{j}y) = \int_{x_{0}}^{x} M(x) A_{x}^{x} + \int_{y_{0}}^{y} N(y) A_{y}^{x} \\ = \int_{x_{0}}^{x} x d_{x} + \int_{y_{0}}^{y} y d_{y}^{x} = \left[\frac{1}{2}x^{x}\right]_{x_{0}}^{x} + \left[\frac{1}{2}y^{z}\right]_{y_{0}}^{y} \\ = \frac{1}{2}(x^{z} + y^{z}) - \frac{1}{2}(x_{0}^{z} + y_{0}^{z}), \quad (x = \frac{1}{4}(x_{0}^{z} + y_{0}^{z})) \\ f(x_{j}y) = 0 \Rightarrow \frac{1}{2}(x^{z} + y^{z}) = \frac{1}{2}(x_{0}^{z} + y_{0}^{z}) = C, \quad \frac{Ay}{kx} = -\frac{x}{y} \Rightarrow yAy = -x dx \\ = 2 \frac{1}{2}(x^{z} + y^{z}) = \frac{1}{2}(x_{0}^{z} + y_{0}^{z}) = C, \quad \frac{Ay}{kx} = -\frac{x}{y} \Rightarrow yAy = -x dx \\ \Rightarrow \int y dy = \int -x dx + C \\ \Rightarrow \int y dy = \int -x dx + C \\ \Rightarrow \int y dy = \int -x dx + C \\ \Rightarrow \int y dy = \int -x dx + C \\ \Rightarrow \int y (x) = \sqrt{y - x^{z}} \end{aligned}$$

ODE

χ

Paul J. Atzberger, UCSB

Separation of Variables: Direction Field

Ex: $\frac{dy}{dx} = \frac{x}{1-y}$

$$(1 - y^{2})dy = x^{2}dx \Rightarrow x^{2}dx - (1 - y^{2})dy = 0$$

$$5x^{3}dx - 5(1 - y^{2})dy = \tilde{c}$$

$$\frac{1}{3}x^{3} - y + \frac{1}{3}y^{3} = \tilde{c} \leftarrow 6(x, y; \tilde{c}) = 0$$

$$-x^{3} + 3y - y^{3} = c, \ c = -3\tilde{c},$$

SIR Model: Separability

(s) (t)Ex! (SIR Model) R 5/t): Susceptible, Ilt): Infated, R(t): Recovered $\frac{ds}{dt} = -\beta Is, \quad \frac{dI}{dt} = \beta IS - \delta I, \quad \frac{dR}{dt} = \delta I$ Notice: $N(t) = S(t) + I(t) + R(t), \frac{dW}{dF} = 0, N(t) = N(t), \forall t.$ $U = \frac{S}{N}, \ V = \frac{T}{N}, \ W = \frac{R}{N}, \ R_0 = \frac{\beta N}{8}, \ T = \delta t, \ U + V + W = 1.$ $\frac{du}{d\tau} = -R_{0}uv, \quad \frac{dv}{d\tau} = (K_{0}u-1)v, \quad \frac{dw}{d\tau} = v.$

۲

Ν

Britton 2003

SIR Model: Separability $E \times (SIR Model) \qquad (S) = R$ S/t): Susceptible, I/t): Infected, R(t): Recovered $R_0 = \frac{SN}{8}, t = St, u + v + w = 1.$ $\frac{du}{d2} = -R_0 uv, \frac{dv}{d2} = (K_1 u - 1)v, \frac{dw}{d7} = v.$

What are the total number of people infected over the epidemic?

Paul J. Atzberger, UCSB

Summary

Integrating Factor Separation of Variables

Summary of steps

Can the differential equation be put in the following form?

 $\frac{dy}{dt} + p(t)y = g(t)$

Yes:

1. Compute the integrating factor

$$\mu(t) = \exp\left(\int p(s)ds\right)$$

2. Integrate the full solution

$$y(t) = \frac{C}{\mu(t)} + \frac{1}{\mu(t)} \int \mu(s)g(s)ds$$

3. Solve for C using initial condition $y(t_0) = y_0$

No: then must use another method.

