Differential Equations

Paul J. Atzberger
Department of Mathematics
University of California Santa Barbara

Second Order Differential Equations

Second Order DifferentiaJ Equations

Def: A Second Order Differential Equation refers to equations that can be put into the form

$$
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right)
$$

Def: A Second Order Differential Equation is called linear if it can be put into the form

$$
\frac{d^{2} y}{d t^{2}}=\alpha_{1}(t)+\alpha_{2}(t) y+\alpha_{3}(t) \frac{d y}{d t} .
$$

Def: Second Order Differential Equations that can not be put into the above form are called non-linear.
Remark: For convenience we will often express linear equations as $f\left(t, y, \frac{d y}{d t}\right)=g(t)-p(t) \frac{d y}{d t}-q(t) y$, giving $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$.

Def: The Initial Value Problem (IVP) for Second Order Differential Equations are problems of the form

$$
\left\{\begin{array}{l}
\frac{d^{2} y}{d t^{2}}=f\left(t, y, \frac{d y}{d t}\right), \\
y\left(t_{0}\right)=y_{0}, \quad y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}
\end{array}\right.
$$

Second Order Differential Equations

Consider a linear second order differential equation

$$
\frac{d^{2} y}{d t^{2}}=\alpha_{1}(t)+\alpha_{2}(t) y+\alpha_{3}(t) \frac{d y}{d t}
$$

Def: Second Order Differential Equations are called homogeneous when $\alpha_{1}(t)=0$.
Remark: When expressing linear equations as $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=g(t)$, it is homogeneous when $g(t)=0$, giving $y^{\prime \prime}+p(t) y^{\prime}+q(t) y=0$.

Def: Second Order Differential Equations with $\alpha_{1}(t) \neq 0$ are called inhomogeneous or nonhomogeneous.

Second Order Differential Equations

Real-Valued Distinct Roots

Second Order Differential Equations

$$
\begin{aligned}
& \frac{E x!}{y^{\prime \prime}} y^{\prime \prime}=y, y(0)=-3, y^{\prime}(0)=1 \\
& \frac{y^{\prime \prime}-y}{}=0, \frac{d^{2} y}{d t^{2}}-y=0,\left(\frac{d^{2}}{d t^{2}}-1\right) y=0 \\
& \left(\frac{d}{d t}-1\right)\left(\frac{d}{d t}+1\right) y=0 \rightarrow\left(\frac{d}{d t}+1\right) y=0 \rightarrow \frac{d y}{d t}=-y \rightarrow y_{2}(t)=c_{2} e^{-t} \\
& \left(\frac{d}{d t}+1\right)\left(\frac{d}{d t}-1\right) y=0 \rightarrow\left(\frac{d}{d t}-1\right) y=0 \rightarrow \frac{d y}{d t}=y \rightarrow y_{1}|t|=c_{1} e^{t} \\
& \bar{y}(t)=c_{1} e^{t}+c_{2} e^{-t}, \quad \bar{y}^{\prime \prime}-\bar{y}=0 \\
& \bar{y}(0)=c_{1} e^{0}+c_{2} e^{-0}=c_{1}+c_{2}=-3, \quad 2 c_{1}=-3+1=-2 \rightarrow c_{1}=-1 \\
& y^{\prime}(0)=c_{1} e^{0}-c_{2} e^{-0}=c_{1}-c_{2}=1, \quad 2 c_{2}=-3-1=-4 \rightarrow c_{2}=-2 \\
& \bar{y}(t)=-e^{t}-2 e^{-t}
\end{aligned}
$$

Second Order Differential Equations
Consider Linear Homogeneous Second order Differential Equation with constant coefficients.

