# Differential Equations 

Paul J. Atzberger<br>Department of Mathematics<br>University of California Santa Barbara

## Systems of First Order Equations

Solution Techniques

## Higher Order ODEs \& Systems of ODEs: Summary

## Higher-Order ODEs

$$
\begin{aligned}
y^{(m)}(t) & =f\left(t, y, y^{\prime}, \ldots, y^{(m-1)}\right), \quad a \leq t \leq b \\
y(a) & =\alpha_{1}, y^{\prime}(a)=\alpha_{2}, \ldots \quad y^{(m-1)}(a)=\alpha_{m}
\end{aligned}
$$

## System of ODEs

$$
\begin{aligned}
\frac{d u_{1}}{d t} & =f_{1}\left(t, u_{1}, u_{2}, \ldots, u_{m}\right) \\
\frac{d u_{2}}{d t} & =f_{2}\left(t, u_{1}, u_{2}, \ldots, u_{m}\right)
\end{aligned}
$$

$$
\frac{d u_{m}}{d t}=f_{m}\left(t, u_{1}, u_{2}, \ldots, u_{m}\right)
$$

$$
u_{1}(a)=\alpha_{1}, u_{2}(a)=\alpha_{2}, \ldots, u_{m}(a)=\alpha_{m}
$$

System for Higher-Order ODEs

$$
\begin{aligned}
& \frac{d u_{1}}{d t}=\frac{d y}{d t}=u_{2} \\
& \frac{d u_{2}}{d t}=\frac{d y^{\prime}}{d t}=u_{3}
\end{aligned}
$$

$$
\frac{d u_{m-1}}{d t}=\frac{d y^{(m-2)}}{d t}=u_{m}
$$

$$
\frac{d u_{m}}{d t}=\frac{d y^{(m-1)}}{d t}=y^{(m)}=f\left(t, y, y^{\prime}, \ldots, y^{(m-1)}\right)
$$

$$
=f\left(t, u_{1}, u_{2}, \ldots, u_{m}\right)
$$

$$
u_{1}(a)=y(a)=\alpha_{1}, \quad u_{2}(a)=y^{\prime}(a)=\alpha_{2}
$$

$$
\cdots u_{m}(a)=y^{(m-1)}(a)=\alpha_{m}
$$

## Systems of First Order Equations

Linear Algebra Review

## Linear Systems

## Linear System of Equations

System with $\mathbf{n}$ equations and $\mathbf{n}$ unknowns

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=b_{2}
\end{aligned}
$$

$$
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots+a_{n n} x_{n}=b_{n}
$$

Solve for x in $\mathrm{Ax}=\mathrm{b}$.
Need theory to determine when this is possible (existence / uniqueness).

## Methods to solve

- algebriac approaches (gaussian elimination, factorizations)
- computational methods (direct methods, iterative methods)
- issues: tractability, robustness to small errors.


## Example

For bead-spring system, find locations $X_{i}$ of beads that balances the forces.


Linear Systems
Eigenvalues is Eigenvectors
Def: $A$ vector $v$ is called an eigenvector of a matrix $A$ if there exists a scalar $\lambda \in \mathbb{R}$ so that

$$
A \underline{r}=\lambda \underline{v} .
$$

Def.' determinant $2 \times 2$
system $\operatorname{det}\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]=a d-b c$.
Deft, The scalar $\lambda \in \mathbb{R}$ is called an eigenvalue of the matrix $A$.
Example
$A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], \lambda_{1}=-1, \lambda_{1}=3$ are eigenvalues, $v_{1}=\left[\begin{array}{c}1 \\ -1\end{array}\right], v_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ ave eighantors.
$\left.\begin{array}{r}\text { Verify) } \\ \underset{A}{1} 2 \\ 21\end{array}\right]\left[\begin{array}{c}1 \\ -1\end{array}\right]=\left[\begin{array}{c}-1 \\ 1\end{array}\right]=(-1)\left(\begin{array}{c}1 \\ -1\end{array}\right],\left[\begin{array}{ll}1 & v_{1} \\ 2 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{l}3 \\ 3\end{array}\right]=3 \underset{v_{2}}{\left[\begin{array}{l}v_{1} \\ 1 \\ 1\end{array}\right] .}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
2 & 2 \\
2 & 2
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0 .} \\
& A-\lambda I \\
& \lambda=1
\end{aligned}
$$