 $\frac{F_{X'}}{I_{t}} = -\lambda \gamma + e^{-t}, \gamma(0) = 3$ yes, $M(t) = e^{5} ds = e^{5t}$ $\gamma(t) = \frac{C}{e^{2t}} + \frac{1}{e^{2t}} \int e^{2s} e^{-s} ds$ $= \tilde{(e^{-})} + e^{-} + \tilde{(e^{-})}$ = cost totot $= \hat{c} e^{rt} + e^{-t}$ $\gamma/t_{0} = c e^{-rt_{0}} + e^{-t_{0}} = \gamma_{0} = 3$ $\gamma(u) = \tilde{c}e^{0} + e^{-0} = \gamma_{0} = 3$ = $\tilde{c}\cdot 1 + 1 = 3 = 2 \tilde{c} = \lambda$ y12) = 2 0 2 + 0 - t

Summary of steps:

Can the differential equation be put in the following form?

$$\frac{dy}{dx} = \frac{-M(x)}{N(y)}$$

Yes:

1. Compute the relationship for x,y

$$h(x,y) = \int M(x)dx + \int N(y) = C \longrightarrow h(x,y(x)) = C$$

- 2. Solve for y(x) from h(x,y) = C.
- 3. Solve for C using initial condition $y(x_0) = y_0$

No: then must use another method.

Integrating Factor: Example

1

1

$$\begin{cases} \frac{dy}{dx} = -2y + e^{-3x} \\ \gamma(b) = -1 \end{cases}$$

$$\begin{cases} \gamma(b) = -1 \\ \gamma(b) = -1 \end{cases}$$

$$\begin{cases} \frac{dy}{1t} + p(t) \gamma = g(t) \\ \frac{dy}{1t} + p(t) \gamma = g(t) \end{cases}$$

$$\begin{cases} \frac{dy}{1t} + p(t) \gamma = g(t) \\ \frac{dy}{1t} + p(t) \gamma = g(t) \end{cases}$$

$$\begin{cases} \frac{dy}{1t} + p(t) \gamma = g(t) \\ \frac{dy}{1t} = e^{-3t} \\ \frac{g(t)}{2t} \\ \frac{g(t)}{2t} = e^{-3t} \\ \frac{g(t)}{2t} \\ \frac{$$

Separation of Variables: Example

$$\frac{dy}{dx} = -\frac{M(x)}{N(y)}, \ y es \ \frac{M(x)}{N(y)} = \frac{1}{\sqrt{y}}, \ \frac{dy}{dx} = \sqrt{y} h(x,y) = \int -1 \ dx + \int \frac{1}{\sqrt{y}} \ dy = C = -x + 2 \ \sqrt{y} = C \sqrt{y} = \frac{1}{2}x + \frac{1}{2}c = \frac{1}{2}(x+c) \gamma(x) = \frac{1}{2}(x+c)^{x} \gamma(u) = 0, \ \gamma(u) = \frac{1}{2}(0+c)^{x} = \frac{1}{2}c^{x} = 0, \ \sqrt{y(x)} = \frac{1}{2}y$$

$$\frac{dy}{dx} = \frac{1}{y} \frac{d}{dx} x^{2} = \frac{1}{y} (\partial x) = \frac{1}{y} x$$

$$Vy = \sqrt{\frac{1}{y}} x^{2} = \frac{1}{y} |x|.$$

$$\frac{\text{Remark: There are}}{actually many 50/utions}$$

$$\frac{1}{y} \frac{d}{dx} = 0 |x|$$

$$V(x) = 0 |x|$$

$$Solutions to differential equations heed not be unique!
$$y(x) = \xi_{\frac{1}{y}}^{0} (x - x_{c})^{2}, x = x_{c} \xi_{c}^{0}.$$$$

=> (=0