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

We can try to solve using a similar strategy as our example.

$$
\begin{aligned}
& \left(a \frac{d^{2}}{d t^{2}}+b \frac{d}{d t}+c\right) y=0, \text { formally } s=\frac{d}{d t}, \quad\left(a s^{2}+b s+c\right)=\left(a\left(s-r_{1}\right)\left(s-r_{2}\right)\right) \\
& \frac{a r^{2}+b r+c=0}{L \rightarrow c h a n a i b e r i s s_{1} \text {, }} \text { (r-quation. }\left(r-r_{2}\right)=a r^{2}+b r+c
\end{aligned}
$$

$$
a\left(\frac{d}{d t}-r_{1}\right)\left(\frac{d}{d t}-r_{r}\right) y=0 \rightarrow\left(\frac{d}{d t}-r_{2}\right) y=0 \rightarrow \frac{d y}{d t}=r_{2} y \rightarrow y^{\prime}=r_{2} y \rightarrow y_{2}(t)=c_{2} e^{r_{2} t}
$$

$$
a\left(\frac{d}{d t}-r_{2}\right)\left(\frac{d}{d t}-r_{1}\right) y=0 \rightarrow\left(\frac{d}{d t}-r_{1}\right) y=0 \rightarrow \frac{d y}{d t}=r_{1} y \rightarrow y^{\prime}=r_{1} y \rightarrow y_{1}(t)=c_{1} e^{r_{1} t}
$$

Candidate solution

$$
\bar{y}(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}
$$

Second Order Differential Equations

$$
\begin{aligned}
& \left.\left.E x^{\prime} y^{\prime \prime}+3 y^{\prime}+2 y=0, \quad y / 0\right)=3, y^{\prime} \%\right)=-5 \\
& a y^{\prime \prime}+b y^{\prime}+c=0 \\
& y(t)=\tilde{c} e^{r t}, \quad y^{\prime}=r \tilde{c} e^{r t}, \quad y^{\prime \prime}=r^{2} \tilde{c} e^{r t} \\
& a r^{2}+b r+c=0 \\
& r^{2}\left(\tilde{c} e^{r t}\right)+3 r\left(\tilde{c} e^{r t}\right)+2\left(\tilde{c} e^{r t}\right)=0 \\
& r^{2}+3 r+2=0 \\
& r=\frac{-3 \pm \sqrt{9-8}}{2}=\frac{-3 \pm \sqrt{1}}{2}=\left\{\begin{array}{l}
r_{1}=-1 \\
r_{2}=-2
\end{array}\right. \\
& \bar{y}(t)=c_{1} e^{-t}+c_{2} e^{-2 t} \\
& \bar{y}(0)=c_{1}+c_{2}=3 \\
& \bar{y}^{\prime}(0)=-c_{1}-c_{2}=-5,-c_{2}=-5+3=-2 \Rightarrow c_{2}=2 \\
& c_{1}=3-c_{2}=3-2=1 \Rightarrow c_{1}=1 \\
& \bar{y}(t)=e^{-t}+2 e^{-2 t}
\end{aligned}
$$

Real-Valued Distinct Roots

Summary of steps:
Can the differential equation be put into the following form?

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Yes: Consider the characteristic equation and solve for r

$$
a r^{2}+b r+c=0
$$

Are the roots r_{1} and r_{2} real-valued and distinct?
Yes: then the solution is of the following form

$$
y(t)=c_{1} \exp \left(r_{1} t\right)+c_{2} \exp \left(r_{2} t\right)
$$

Solve the IVP by using $y\left(\mathrm{t}_{0}\right)=\mathrm{y}_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ and solving for c_{1}, c_{2}.
No: then must use further theory to determine solution (developed in later lectures).

Second Order Differential Equations

Complex-Valued Distinct Roots

Second Order Differential Equations
Euler Identity

$$
\begin{aligned}
& e^{i \theta}=\sum_{k=0}^{\infty} \frac{(i \theta)^{k}}{k!}=\sum_{l=0}^{\infty} \frac{(-1)^{l} \theta^{2 l}}{(2 l)!}+i \sum_{l=1}^{\infty} \frac{(-1)^{l} \theta^{2 l-1}}{(2 l-1)!}=\cos (\theta)+i \sin \theta \\
& \cos (\theta)=\sum_{l=0}^{\infty} \frac{(-1)^{l} \theta^{2 l}}{(2 l)!}, \quad \sin (\theta)=\sum_{l=1}^{\infty} \frac{(-1)^{l} \theta^{2 l-1}}{(2 l-1)!} \\
& e^{i \theta}=\cos (\theta)+i \sin (\theta)
\end{aligned}
$$