Characteric Polynomial
$p(\lambda)=\operatorname{det}(A-\lambda I)$, each eigenvalue satisfies $p(\lambda)=0$.
Remark! pl l) $\operatorname{det}(A-\lambda I)=0 \Leftrightarrow E v s, t .(A-\lambda I)_{\underline{v}}=0 \Leftrightarrow A \underline{v}=\lambda \underline{v}$
Example $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right], \quad p(\lambda)=\operatorname{det}\left[\begin{array}{cc}1-\lambda & 2 \\ 2 & 1-\lambda\end{array}\right]=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3$,

Linear Systems
Operations that preserve solution x :
(i) Row E; can be multiplied by any non-zewo constant $\gamma, E_{i}^{\prime} \leftarrow \gamma E_{i}$.
(ii) Row $E_{j}$ can be multiplied by any non-zero count ant $\gamma$ and added to how $E_{;}$

$$
E_{i}^{\prime} \leftarrow E_{i}+\gamma E_{j}
$$

(iii) Rows E; and Dj can always be tronspositioned lexchanged) in order $E_{j}^{\prime} \leftarrow E_{j}, \quad E_{j}^{\prime} \leftarrow E_{i}$,

$$
\begin{aligned}
& A \underline{x}=b \\
& a_{11} x_{1}+a_{1} x_{2}=b_{1} \\
& a_{2} x_{1}+a_{22} x_{2}=b_{2} \\
& A=\left[\begin{array}{c}
E_{1} \\
-\frac{E_{2}}{2}
\end{array}\right], b=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]
\end{aligned}
$$

Def!' The augmented matrix $[A \mid b]=\left[\begin{array}{ccc|c}a_{1} & \cdots & a_{1 n} & b_{1} \\ \vdots & \cdots & \ddots & \vdots \\ a_{m 1} & \cdots & a_{m n} & b_{m}\end{array}\right]$.
How can one use these operations to obtain a linear system that is easion to solve?

We can try to pat the matrix in an upper triangular form. Gaussian Elimination Method.

Ex: $A=\left[\begin{array}{cc}-2 & 1 \\ 1 & -2\end{array}\right], b=\left[\begin{array}{c}1 \\ -1\end{array}\right]$

$$
\left[\begin{array}{cc|c}
-2 & 1 & 1 \\
1 & -2 & -1
\end{array}\right] \xrightarrow{E_{1} \leftrightarrow E_{2}}\left[\begin{array}{cc|c}
1 & -2 & -1 \\
-2 & 1 & 1
\end{array}\right] \xrightarrow{E_{2}^{\prime}=E_{2}+2 E_{1}}\left[\begin{array}{ll|l}
1 & -2 & -1 \\
0 & -3 & -1
\end{array}\right] \rightarrow\left\{\begin{array}{ll}
1 \cdot x_{1}-2 x_{2}=-1 \\
0 \cdot x_{1}-3 x_{2}=-1
\end{array}\right\} \rightarrow \begin{aligned}
& x_{1}=-1+\frac{2}{3} \\
& x_{2}=\frac{1}{3}
\end{aligned} .
$$

## Systems of First Order Equations Theory

## Systems of first Order Equations

First Order Linear Systems of Differential Equations

$$
\begin{gathered}
x_{1}^{\prime}=p_{11}(t) x_{1}+\cdots+p_{1 n}(t) x_{n}+g_{1}(t) \\
\quad \vdots
\end{gathered} \quad \Longrightarrow \quad \begin{gathered}
\text { vector notation } \\
\mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x}+\mathbf{g}(t)
\end{gathered}
$$

$$
x_{n}^{\prime}=p_{n 1}(t) x_{1}+\cdots+p_{n n}(t) x_{n}+g_{n}(t)
$$

Homogeneous Case: Initial Value Problem

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{P}(t) \mathbf{x} \quad \text { (ᄈ) } \\
& \mathbf{x}\left(t_{0}\right)=\boldsymbol{\xi}
\end{aligned}
$$

## Theorem

If the vector functions $\mathbf{x}^{(1)}$ and $\mathbf{x}^{(2)}$ are solutions of the system ( $\mathcal{x}$ ), then the linear combination $c_{1} \mathbf{x}^{(1)}+c_{2} \mathbf{x}^{(2)}$ is also a solution for any constants $c_{1}$ and $c_{2}$.

