Differential Equations

Paul J. Atzberger Department of Mathematics University of California Santa Barbara

Higher Order Equations System of Equations

Systems of ODEs & Higher Order ODEs

Higher-Order ODEs

$$y^{(m)}(t) = f(t, y, y', \dots, y^{(m-1)}), \quad a \le t \le b,$$

$$y(a) = \alpha_1, y'(a) = \alpha_2, \quad \dots \quad y^{(m-1)}(a) = \alpha_m$$

Example: Newton's Second Law (F=ma)

Systems of ODEs & Higher Order ODEs

Higher-Order ODES

$$y^{(m)}(t) = f(t, y, y', ..., y^{(m-1)}), \quad a \le t \le b$$

 $y(a) = \alpha_1, y'(a) = \alpha_2, ..., y^{(m-1)}(a) = \alpha_m$
System of ODES
 $\frac{du_1}{dt} = f_1(t, u_1, u_2, ..., u_m),$
 \vdots
 $\frac{du_2}{dt} = f_2(t, u_1, u_2, ..., u_m),$
 \vdots
 $\frac{du_m}{dt} = f_m(t, u_1, u_2, ..., u_m),$
 $u_1(a) = \alpha_1, u_2(a) = \alpha_2, ..., u_m(a) = \alpha_m$
System for Higher-Order ODES
 $\frac{du_1}{dt} = \frac{dy}{dt} = u_2,$
 $\frac{du_2}{dt} = \frac{dy'}{dt} = u_3,$
 \vdots
 $\frac{du_{m-1}}{dt} = \frac{dy^{(m-2)}}{dt} = u_m$
 $\frac{du_m}{dt} = \frac{dy^{(m-1)}}{dt} = y^{(m)} = f(t, y, y', ..., y^{(m-1)})$
 $= f(t, u_1, u_2, ..., u_m)$
 $u_1(a) = y(a) = \alpha_1, u_2(a) = y'(a) = \alpha_2,$
 $\cdots u_m(a) = y^{(m-1)}(a) = \alpha_m$

Paul J. Atzberger, UCSB

Nonlinear Differential Equations Behaviors in Higher Dimensions

(optional materials)

Lipschitz Condition Non-Lipschitz Equations Lorenz System Chaotic Dynamics

Lipschitz Continuity for Functions of Rⁿ

Definition: A function $f(t, y_1, ..., y_m)$ is called Lipschitz if for some constant L $|f(t, u_1, ..., u_m) - f(t, z_1, ..., z_m)| \le L \sum_{j=1}^m |u_j - z_j|$ for all $(t, u_1, ..., u_m)$ and $(t, z_1, ..., z_m)$ in D, where $D = \{(t, u_1, ..., u_m) \mid a \le t \le b \text{ and } -\infty < u_i < \infty,$ for each $i = 1, 2, ..., m\}$

Example: $f(t,u_1,u_2) = u_1u_2$ **not** Lipschitz!

System of ODEs

$$\frac{du_1}{dt} = f_1(t, u_1, u_2, \dots, u_m),$$

$$\frac{du_2}{dt} = f_2(t, u_1, u_2, \dots, u_m),$$

$$\vdots$$

$$\frac{du_m}{dt} = f_m(t, u_1, u_2, \dots, u_m),$$

$$u_1(a) = \alpha_1, u_2(a) = \alpha_2, \dots, u_m(a) = \alpha_m$$

Example: $f(t,u_1,u_2) = tu_1 + tu_2$ is Lipschitz.