$\underbrace{\text { Remank! }} e^{-i \theta}=(\cos (\theta)-i \sin / \theta)$

$$
\begin{aligned}
e^{a+i b} & =e^{a} e^{i b}=e^{a}(\cos (b)+i \sin (b)) \\
\frac{d}{d t} e^{r t} & =r e^{r t} \text {, when } r \text { is complex. }
\end{aligned}
$$

Second Order Differential Equations

$$
\begin{aligned}
& \left.\begin{array}{l}
\text { Ex: }\left\{y^{\prime \prime}=-2 y^{\prime}-2 y\right. \\
\left\{y(0)=3, y^{\prime}(0)=1\right.
\end{array}\right\} \\
& a y^{\prime \prime}+b y^{\prime}+c=0 \\
& y^{\prime \prime}+2 y^{\prime}+2 y=0 \\
& r^{2}+2 r+\alpha=0 \\
& r=\frac{-2 \pm \sqrt{4-4 \cdot 2}}{2} \\
& =-1 \pm \sqrt{-1} \\
& =-1 \pm i \\
& r_{1}=-1+i, r_{2}=-1-i \\
& \bar{y}(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t} \\
& \bar{y}(t)=c_{1} e^{(-1+i) t}+c_{2} e^{(-1-i) t} \\
& e^{i \theta}=\cos (\theta)+i \sin (\theta) \\
& \bar{y}(t)=c_{1} e^{-t}\left(\cos \left(\theta_{1}\right)+i \sin \left(\theta_{1}\right)\right), \theta_{1}=t, \theta_{2}=-t \\
& +c_{2} e^{-t}\left(\cos \left(\theta_{2}\right)+i \sin \left(\theta_{2}\right)\right) \quad \tilde{c}_{1}=c_{1}+c_{2} \\
& =\tilde{c}_{1} e^{-t}\left(0 s(t)+\tilde{c}_{2} e^{-t} \sin (t), \quad \tilde{c}_{2}=i c_{1}-c_{2}\right) \\
& \bar{y}(t)=\tilde{c}_{1} e^{-t}\left(\cos (t)+\bar{c}_{2} e^{-t} \sin (t)\right. \\
& \bar{y}(0)=\tilde{c} 1 e^{-0} \cdot 1+0=3 \\
& \bar{y}^{\prime}(u)=-\tilde{c}_{1} e^{-0} \cos (0)-\tilde{c}_{1} e^{-0} \sin (v) \\
& -\tilde{c}_{2} e^{-0} \sin (0)+\tilde{c}_{2} e^{-0} \cos (0) \\
& =-\tilde{c}_{1}+\tilde{c}_{2}=1 \\
& \tau_{1}=3 \\
& -\tilde{c}_{1}+\tilde{c}_{j}=1 \Rightarrow \tilde{c}_{z}=1+\xi=4 \\
& y(t)=3 e^{-t} \cos (t)+4 e^{-t} \sin (t) .
\end{aligned}
$$

Complex-Valued Distinct Roots

Summary of steps:
Can the differential equation be put into the following form?

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Yes: Consider the characteristic equation and solve for r

$$
a r^{2}+b r+c=0
$$

Are the roots r_{1} and r_{2} complex-valued and distinct? $\left(r_{1}=\lambda+i \mu, r_{2}=\lambda-i \mu\right)$
Yes: then the solution is of the following form,

$$
y(t)=c_{1} \exp (\lambda t) \cos (\mu t)+c_{2} \exp (\lambda t) \sin (\mu t)
$$

Solve the IVP by using $\mathrm{y}\left(\mathrm{t}_{0}\right)=\mathrm{y}_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ and solving for c_{1}, c_{2}.
No: then must use further theory to determine solution.