## Theorem

If the vector functions $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$ are linearly independent solutions of the system (*) for each point in the interval $\alpha<t<\beta$, then each solution $\mathbf{x}=\boldsymbol{\phi}(t)$ of the system $(\nLeftarrow)$ can be expressed as a linear combination of $\mathbf{x}^{(1)}, \ldots, \mathbf{x}^{(n)}$
solutions

$$
\mathbf{x}^{(1)}(t)=\left(\begin{array}{c}
x_{11}(t) \\
x_{21}(t) \\
\vdots \\
x_{n 1}(t)
\end{array}\right), \quad \ldots, \quad \mathbf{x}^{(k)}(t)=\left(\begin{array}{c}
x_{1 k}(t) \\
x_{2 k}(t) \\
\vdots \\
x_{n k}(t)
\end{array}\right)
$$

in exactly one way.

# Systems of First Order Equations Solution Techniques (Constant Coefficients) 

## First Order Systems: Constant Coefficients

First Order Linear Systems with Constant Coefficients


## Solution Candidates

$$
\begin{aligned}
& \mathbf{x}=\boldsymbol{\xi} e^{r t}: \longrightarrow r \boldsymbol{\xi} e^{r t}=\mathbf{A} \boldsymbol{\xi} e^{r t} \longrightarrow(\mathbf{A}-r \mathbf{I}) \boldsymbol{\xi}=\mathbf{0} \\
& \operatorname{det}(\mathbf{A}-r \mathbf{I})=0
\end{aligned}
$$

Roots of the characteristic polynomial

$$
\rho(r)=\operatorname{det}(\mathbf{A}-r \mathbf{I})
$$

Cases:

- real and distinct eigenvalues
- complex-valued eigenvalues
- repeated eigenvalues
- mixture of the cases above.


## First Order Systems with Constant Coefficients (Real and Distinct Eigenvalues)

## Homogeneous First Order System

$$
\mathbf{x}^{\prime}=\mathbf{A} \mathbf{x}
$$

$$
\mathbf{x}\left(t_{0}\right)=\boldsymbol{\xi}
$$

Summary of Solution Technique:
Find roots of the characteristic polynomial:
$\rho(r)=\operatorname{det}(\mathbf{A}-r \mathbf{I})$
Are the roots distinct real?
Yes, then fundamental solutions are

$$
\mathbf{x}^{(1)}(t)=\xi^{(1)} e^{r_{1} t}, \quad \ldots, \quad \mathbf{x}^{(n)}(t)=\xi^{(n)} e^{r_{n} t}
$$

Use solution of the form

$$
\mathbf{x}=c_{1} \boldsymbol{\xi}^{(1)} e^{r_{1} t}+\cdots+c_{n} \boldsymbol{\xi}{ }^{(n)} e^{r_{n} t}
$$

Find coefficients using initial conditions by solving

$$
c_{1} \mathbf{x}^{(1)}\left(t_{0}\right)+c_{2} \mathbf{x}^{(2)}\left(t_{0}\right)+\cdots+c_{n} \mathbf{x}^{(n)}\left(t_{0}\right)=\mathbf{x}\left(t_{0}\right)
$$

No, then need to use another method.

First Order Systems with Constant Coefficients (Real and Distinct Eigenvalues)

Ex: $\underline{x}^{\prime}=\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right] \underline{x}$
Find the general solution.

