Differential Equations

Paul J. Atzberger Department of Mathematics University of California Santa Barbara

Second Order Differential Equations Non-Homogeneous Case

Method of Undetermined Coefficients

Consider a non-homogeneous differential equation

$$y'' + p(t)y' + q(t)y = g(t).$$

Let L[y] = y'' + p(t)y' + q(t)y = g(t), then we can express the differential equation as L[y] = g(t).

Since L is linear, if $Y_1(t)$ and $Y_2(t)$ are solutions then $L[Y_1 - Y_2] = g(t) - g(t) = 0$, so $\psi(t) = Y_1 - Y_2$ is a solution to the homogeneous equation $L[\psi] = 0$.

Theorem If $Y_1(t)$ and $Y_2(t)$ are solutions to the non-homogeneous problem then their difference can be expressed as

$$Y_1(t) - Y_2(t) = \psi(t) = c_1 y_1(t) + c_2 y_2(t),$$

for some choice of c_1, c_2 , where $\{y_1(t), y_2(t)\}$ is a fundamental solution set for the homogeneous problem.

Theorem If $Y_1(t)$ and $Y_2(t)$ are solutions to the non-homogeneous problem then their difference can be expressed as

$$Y_1(t) - Y_2(t) = \psi(t) = c_1 y_1(t) + c_2 y_2(t),$$

for some choice of c_1, c_2 , where $\{y_1(t), y_2(t)\}$ is a fundamental solution set for the homogeneous problem.

Theorem The general solution for L[y] = g(t) to the non-homogeneous problem can be expressed as

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + S(t),$$

where S(t) is any specific solution to the non-homogeneous problem L[S] = g(t).

This follows since
$$L[\gamma] = c_1 L[\gamma] + (c_1 L[\gamma_2] + L[5], L[\gamma_1] = 0 = L[\gamma_2]$$

= $L[5] = g(t) = 7 L[\gamma] = g(t) \checkmark$

 $Ex:(y''=-2y'-y+e^{-3t})$ y"+plt) y +qlt)y =g(t) (ylo)=2, y'lo)=0 S $Y''+2y'+y=e^{-3t}$ Need to find a particular solution SIt) Let $S(t) = Ae^{-3t}$, L[y] = y'' + dy' + y, $L[S] = e^{-3t}$ $L[5] = (9A + \lambda(-3)A + A)e^{-3t} = e^{-5t}$ => $9A - 6A + A = 1 => 4A = 1 => A = \frac{1}{4} => [S/t] = \frac{1}{4}e^{-5t}$ Now find ying to the homogeneous public y"+2y'+y=0 $ar^{r}+br+c=0, r^{r}+r+1=0, r=-\frac{a+v}{v}=-1$ L[y]=0; (repeated runts) -> $y_1(t) = e^{-t}$, $y_1(t) = te^{-t}$. General Sulndian $\overline{y}(t) = c_1 e^{-t} + c_2 t e^{-t} + \frac{1}{4} e^{-3t}$

Initial Value Problem Y|0) = 2, y'(0) = 0 $\overline{Y}(o) = C_1 e^{o} + c_{d} \cdot o \cdot e^{o} + \frac{i}{4} e^{o}$ $= C_1 + \frac{1}{4} = \lambda = \frac{8}{4} = 7C_1 = \frac{7}{4}$ $\overline{Y}'(v) = -c_{,e}e^{0} + c_{,e}e^{0} - c_{,e}e^{0}$ $+-\frac{3}{4}e^{0} = -c_{1}+c_{2}-\frac{3}{4}=0$ $\Rightarrow c_{\lambda} = \frac{10}{9} = \frac{5}{2}$ Solution

Table of a few special solutions to	$y^{\prime\prime} + p(t)y^{\prime} + q(t)y = g(t)$
-------------------------------------	--

- (4)	V	(4)
$g_i(t)$	Y	(t)
$P_n(t) = a_0 t^n + a_1 t^{n-1} + \dots + a_n$	$t^s(A_0t^n+A_1t^{n-1}+\cdots$	$(\cdot + A_n)$
$P_n(t)e^{\alpha t}$	$t^s(A_0t^n+A_1t^{n-1}+\cdots$	$(+A_n)e^{\alpha t}$
$P_n(t)e^{\alpha t} \begin{cases} \sin\beta t \\ \cos\beta t \end{cases}$	$t^{s}[(A_{0}t^{n}+A_{1}t^{n-1}+\cdots+A_{n})e^{\alpha t}\cos\beta t$	
Boyce & DePrima 1999	$+ (B_0 t^n + B_1 t^{n-1} + \dots + B_n) e^{\alpha t} \sin \beta t]$	
$\underline{E_{x}}, y'' - y' + y = e^{t} sinlt)$, 5/t) = ?	L[S] = S"-S
$S/t) = Ae^{t}sin(t) + Be^{t}usl$	t), $g(t) = e^{t}sin(t)$	=(-2B-
$S'It) = Ae^{t}sinIt) + Ae^{t}c$	05/2)	+ (ZA -
+ Bet (vslt) - Bet	sinlt)	=-Bet
$= (A - B)e^{t}sinlt) +$	$(A+B)e^{\pm}(uslt)$	= g(t)=
$S''(t) = (A - B)e^{t}sin(t)$	+ (A-B) et (us(t)	$\Rightarrow -B = 1,$
$+(A+B)e^{\pm}(vs(t))$		=> \$ t) = -
= -2Betsin(t)	$+ \lambda A e^{\pm} (0S/t)$	