Second Order Differential Equations

Repeated Roots

Second Order Differential Equations

$$
\begin{aligned}
& \text { Ex: } y^{\prime \prime}-2 y^{\prime}+y=0 \\
& y(0)=1, y^{\prime}(0)=2 \\
& y,(t)=\tilde{c} e^{r} t \\
& a r^{2}+b r+c=0, a=1, b=-2, c=1 \\
& r^{2}-2 r+1=0, r=-\frac{b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& r=\frac{+2 \pm \sqrt{4-4}}{2}=1 \pm 0 \Rightarrow r_{1}=1, r_{2}=1
\end{aligned}
$$

naive approach

$$
\bar{y}(t)=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}=c_{1} e^{t}+c_{2} e^{t}=\left(c_{1}+c_{2}\right) e^{t}
$$

$$
\left.\bar{y}(0)=c_{1}+c_{2}=1, \quad \bar{y}^{\prime} / v\right)=c_{1}+c_{2}=2
$$

\# contradiction, no $c_{1} c_{a}$ exists!
proper appruch

$$
\begin{aligned}
& \text { proper appruch } \\
& y_{1}(t)=c_{1} e^{r_{1} t}=c_{1} e^{t}, \quad y_{2}(t)=g(t) y_{1}(t)
\end{aligned}
$$

$$
\begin{aligned}
& y_{2}(t)=q(t) y_{1}(t) \\
& y_{2}^{\prime}(t)=q^{\prime}(t) y_{1}(t)+q(t) y_{1}^{\prime}(t) \quad y_{1}(t)=c_{1} e^{t} \\
& y_{2}^{\prime \prime}(t)=q^{\prime \prime}(t) y_{1}(t)+q^{\prime}(t) y_{1}^{\prime}(t) \\
&+q^{\prime}(t)=y_{1}^{\prime}(t)+q(t) y_{1}^{\prime \prime} . \\
& y_{2}^{\prime \prime}-2 y_{2}^{\prime}+y_{2} \\
&=q^{\prime \prime} y_{1}+q^{\prime}\left(2 y_{1}^{\prime} f_{2}^{\prime} y_{1}\right)+q\left(y_{1}^{\prime \prime}-2 y_{1}^{\prime}+y_{1}\right)=0 \\
& \Rightarrow q^{\prime \prime} y_{1}=0 \stackrel{c_{1}=0}{=7} q^{\prime \prime}(t)=0 \\
& \Rightarrow q(t)=k_{1}+k_{2} t, \quad k_{1}=0, k_{2}=\tilde{c}_{2} \\
& \Rightarrow y_{2}(t)=q(t) y_{1}(t)=\tilde{c}_{2} t y_{1}(t)=c_{2} t e^{t} \\
& \bar{y}(t)=c_{1} e^{t}+c_{2} t e^{t}
\end{aligned}
$$

solve for initial cundiyious

$$
\begin{aligned}
& \bar{y}(0)=1 \Rightarrow c_{1} e^{0}+c_{2} \cdot 0 e^{0}=c_{1}=1 \Rightarrow c_{1}=1 \\
& y^{\prime}(0)=2 \Rightarrow c_{1} e^{0}+c_{2} e^{0}+c_{2} \cdot 0 e^{0}=2 \Rightarrow c_{2}=2
\end{aligned}
$$

Second Order Differential Equations
General Approach

$$
a y^{\prime \prime}+b y^{\prime}+c y=0, \quad y(u)=y_{0}, \quad y^{\prime}(u)=y_{0}^{\prime}
$$

$$
\begin{aligned}
& y_{2}(t)=c_{2} t e^{r_{1} t} \\
& \bar{y}(t)=c_{1} e^{r_{1} t}+c_{2} t e^{r_{1} t}
\end{aligned}
$$

$$
a r^{2}+b r+c=0, \quad r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

initial value problem

$$
\begin{aligned}
& \bar{y}(0)=c_{1} e^{0}+c_{2} \cdot 0 e^{0}=y_{0} \\
& y^{\prime}(0)=c_{1} r_{1} e^{0}+c_{2} e^{0}+c_{2} \cdot 0 \cdot r_{1} e^{0}=y_{0}^{\prime} \\
& \Rightarrow c_{1}=y_{0}, c_{2}=y_{0}^{0} .
\end{aligned}
$$