Well-posedness of System of ODEs

Definition: A function $f(t, y_1, ..., y_m)$ is called Lipschitz if for some constant L $|f(t, u_1, ..., u_m) - f(t, z_1, ..., z_m)| \le L \sum_{j=1}^m |u_j - z_j|$ for all $(t, u_1, ..., u_m)$ and $(t, z_1, ..., z_m)$ in D, where $D = \{(t, u_1, ..., u_m) \mid a \le t \le b \text{ and } -\infty < u_i < \infty,$ for each $i = 1, 2, ..., m\}$

System of ODEs

$$\frac{du_1}{dt} = f_1(t, u_1, u_2, \dots, u_m),$$

$$\frac{du_2}{dt} = f_2(t, u_1, u_2, \dots, u_m),$$

$$\vdots$$

$$\frac{du_m}{dt} = f_m(t, u_1, u_2, \dots, u_m),$$

$$u_1(a) = \alpha_1, \ u_2(a) = \alpha_2, \ \dots, \ u_m(a) = \alpha_m$$

Theorem: If the functions f_i in the system of ODEs each satisfy the Lipschitz condition on D then

- (1) there exists a solution
- (2) the solution is unique
- (3) robust to perturbations in initial conditions.

Key Points:

Establishes ODE is well-posed, if Lipschitz.

What behaviors can arise if NOT Lipschitz?

The $xy - \beta z$ term is non-linear and not Lipschitz.

Initial conditions:

- extremely sensitive to location of initial conditions.
- given a start location can not predict the future precisely.

However, the future locations are restricted to be near subset of points!

Paul J. Atzberger, UCSB

Differential Equations

many initial conditions (ensemble)

attractor

Trajectories:

- almost all initial conditions move toward subset.
- called an "attractor" (stable to perturbations).
- dynamics after transient is only on the attractor.
- structure? dimensionality? topology?
- need to study dynamics at ensemble level.

Summary:

- <u>Lipschitz continuity</u> is very important to help ensure <u>well-posed models</u>!
- Ensemble-level studies helpful in gaining further insights.

Paul J. Atzberger, UCSB

Differential Equations

Linear Differential Equations

Higher Order Systems

Solution Techniques

Consider the nth-order differential equation

$$\frac{d^{n}y}{dt^{n}} + P_{1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + P_{n}(t)y = g(t) \quad (r)$$

$$L[y] = \left(\frac{d^{n}}{dt^{n}} + P_{1}(t)\frac{d^{n-1}}{dt^{n-1}} + \dots + P_{n}(t)\right)y, \quad L[y] = g(t)$$

initial value problem

$$y(0) = y_0^{(0)}, \frac{dy}{dy}(0) = y_0^{(1)}, \dots, \frac{dy}{dt^{n-1}}(0) = y_0^{(n-1)}$$

Heorem: If
$$P_1(t)$$
, $P_1(t)$, ..., $P_n(t)$ are antinnous on $I = la, b$,
then there exists exactly one solution $y(t) = \phi(t)$ of (x) .
For the initial value problem $y(t)$ exists throughout
the interval I .

A possible structegy to obtain solutions is to nec superposition principle.

