========= GD-VAE ========= .. figure:: overview.png :align: center **Geometric Dynamic Variational Autoencoders (GD-VAEs) package** provides machine learning methods for learning embedding maps for nonlinear dynamics into general latent spaces. This includes methods for standard latent spaces or manifold latent spaces with specified geometry and topology. The manifold latent spaces can be based on analytic expressions or general point cloud representations. If you find these methods or codes helpful in your project, please cite: *GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions,* R. Lopez and P. J. Atzberger, (preprint), (2022) `[arXiv] `_ . .. | @article{lopez_atzberger_gd_vae_2022, .. | title={GD-VAEs: Geometric Dynamic Variational Autoencoders for .. | Learning Non-linear Dynamics and Dimension Reductions}, .. | author={Ryan Lopez, Paul J. Atzberger}, .. | journal={arXiv:2206.05183}, .. | month={June}, .. | year={2022}, .. | url={http://arxiv.org/abs/2206.05183} .. | } .. toctree:: :maxdepth: 1 :caption: Package Reference geo_map.rst vae.rst nn.rst utils.rst log.rst indices.rst .. toctree:: :maxdepth: 1 :caption: Links GitHub for Code / Examples Atzberger Research Group