Differential Equations

Paul J. Atzberger Department of Mathematics University of California Santa Barbara

Numerical Methods for ODEs

Numerical Approximation: Euler's Method

Ordinary Differential Equation

$$\frac{d\mathbf{y}}{dt} = f(\mathbf{y})$$
$$\mathbf{y}(0) = \mathbf{y}_0$$

The derivative is by definition

$$\frac{d\mathbf{y}(t)}{dt} = \lim_{h \to 0} \frac{\mathbf{y}(t+h) - \mathbf{y}(t)}{h}$$

Approximate the solution at discrete times by

$$\frac{d\mathbf{y}(t_n)}{dt} \approx \frac{\mathbf{y}(t_{n+1}) - \mathbf{y}(t_n)}{h} , \quad \frac{d\mathbf{y}(t_n)}{dt} = \mathbf{f}(\mathbf{y}(t_n))$$
$$t_k = kh , \quad h = t_{n+1} - t_n$$

This gives

$$\frac{\mathbf{y}(t_{n+1}) - \mathbf{y}(t_n)}{h} \approx \mathbf{f}(\mathbf{y}(t_n))$$

Finite Difference Approximation

Euler's Method
$$w_{n+1} = w_n + hf(t_n, w_n)$$

$$w_n \approx y(t_n)$$

Paul J. Atzberger, UCSB

Differential Equations

 $\mathbf{y}_{n+1} = \mathbf{y}_n + h\mathbf{f}(\mathbf{y}_n)$

http://atzberger.org/

 $w_{n+1} = w_n + hf(w_n)$

 $w_n \approx y(t_n)$

Numerical Approximation: Euler's Method

Ex:
$$y' = -ay$$
, $y(u) = y_0$, $a > 0$
solution $y/t = y_0 e^{-at}$.
 $W_{n+1} = w_n - haw_n$, $f(w_n) = -aw_n$
 $= (1 - ha)w_n$
 $i = (1 - ha)^{n+1}W_0$, $W_0 = y_0$.
Let $T = (n+1)h$ to approximate the solution on $E_0,T]$.
 $h = \frac{T}{nT}$, so $W_{n+1} = (1 - \frac{aT}{nT})^{n+1}W_0$, $\lim_{n \to \infty} (1 + \frac{s}{N})^N = e^{S}$
let $h = 70$ vin $h = \frac{T}{nT}$ as $h = 30$, then
 $\lim_{n \to \infty} W_{n+1} = \lim_{n \to \infty} (1 - \frac{aT}{nT})^{n+1}W_0 = e^{aT}W_0$, $(Enler's Method converges)$
How large (an h be and still give stable behavior? $(1 - ha) \leq 1, -1 \leq 1 - ha \leq 1$
 $\lim_{n \to \infty} W_{n+1} = 0$, how large (on h be? $W_{n+1} = (1 - ha)^{n+1}W_0$, $0 \leq h \leq \frac{T}{a}$.

Paul J. Atzberger, UCSB

Numerical Packages: Solve Differential Equations in Python

Ex: y'(t) = -ay, y(0) = 3.

Python code for approximating solution.

Codes for integrating and plotting ODEs using python
#

Paul J. Atzberger

#

import numpy as np; import matplotlib; import matplotlib.pyplot as plt; from scipy.integrate import odeint

'size' : fontsize};

matplotlib.rc('font', **font);

setup the function f(y,t) for RHS dy/dt = f(y,t).
def f1(y, t, a):
 f = -a*y;
 return f;

setup the initial value problem
a = 2.0;
y0 = 3.0;

construct approximation to the solution of the ODE
t = np.linspace(0, 10, 101);
sol = odeint(f1, y0, t, args=(a,));

Paul J. Atzberger, UCSB

Differential Equations

http://atzberger.org/

Def: A Second Order Differential Equation refers to equations that can be put into the form

$$\frac{d^2y}{dt^2} = f\left(t, y, \frac{dy}{dt}\right).$$

Def: A Second Order Differential Equation is called *linear* if it can be put into the form

$$\frac{d^2y}{dt^2} = \alpha_1(t) + \alpha_2(t)y + \alpha_3(t)\frac{dy}{dt}.$$

Def: Second Order Differential Equations that **can not be put into the above form** are called *non-linear*.

Remark: For convenience we will often express linear equations as $f(t, y, \frac{dy}{dt}) = g(t) - p(t)\frac{dy}{dt} - q(t)y$, giving y'' + p(t)y' + q(t)y = g(t).

Def: The *Initial Value Problem (IVP)* for Second Order Differential Equations are problems of the form

$$\begin{cases} \frac{d^2y}{dt^2} = f\left(t, y, \frac{dy}{dt}\right), \\ y(t_0) = y_0, \ y'(t_0) = y'_0 \end{cases}$$

Consider a linear second order differential equation

$$\frac{d^2y}{dt^2} = \alpha_1(t) + \alpha_2(t)y + \alpha_3(t)\frac{dy}{dt}$$

Def: Second Order Differential Equations are called *homogeneous* when $\alpha_1(t) = 0$.