$$
\begin{aligned}
& \rho(r)=\operatorname{det}(A-r I), A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \\
& \rho(r)=\left|\begin{array}{cc}
1-r & 1 \\
4 & 1-r
\end{array}\right|=(1-r)^{2}-4=r^{2}-2 r-3=0 \\
& r_{1}=3, r_{2}=-1, \underline{x}^{(1)}=\underline{\xi}^{(1)} e^{3 t}, \underline{x}^{(2)}=\xi^{(\alpha)} e^{-t} \\
& (A-r I) \xi=0,\left[\begin{array}{cc}
1-r & 1 \\
4 & 1-r
\end{array}\right]\left[\begin{array}{l}
-\xi_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \\
& r_{1}=3:\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \in \xi^{(1)}=\left[\begin{array}{l}
1 \\
\alpha
\end{array}\right] \\
& r_{2}=-1:\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] E \xi^{(2)}=\left[\begin{array}{l}
1 \\
-2
\end{array}\right]
\end{aligned}
$$



## First Order Systems with Constant Coefficients (Complex-valued Ejgenvalues)

## Homogeneous First Order System

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A x} \\
& \mathbf{x}\left(t_{0}\right)=\xi
\end{aligned}
$$

Summary of Solution Technique:
Find roots of the characteristic polynomial:
$\rho(r)=\operatorname{det}(\mathbf{A}-r \mathbf{I})$
Are the roots complex-valued?
Yes, then fundamental solutions are

$$
\begin{aligned}
\mathbf{u}(t) & =e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \\
\mathbf{v}(t) & =e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{aligned}
$$

## Use solution of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{u}(t)+c_{2} \mathbf{v}(t)
$$

Find coefficients using initial conditions by solving $c_{1} \mathbf{u}\left(t_{0}\right)+c_{2} \mathbf{v}\left(t_{0}\right)=\mathbf{x}\left(t_{0}\right)$

Complex Eigenvalues $r=\lambda+i \mu$

$$
\begin{array}{cc}
\left(\mathbf{A}-r_{1} \mathbf{I}\right) \boldsymbol{\xi}^{(1)}=\mathbf{0} & \left(\mathbf{A}-\bar{r}_{1} \mathbf{I}\right) \overline{\boldsymbol{\xi}}^{(1)}=\mathbf{0} \\
\mathbf{x}^{(1)}(t)=\boldsymbol{\xi}^{(1)} e^{r_{1} t}, & \mathbf{x}^{(2)}(t)=\overline{\boldsymbol{\xi}}^{(1)} e^{\bar{r}_{1} t}
\end{array}
$$

$$
\text { Euler Formula } e^{i \theta}=\cos (\theta)+i \sin (\theta)
$$

```
Formulation using Euler Formula \(\xi^{(1)}=\mathbf{a}+i \mathbf{b}\)
\(\mathbf{x}^{(1)}(t)=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t)+i e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)\)
\(\mathbf{x}^{(1)}(t)=\mathbf{u}(t)+i \mathbf{v}(t), \quad \mathbf{x}^{(2)}(t)=\mathbf{u}(t)-i \mathbf{v}(t)\)
    \(\begin{aligned} & \mathbf{u}(t)=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \\ & \mathbf{v}(t)=e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)\end{aligned} \Rightarrow \tilde{c}_{1} \mathbf{x}^{(1)}+\tilde{c_{2}} \mathbf{x}^{(2)}=c_{1} \mathbf{u}(t)+c_{2} \mathbf{v}(t)\)
Formulation using Euler Formula \(\xi^{(1)}=\mathbf{a}+i \mathbf{b}\)
\(\mathbf{x}^{(1)}(t)=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t)+i e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)\)
\(\mathbf{x}^{(1)}(t)=\mathbf{u}(t)+i \mathbf{v}(t), \quad \mathbf{x}^{(2)}(t)=\mathbf{u}(t)-i \mathbf{v}(t)\)
\[
\begin{aligned}
& \mathbf{u}(t)=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \\
& \mathbf{v}(t)=e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{aligned} \Rightarrow \tilde{c}_{1} \mathbf{x}^{(1)}+\tilde{c}_{2} \mathbf{x}^{(2)}=c_{1} \mathbf{u}(t)+c_{2} \mathbf{v}(t)
\]
```

No, then need to use another method.