(and idute solutions based of ylt)=civilt)+civilt)+...+(nymlt),

where {Y1, Y2, ..., Yn 3 is a fundhmental solution set. http://atzberger.org/

 $\underbrace{\mathsf{Exi}}_{dt} \underbrace{\frac{dy_{1}}{dt}}_{dt} = -3y_{1}, \ y_{1}(0) = 3 \qquad y_{1}(t) = C_{1}e^{-2t}, \ y_{1}(0) = 3 = 2C_{1} = 3 = 2y_{1}(t) = 3e^{-2t} \\ -7 \qquad -7 \qquad -7 \qquad y_{1}(t) = C_{1}e^{-3t}, \ y_{1}(0) = 4 = 2z_{1} = 2z_{1}$ $\frac{dy}{dt} = \begin{bmatrix} -1 & 0 \\ 0 & -3 \end{bmatrix} \begin{bmatrix} 1 \\ 7 \end{bmatrix}, \quad y_0 = \begin{bmatrix} 3 \\ 4 \end{bmatrix}.$ $\frac{E \times i}{dt} = \begin{bmatrix} i & 0 \\ i & -i \end{bmatrix} + , \quad \forall o = \begin{bmatrix} i \\ i \end{bmatrix}, \quad \frac{d \times i}{dt} = y_i, \quad y_i / o) = \lambda \quad , \quad Z = P_+, \quad \chi = P^{-1} Z$ $\frac{d \times i}{dt} = y_i - \gamma_+, \quad y_2 / o = 1, \quad \frac{d Z}{dt} = P \frac{d \times i}{dt}, \quad \frac{d \times i}{dt} = P^{-1} \frac{d Z}{dt}$ $P^{-1}dz = \begin{bmatrix} 1 & 0 \end{bmatrix} P^{-1}z, \rightarrow dz = P\begin{bmatrix} 1 & 0 \end{bmatrix} P^{-1}z, \text{ try to choose } P \text{ so that } [10]$ $\begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} = \lambda \forall = \lambda \forall, \quad p(\lambda) = det(\begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} = det \begin{bmatrix} 1 - \lambda & 0 \\ 1 & -1 - \lambda \end{bmatrix} = (1 - \lambda)(-1 - \lambda) - 0 = -(\lambda - 1)(4 + 1)$ $p(\lambda) = 0 = > \lambda, = 1, \lambda_{2} = -1$ $\begin{bmatrix} 1-\lambda_1 & 0\\ 1& -1-\lambda_1 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1& -\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1& -\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1& -\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1& -1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1& -1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 1& 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} = \begin{bmatrix} 0 & 0\\ 0 \end{bmatrix} = \sum_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} \underbrace{U_i}_{i=1}^{n} \underbrace{U_i}_{i=1}$

Higher Order Equations $\frac{E_{X_{i}}}{dt} = \begin{bmatrix} i & 0 \\ i & -i \end{bmatrix} + , \quad t_{0} = \begin{bmatrix} i \\ i \end{bmatrix}, \quad \frac{d_{Y_{i}}}{dt} = Y_{i}, \quad Y_{i}(0) = \lambda \quad , \quad Z = P_{+}, \quad Y = P^{-1}Z_{i}$ $\frac{dy_{r}}{dt} = y_{1} - y_{r}, y_{2} / \omega = 1, \quad \frac{dz}{dt} = P \frac{dy}{dt}, \quad \frac{dy}{dt} = P \frac{dz}{dt}$ $P'\frac{dz}{dz} = \begin{bmatrix} i & 0 \end{bmatrix} P'\frac{z}{z}, \quad \Rightarrow \quad \frac{dz}{dz} = P\begin{bmatrix} i & 0 \end{bmatrix} P'\frac{z}{z}, \quad try \text{ to choose } P \text{ so that } \begin{bmatrix} i & 0 \end{bmatrix}$ $\begin{bmatrix} I & 0 \\ I & -1 \end{bmatrix} = \lambda \Psi, \quad p(\lambda) = det(\begin{bmatrix} I & 0 \\ I & -1 \end{bmatrix} - \lambda I) = det[I - \lambda & 0] = (I - \lambda)(-I - \lambda) - 0 = -(\lambda - I)(\lambda + I)$ $p(\lambda) = 0 = > \lambda, = I, \lambda_{2} = -I$ $\begin{bmatrix} 1-\lambda_1 & 0\\ 1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 0 & 0\\ 1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 1-\lambda_1 & 0\\ 1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 1-\lambda_2 & 0\\ 1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 1-\lambda_2 & 0\\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1-\lambda_1 & 0\\ 1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 1-\lambda_1 & 0\\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1-\lambda_1 & 0\\ 1-\lambda_2 \end{bmatrix} = \begin{bmatrix} 1-\lambda_1 & 0\\ 0 \end{bmatrix} = 2 \begin{bmatrix} 1-\lambda_1 & 0\\ 0 \end{bmatrix} = 2$ $Y(t) = z_1(t) \underbrace{\psi}_1 + z_2(t) \underbrace{\psi}_1 = P^{-1} \underbrace{z}_1, P^{-1} = \begin{bmatrix} \psi_1 \\ \psi_2 \end{bmatrix} = \begin{bmatrix} z \\ 1 \end{bmatrix}, P^{-1} = \begin{bmatrix} z \\$ $\frac{dy}{dt} = \frac{dz_1}{dt} \underbrace{v}_1 + \frac{dz_2}{dt} \underbrace{v}_2 = \begin{bmatrix} 1 & 0 \\ 1 & -1 \end{bmatrix} (z_1 b) \underbrace{v}_1 + z_2 (b) \underbrace{v}_2$ $= \frac{1}{2} \begin{bmatrix} 0 \\ -1 \end{bmatrix}$ $= 2, [t] \underbrace{\forall}_{1} - 2_{2}(t) \underbrace{\forall}_{2} = 2 \underbrace{(dz)}_{dt} - 2_{1} \underbrace{\forall}_{2} + (\frac{dz_{2}}{dt} + 2_{2}) \underbrace{\forall}_{1} = 0$ by linear independence $= \frac{dz_{1}}{dt} - 2_{1} = 0, \quad \frac{dz_{2}}{dt} + 2_{2} = 0 = 2 \underbrace{z_{1}(t)}_{t} = \underbrace{c_{1}e^{t}}_{t} \underbrace{z_{2}(t)}_{t} = \underbrace{c_{2}e^{t}}_{t}$ $\gamma/t) = c_1 e^{t_1} r_1 + c_2 e^{t_2} r_2$