$$
r_{1}=r_{2}=\frac{-b}{2 a} \cdot \quad y_{1}(t)=c_{1} e^{r_{1} t}
$$

second solution $y_{\alpha}(t)=q(t)_{y_{1}}(t)$

$$
y_{1}(t)=c_{1} e^{\frac{-b}{2 a} t}
$$

$$
\begin{aligned}
& y_{2}^{\prime}\left.\left.=q^{\prime} y_{1}+q y_{1}^{\prime} \quad y_{1}^{\prime}\right) t\right) \\
& y_{2}^{\prime \prime}=\left(-\frac{b}{2 n}\right) q_{1} e^{-\frac{b}{2 a} t}+ \\
&+q^{\prime} y_{1}^{\prime}+q q^{\prime} y_{1}^{\prime \prime} \quad=\left(-\frac{b}{2 n}\right) y_{1}(t) . \\
& a y_{2}^{\prime \prime}+b y_{2}^{\prime}+c y_{2}=q^{\prime \prime}\left(a y_{1}\right)+q^{\prime}\left(2 a y^{\prime}\left(\frac{7}{0}+b y_{1}\right)+q^{\prime \prime}\left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right)=0\right. \\
& a \neq 0 \\
& \stackrel{\prime \prime \prime}{\prime \prime 2}\left(\frac{-b}{2 a}\right) y_{1}+b y_{1}^{\prime \prime}(t) \Rightarrow 0 \Rightarrow q(t)=k_{1}+k_{2} t \quad
\end{aligned}
$$

Second Order Differential Equations

Repeated Roots

Summary of steps:
Can the differential equation be put into the following form?

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Yes: Consider the characteristic equation and solve for r

$$
a r^{2}+b r+c=0
$$

Are the roots r_{1} and r_{2} repeated? $\left(r_{1}=r_{2}=-b / 2 a=: r_{*}\right)$
Yes: then the solution is of the following form,

$$
y(t)=c_{1} \exp \left(r_{*} t\right)+c_{2} t \cdot \exp \left(r_{*} t\right)
$$

Solve the IVP by using $\mathrm{y}\left(\mathrm{t}_{0}\right)=\mathrm{y}_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ and solving for c_{1}, c_{2}.
No: then must use further theory to determine solution.

Second Order Differential Equations

Summary of Solution Cases

Second Order Differential Equations

Summary of cases

Steps:

Can the differential equation be put into the following form?

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Yes: Consider the characteristic equation and solve for r

$$
a r^{2}+b r+c=0
$$

Cases:

Are the roots	Roots	Solution
real-valued and distinct?	$\boldsymbol{r}_{\mathbf{1}} \neq \boldsymbol{r}_{\mathbf{2}}$	$y(t)=c_{1} \exp \left(r_{1} t\right)+c_{2} \exp \left(r_{2} t\right)$
complex-valued and distinct?	$\boldsymbol{r}_{\mathbf{1}}=\boldsymbol{\lambda}+\boldsymbol{i} \boldsymbol{\mu}, \boldsymbol{r}_{\mathbf{2}}=\boldsymbol{\lambda}-\boldsymbol{i} \boldsymbol{\mu}, \boldsymbol{\mu} \neq \mathbf{0}$	$y(t)=c_{1} \exp (\lambda t) \cos (\mu t)+c_{2} \exp (\lambda t) \sin (\mu t)$
repeated?	$\boldsymbol{r}_{\mathbf{1}}=\boldsymbol{r}_{\mathbf{2}}=-\boldsymbol{b} / \mathbf{2} \boldsymbol{a}=\boldsymbol{\boldsymbol { r } _ { * }}$	$y(t)=c_{1} \exp \left(r_{*} t\right)+c_{2} t \cdot \exp \left(r_{*} t\right)$

Solve the IVP by using $y\left(t_{0}\right)=y_{0}, y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$ and solving for c_{1}, c_{2}.

No: then must use other theory to determine solutions.

Discriminant	Case
$d=b^{2}-4 a c$	discriminant
$d>0$	real-valued distinct roots
$d<0$	complex-valued distinct roots
$d=0$	repeated roots