First Order Systems: Constant Coefficients (Complex-Valued Eigenvalues)
Ex: $\underline{x}^{\prime}=\left[\begin{array}{cc}-\frac{1}{2} & 1 \\ -1 & -\frac{1}{2}\end{array}\right] \underline{x}$
Find the general solution.

$$
\begin{aligned}
& p(r)=\left|\begin{array}{cc}
-\frac{1}{2}-r & 1 \\
-1 & -\frac{1}{2}-r
\end{array}\right|=\left(\frac{-1}{2}-r\right)\left(-\frac{1}{2}-r\right)+1 . \\
& r_{1}=-\frac{1}{\alpha}+i, r_{\alpha}=-\frac{1}{2}-j \\
& {\left[\begin{array}{cc}
j & 1 \\
-1 & j
\end{array}\right]\left[\begin{array}{l}
s_{1} \\
\xi_{1}
\end{array}\right]=\underline{0} \Leftarrow \underline{\xi}^{(1)}=\left[\begin{array}{l}
1 \\
i
\end{array}\right]=\underline{a}+i \underline{b}=\left[\begin{array}{l}
1 \\
0
\end{array}\right]+i\left[\begin{array}{l}
0 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{cc}
-i & 1 \\
-1 & -i
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=\underline{0} \Leftarrow \underline{\xi}^{(\alpha)}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right]=\underline{a}-i \underline{b}} \\
& \underline{u}=e^{-\frac{1}{2} t}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \cos (t)-e^{-\frac{1}{2} t}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \sin (t)=e^{-\frac{1}{2} t}\left[\begin{array}{c}
\cos \mid t) \\
-\sin (t)
\end{array}\right] \\
& \underline{v}=e^{-\frac{1}{2} t}\left[\begin{array}{l}
1 \\
0
\end{array}\right] \sin (t)+e^{-\frac{1}{2} t}\left[\begin{array}{l}
0 \\
1
\end{array}\right] \cos (t)=e^{-\frac{1}{2} t}\left[\begin{array}{l}
\sin (t) \\
\cos (t)
\end{array}\right]
\end{aligned}
$$



## First Order Systems with Constant Coefficients (Repeated Eigenvalues, $s=2, k=1$ )

## Homogeneous First Order System

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A} \mathbf{x} \\
& \mathbf{x}\left(t_{0}\right)=\xi
\end{aligned}
$$

Summary of Solution Technique:
Find roots of the characteristic polynomial:

$$
\rho(r)=\operatorname{det}(\mathbf{A}-r \mathbf{I})
$$

Are the roots repeated?
Yes, then fundamental solutions are

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\boldsymbol{\xi}^{(1)} e^{r t} \\
& \mathbf{x}^{(2)}=\eta^{(1)} e^{r t}+\boldsymbol{\xi}^{(1)} t e^{r t}
\end{aligned}
$$

## Use solution of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)
$$

Find coefficients using initial conditions by solving

$$
c_{1} \mathbf{x}^{(1)}\left(t_{0}\right)+c_{2} \mathbf{x}^{(2)}\left(t_{0}\right)=\mathbf{x}\left(t_{0}\right)
$$ $c_{1}\left(t_{0}\right)+c_{2} x^{(2)}\left(t_{0}\right)=x\left(t_{0}\right)$.

Repeated Eigenvalues ( $\mathrm{s}=\mathbf{2}, \mathrm{k}=1$ )
(i) find eigenvector for $r, \xi^{(1)} \leftarrow(A-r I) \xi=0$
(ii) construct the generalized eigenvector $\eta^{(1)} \leftarrow(A-r I)^{2} \eta=0$
(iii) this gives fundamental solutions

$$
(A-r I) \eta=\xi
$$

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\boldsymbol{\xi}^{(1)} e^{r t} \\
& \mathbf{x}^{(2)}=\boldsymbol{\eta}^{(1)} e^{r t}+\boldsymbol{\xi}^{(1)} t e^{r t}
\end{aligned}
$$

No, then need to use another method.