Second Order Differential Equations Homogeneous Case

Method of Reduction of Order

Reduction of Order (Derivation)

Homogeneous Differential Equation y'' + p(t)y' + q(t)y = 0

Postulated form for second solution

 $y = v(t)y_1(t)$

Derivatives

$$y' = v'(t)y_1(t) + v(t)y'_1(t)$$

$$y'' = v''(t)y_1(t) + 2v'(t)y'_1(t) + v(t)y''_1(t).$$

Substituting into differential equation gives $y_1v'' + (2y'_1 + py_1)v' + (y''_1 + py'_1 + qy_1)v = 0$ \downarrow $y_1v'' + (2y'_1 + py_1)v' = 0$ Let w(t) = v'(t)

First-Order Equation (reduced order)

 $y_1w' + (2y'_1 + py_1)w = 0$ solve w

Suppose One Solution Known
$$y_1(t)$$

Ex:
$$\lambda t^{*} \gamma'' - t \gamma' - \lambda \gamma = 0$$

 $\gamma_{1}|t_{2} = t^{*}, \quad \gamma_{1}' = \lambda t, \quad \gamma_{1}'' = \lambda$
 $2t^{*} \gamma_{1}'' - t \gamma_{1}' - \lambda \gamma_{1} = \lambda t^{*}, \quad \lambda - \lambda t^{*} - \lambda t^{*}$
 $= 4t^{*} - 4t^{*} - \lambda t^{*} - \lambda t^{*}$
 $\gamma = v/t_{2} \gamma_{1}' - t \gamma_{1} = \lambda t^{*} - \lambda t^{*} - \lambda t^{*}$
 $\gamma = v/t_{2} \gamma_{1}' + \gamma_{1}' + \gamma_{1}' = 0, \quad \gamma_{1}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' + \gamma_{2}' = 0, \quad \gamma_{1}' + \gamma_{2}' + \gamma$

Paul J. Atzberger, UCSB

w(t)dt + C

 $v(t) = \int$

Second Order Differential Equations Non-Homogeneous Case

Method of Variation of Parameters

Variation of Parameters (Derivation)

Non-homogeneous Differential Equation

y'' + p(t)y' + q(t)y = g(t)

Homogeneous Differential Equation

$$y'' + p(t)y' + q(t)y = 0 \implies y_c(t) = c_1y_1(t) + c_2y_2(t)$$

Postulated form for specific solution $y = u_1(t)y_1(t) + u_2(t)y_2(t)$

Derivatives

Substituting into differential equation gives

 $u_{1}(t)[y_{1}''(t) + p(t)y_{1}'(t) + q(t)y_{1}(t)] + u_{2}(t)[y_{2}''(t) + p(t)y_{2}'(t) + q(t)y_{2}(t)] + u_{1}'(t)y_{1}'(t) + u_{2}'(t)y_{2}'(t) = g(t)$ $u'_{1}(t)y'_{1}(t) + u'_{2}(t)y'_{2}(t) = g(t)$

Conditions on u1 and u2:

$$u'_{1}(t)y'_{1}(t) + u'_{2}(t)y'_{2}(t) = g(t)$$

$$u'_{1}(t)y_{1}(t) + u'_{2}(t)y_{2}(t) = 0$$

$$u'_{1}(t)y_{1}(t) + u'_{2}(t)y_{2}(t) = 0$$

$$u'_{1}(t) = -\frac{y_{2}(t)g(t)}{W(y_{1}, y_{2})(t)}$$

$$u'_{1}(t) = -\int \frac{y_{2}(t)g(t)}{W(y_{1}, y_{2})(t)} dt + c_{1}$$

$$u_{2}(t) = \frac{y_{1}(t)g(t)}{W(y_{1}, y_{2})(t)}$$

$$u_{2}(t) = \int \frac{y_{1}(t)g(t)}{W(y_{1}, y_{2})(t)} dt + c_{2}$$

Specific Solution

 $y = u_1(t)y_1(t) + u_2(t)y_2(t)$

Paul J. Atzberger, UCSB

Variation of Parameters

Theorem Consider the **non-homogeneous** differential equation

$$y'' + p(t)y' + q(t)y = g(t),$$

where p, q, g are continuous on an open interval I = (a, b). There is always a particular solution S(t) which can be expressed as

$$S(t) = -y_1(t) \int_{t_0}^t \frac{y_2(s)g(s)}{W[y_1, y_2](s)} ds + y_2(t) \int_{t_0}^t \frac{y_1(s)g(s)}{W[y_1, y_2](s)} ds,$$

where $\{y_1, y_2\}$ is a fundamental solution set for the homogeneous problem and $t_0 \in I$. The general solution is given by

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + S(t).$$