Paul J. Atzberger, UCSB

Consider nth-order equation:

$$L[y] = \frac{d^{n}y}{dt^{n}} + p_{1}(t)\frac{d^{n-1}y}{dt^{n-1}} + \dots + p_{n-1}(t)\frac{dy}{dt} + p_{n}(t)y = g(t)$$
$$y(t_{0}) = y_{0}, \quad y'(t_{0}) = y'_{0}, \quad \dots, \quad y^{(n-1)}(t_{0}) = y^{(n-1)}_{0}$$

Def: For a collection of solutions {y1,y2,...yn} the **Wronskian** is

 $k_1 f_1(t) + k_2 f_2(t) + \dots + k_n f_n(t) = 0 \longrightarrow k_1 = k_2 = \dots = k_n = 0$

Def: A collection of functions {f1,f2,...fn} are called **Linearly Independent** if

$$W(y_1, \dots, y_n) = \begin{vmatrix} y_1 & y_2 & \cdots & y_n \\ y'_1 & y'_2 & \cdots & y'_n \\ \vdots & \vdots & & \vdots \\ y_1^{(n-1)} & y_2^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

Homogeneous equation:

$$L[y] = y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = 0.$$

$$y(t_0) = y_0, \quad y'(t_0) = y'_0, \quad \dots, \quad y^{(n-1)}(t_0) = y_0^{(n-1)}$$

General solution: $y = c_1y_1(t) + c_2y_2(t) + \dots + c_ny_n(t)$

Determining coefficients:

$$c_{1}y_{1}(t_{0}) + \dots + c_{n}y_{n}(t_{0}) = y_{0}$$

$$c_{1}y'_{1}(t_{0}) + \dots + c_{n}y'_{n}(t_{0}) = y'_{0}$$

$$\vdots$$

$$(n-1) + \dots + (n-1) + \dots + (n-1)$$

$$c_1 y_1^{(n-1)}(t_0) + \dots + c_n y_n^{(n-1)}(t_0) = y_0^{(n-1)}$$

Theorem:

Consider the homogeneous equation with p_1, p_2, \ldots, p_n where each is continuous on the interval I = (a, b). Let y_1, y_2, \ldots, y_n each be solutions of the differential equation. If the Wronskian $W = W[y_1, y_2, \ldots, y_n](t_0) \neq 0$ for some $t_0 \in I$ then $W \neq 0$ for all $t \in I$ and any solution of the differential equation can be expressed as $y(t) = c_1y_1(t) + \cdots + c_ny_n(t)$.