First Order Systems; Constant Coefficients (Repeated Eigenvalues)
Ex: $\underline{x}^{\prime}=\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right] \underline{x}$
Find the general solution.

$$
p(r)=\left|\begin{array}{cc}
1-r & -1 \\
1 & 3-r
\end{array}\right|=(1-r)(3-r)+1=r^{2}-4 r+4=0
$$

$r_{1}=2, r_{2}=2$, algebraic multiplicity $s=2$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\xi_{1} \\
\xi_{2}
\end{array}\right]=0<\underline{\xi}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right],(A-r I) \xi=0} \\
& (A-r I)^{2} \underline{n}=0, \Leftrightarrow(A-r I) \eta=\xi, \\
& {\left[\begin{array}{cc}
-1 & -1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
\eta_{1} \\
\eta_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \Leftrightarrow \underline{n}=\left[\begin{array}{c}
-\frac{1}{2} \\
-\frac{1}{2}
\end{array}\right]} \\
& \underline{x}^{(1)}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{2 t}, \underline{x}^{(2)}=\eta e^{2 t}+\xi t e^{2 t}=\left[\begin{array}{c}
-\frac{1}{2}+t \\
-\frac{1}{\alpha}-t
\end{array}\right] e^{2 t}
\end{aligned}
$$



$$
\underline{x}(t)=c_{1}\left[\begin{array}{c}
1 \\
-1
\end{array}\right] e^{2 t}+c_{2}\left[\begin{array}{c}
-\frac{1}{2}+t \\
-\frac{1}{2}-t
\end{array}\right] e^{2 t}
$$

## First Order Systems with Constant Coefficients (Summary)

Homogeneous First Order System

$$
\begin{aligned}
& \mathbf{x}^{\prime}=\mathbf{A x} \\
& \mathbf{x}\left(t_{0}\right)=\xi
\end{aligned}
$$

Summary of Solution Technique:
Are the coefficients constant?
Yes, then find roots of the characteristic polynomial:

$$
\rho(r)=\operatorname{det}(\mathbf{A}-r \mathbf{I})
$$

Construct the fundamental solution set using the cases

$$
\left\{\mathbf{x}^{(1)}(t), \mathbf{x}^{(2)}(t), \ldots, \mathbf{x}^{(n)}(t)\right\}
$$

## Use solution of the form

$$
\mathbf{x}(t)=c_{1} \mathbf{x}^{(1)}(t)+c_{2} \mathbf{x}^{(2)}(t)+\cdots c_{n} \mathbf{x}^{(n)}(t)
$$

Find coefficients using initial conditions by solving

$$
c_{1} \mathbf{x}^{(1)}\left(t_{0}\right)+c_{2} \mathbf{x}^{(2)}\left(t_{0}\right)+\cdots c_{n} \mathbf{x}^{(n)}\left(t_{0}\right)=\mathbf{x}\left(t_{0}\right)
$$

No, then need to use another method.

## Complex Eigenvalues $r=\lambda+i \mu$

$\left(\mathbf{A}-r_{1} \mathbf{I}\right) \boldsymbol{\xi}^{(1)}=\mathbf{0}$
$\left(\mathbf{A}-\bar{r}_{1} \mathbf{I}\right) \bar{\xi}^{(1)}=\mathbf{0}$
$\mathbf{x}^{(1)}(t)=\xi^{(1)} e^{r_{1} t}$,
$\mathbf{x}^{(2)}(t)=\overline{\boldsymbol{\xi}}^{(1)} e^{\bar{T}_{1} t}$

## Formulation using Euler Formula $\quad \xi^{(1)}=\mathbf{a}+i \mathbf{b}$

$$
\mathbf{x}^{(1)}(t)=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t)+i e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
$$

$$
\mathbf{x}^{(1)}(t)=\mathbf{u}(t)+i \mathbf{v}(t), \quad \mathbf{x}^{(2)}(t)=\mathbf{u}(t)-i \mathbf{v}(t)
$$

$$
\begin{aligned}
& \mathbf{u}(t)=e^{\lambda t}(\mathbf{a} \cos \mu t-\mathbf{b} \sin \mu t) \\
& \mathbf{v}(t)=e^{\lambda t}(\mathbf{a} \sin \mu t+\mathbf{b} \cos \mu t)
\end{aligned} \Rightarrow \tilde{c}_{1} \mathbf{x}^{(1)}+\tilde{c}_{2} \mathbf{x}^{(2)}=c_{1} \mathbf{u}(t)+c_{2} \mathbf{v}(t)
$$