Remark: When expressing linear equations as y'' + p(t)y' + q(t)y = g(t), it is **homogeneous** when g(t) = 0, giving y'' + p(t)y' + q(t)y = 0.

Def: Second Order Differential Equations with $\alpha_1(t) \neq 0$ are called *inhomogeneous* or *nonhomogeneous*.

$$\begin{split} \underbrace{\mathbf{E}_{\mathbf{x}'}}_{\mathbf{y}''} &= \mathbf{y}, \ \mathbf{y}(\mathbf{0}) = -\mathbf{z}, \ \mathbf{y}'(\mathbf{0}) = \mathbf{1} \\ \underbrace{\mathbf{y}'' - \mathbf{y}}_{\mathbf{d}t} = \mathbf{0}, \ \left(\frac{\mathbf{d}_{\mathbf{x}}}{\mathbf{d}t} - 1\right) \mathbf{y} = \mathbf{0} \\ \underbrace{\mathbf{d}_{\mathbf{d}t}}_{\mathbf{d}t} = -\mathbf{y} \\ \underbrace{\mathbf{d}_{\mathbf{d}t}}_{\mathbf{d}t} \\ \underbrace{\mathbf{d}_{\mathbf{d}t}}_{\mathbf{d}t$$

Consider Linear Homogeneuns Scund under Differential Equations with constant we fficients. ay"+by'+cy=0 We can try to solve using a similar strategy as our example. $\left(a\frac{d^{r}}{dt^{r}}+b\frac{d}{dt}+c\right)y=0$, formally s=dt, $(as^{2}+bs+c)=(a(s-r_{1})(s-r_{2}))$ $\frac{ar^{*}+br+c=0}{br+c}, a(r-r_{1})(r-r_{2}) = ar^{*}+br+c$ $\frac{a(\frac{d}{dt}-r_{1})(\frac{d}{dt}-r_{2})y=0}{a(\frac{d}{dt}-r_{2})y=0} \xrightarrow{dy} = r_{2}y \xrightarrow{-y}y'=r_{2}y \xrightarrow{-y}y_{2}(t) = c_{2}e^{r_{2}t}$ $\alpha \left(\frac{d}{dt} - r_{t} \right) \left(\frac{d}{dt} - r_{i} \right) y = 0 \rightarrow \left(\frac{d}{dt} - r_{i} \right) y = 0 \rightarrow \frac{dy}{dt} = r_{i} y - \frac{1}{2} y' = r_{i} y - \frac{1}{2} y' = r_{i} y' - \frac{1}{2} y' + \frac{$ Candidate solution $Y(t) = c_1 e^{r_1 t} + c_2 e^{r_2 t}$

 $Ex! y'' + 3y' + 2y = 0, y|_{0} = 3, y'|_{0} = -5$ $y|_{t} = ce^{rt}, y' = rce^{rt}, y'' = r^{2}ce^{rt}$ $r^{2}(ce^{rt}) + 3r(ce^{rt}) + 2(ce^{rt}) = 0$ ay'' + by' + c = 0 $ar^{+} + br + c = 0$ a = 1, b = 3, c = a

 $r^{+} + 3r + \lambda = 0$ $r = -\frac{3 \pm \sqrt{9-8}}{2} = -\frac{3 \pm \sqrt{1}}{2} = \begin{cases} r_{1} = -1 \\ r_{2} = -\lambda \end{cases}$ $\overline{\gamma}(t) = c_{1}e^{-t} + c_{2}e^{-\lambda t}$

 $\overline{Y}(0) = C_1 + C_2 = 3$ $\overline{Y}'(0) = -C_1 - \partial C_2 = -5, \quad -C_2 = -5 + 3 = -\lambda = 7 \quad C_2 = \lambda$ $C_1 = 3 - C_2 = 3 - \lambda = 1 = 7 \quad C_1 = 1$ $\overline{Y}(1+) = e^{-t} + \lambda e^{-2t}$

Summary of steps:

Can the differential equation be put into the following form? au'' + bu' + cu = 0

ay'' + by' + cy = 0

Yes: Consider the characteristic equation and solve for r $ar^2 + br + c = 0$

Are the roots r_1 and r_2 real-valued and distinct?

Yes: then the solution is of the following form $y(t) = c_1 \exp(r_1 t) + c_2 \exp(r_2 t).$

Solve the IVP by using $y(t_0) = y_0$, $y'(t_0) = y'_0$ and solving for c_1 , c_2 .

No: then must use further theory to determine solution (developed in later lectures).