Differential Equations

$$\begin{aligned} \underbrace{\mathsf{exi}}_{y'''+y'=0}, \quad y_1/t) = 1, \quad y_2(t) = (as_1t), \quad y_3(t) = s(a_1t), \quad y_1(a) = 3, \quad y'(a) = 3, \quad y'(a) = -1 \\ & \text{Wrows}(x_{1n} w \\ & \text{W}[y_{1}, y_{1}, y_{3}]/t) = det \begin{bmatrix} 1 & cos(t) & s(a_1t) \\ 0 & -s(a_1t) & cos(t) \\ 0 & -cos(t) & -s(a_1t) \end{bmatrix} = s(a_1^2/t) = s(a_1^2/t) + (as_2^2/t) = 1, \\ & \text{W}(t_0) = det \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} = (1) det \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} = (1) (0 - (-1)) = 1 \end{aligned}$$

$$\begin{aligned} \text{Thm } \Rightarrow y_1(t) = c_1y_1(t) + c_2y_2(t) + (sy_3(t)) \\ &= c_1 + (c_1 \cos(t)) + (c_3 \sin(t)). \\ &\text{Twitnel } (cond_1 + t_{1n} ns) \\ & \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \\ c_3 \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \end{bmatrix}, \quad e > C_1 = 1, \quad c_3 = 3 \implies y_1(t) = 1 + cos(t) + Ss(a_1(t)). \end{aligned}$$

$$\begin{split} \underbrace{\mathsf{Ex}}_{t_0} & y''' + \lambda y'' - y' - \lambda y = 0, \quad y_1/t_0 = e^{t}, \quad y_2(t_0) = e^{t}, \quad y_3(t_0) = 4, \quad y'/0 = -\lambda, \quad y'$$

EX: Are the following functions linearly independent $f_1(t)=1$, $f_1(t)=t$, $f_3(t)=\pm t^2$, $-\infty < t < \infty$ $k_1 f_1(t) + k_1 f_2(t) + k_3 f_3(t) = 0$, $t_0 = 0, t_1 = 1, t_L = -1$ $k_1 f_1(u) + k_2 f_1(u) + k_3 f_3(u) = 0$ $\begin{bmatrix} f_{1} / k_{0} & f_{2} (k_{0} & f_{3} / k_{0}) \\ f_{1} / k_{1} & f_{1} (k_{1} & f_{3} (k_{1}) \\ f_{1} / k_{3} & f_{2} / k_{2} \end{pmatrix} \begin{bmatrix} k_{1} \\ k_{2} \\ k_{3} \end{bmatrix} = 0$ $\begin{bmatrix} f_{1} / k_{3} & f_{2} / k_{1} \\ f_{3} / k_{2} \end{bmatrix} \begin{bmatrix} k_{3} \\ k_{3} \end{bmatrix} = 0$ $|c_1 f_1(1) + |c_2 f_2(1) + |c_3 f_3(1)| = 0$ $K_{1} f_{1}(1) + k_{2} f_{3}(1) + k_{3} f_{3}(1) = 0$ $if det(A) \neq 0 = 2 K_1 = K_2 = K_3 = 0.$ $\begin{cases} K_{1} = 0 \\ K_{1} + 1/2 + \frac{1}{2} K_{3} = 0 \\ K_{1} - 1/2 + \frac{1}{2} K_{3} = 0 \end{cases} = >$ A $\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & \frac{1}{2} \\ 1 & -1 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1/k_1 \\ 1/k_2 \\ 1/k_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}, \quad det(A) = (1) det \begin{bmatrix} 1 & \frac{1}{2} \\ -1 & \frac{1}{2} \end{bmatrix} = (K_1 = 0) \\ = \frac{1}{2} - (-\frac{1}{2}) = 1 \neq 0 \qquad \begin{cases} K_1 = 0 \\ K_2 + \frac{1}{2}K_3 = 0 \\ K_3 = 0 \end{cases} = \begin{pmatrix} K_1 = 0 \\ K_2 = 0 \\ K_3 = 0 \end{cases}$