Repeated Eigenvalues ( $s=2, k=1$ )
(i) find eigenvector for $r, \xi^{(1)} \leftarrow(A-r I) \xi=0$
(ii) construct the generalized eigenvector $\eta^{(1)} \leftarrow(A-r)^{2} \boldsymbol{\eta}=0$
(iii) this gives fundamental solutions can use

$$
(A-r I) \eta=\xi
$$

$$
\begin{aligned}
& \mathbf{x}^{(1)}=\boldsymbol{\xi}^{(1)} e^{r t} . \\
& \mathbf{x}^{(2)}=\boldsymbol{\eta}^{(1)} e^{r t}+\boldsymbol{\xi}^{(1)} t e^{r t}
\end{aligned}
$$

$$
(A-r I) \xi=0
$$

s : algebraic multiplicity
k: geometric multiplicity

# Systems of First Order Equations <br> Phase Portraits <br> Dynamical Behaviors 

## Phase Portrajts

A phase portrait shows representative trajectories and vector field for the evolution of the state $\mathbf{x}(\mathbf{t})$ of the differential equation.

$$
\begin{array}{ll}
\text { Ex: } & \\
& \mathbf{x}^{\prime}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right) \mathbf{x}
\end{array}
$$

$$
\begin{aligned}
& \dot{x}_{1}=x_{1} \\
& \dot{x}_{2}=x_{2} \\
& \dot{x}_{3}=-x_{3}
\end{aligned} \quad \text { solution } \quad \begin{aligned}
& x_{1}(t)=c_{1} e^{t} \\
& x_{2}(t)=c_{2} e^{t} \\
& x_{3}(t)=c_{3} e^{-t}
\end{aligned}
$$

phase portrait
phase portrait


(a)


## 2D Linear Systems: Phase Portraits

## Linear Dynamical System

$$
\dot{\mathbf{x}}=A \mathbf{x}
$$

## Consider the following standard forms

$$
\dot{\mathbf{x}}=B \mathbf{x}
$$

with

$$
B=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right], \quad B=\left[\begin{array}{ll}
\lambda & 1 \\
0 & \lambda
\end{array}\right], \quad \text { or } \quad B=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right]
$$

This has the solutions

$$
\mathbf{x}(t)=\left[\begin{array}{cc}
e^{\lambda t} & 0 \\
0 & e^{\mu t}
\end{array}\right] \mathbf{x}_{0}, \mathbf{x}(t)=e^{\lambda t}\left[\begin{array}{ll}
1 & t \\
0 & 1
\end{array}\right] \mathbf{x}_{0}, \mathbf{x}(t)=e^{a t}\left[\begin{array}{cc}
\cos b t & -\sin b t \\
\sin b t & \cos b t
\end{array}\right] \mathbf{x}_{0}
$$

## Case I:

$$
B=\left[\begin{array}{ll}
\lambda & 0 \\
0 & \mu
\end{array}\right] \text { with } \lambda<0<\mu \quad \text { phase portrait }
$$

Case II:
$B=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \mu\end{array}\right]$ with $\lambda \leq \mu<0$ or $B=\left[\begin{array}{cc}\lambda & 1 \\ 0 & \lambda\end{array}\right]$ with $\lambda<0$ phase portrait

$\lambda=\mu$


## Case III:

$$
B=\left[\begin{array}{rr}
a & -b \\
b & a
\end{array}\right] \text { with } a<0
$$



## 2D Linear Systems: Phase Portraits

## Linear Dynamical System

## Linear System Behaviors in 2D

$$
\dot{x}=A x . \quad A=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

## Linear Dynamic System

$$
\begin{aligned}
\dot{x}_{1} & =a x_{1}+b x_{2} \\
\dot{x}_{2} & =c x_{1}+d x_{2}
\end{aligned}
$$

## Characterization

$$
\begin{aligned}
& \operatorname{det}(A)=a d-b c \\
& \operatorname{Tr}(A)=a+d \\
& \rho(r)=r^{2}-\operatorname{Tr}(A) r+\operatorname{det}(A) \\
& r=\frac{\operatorname{Tr}(A) \pm \sqrt{\left(T-[A)^{r}-\psi \operatorname{det}[A]\right.}}{2}
\end{aligned}
$$

## Conclusion

## Enjoyed working with you all this quarter!

Thank You!

