=========
GD-VAE
=========
.. figure:: overview.png
:align: center
**Geometric Dynamic Variational Autoencoders (GD-VAEs) package** provides machine learning methods
for learning embedding maps for nonlinear dynamics into general latent spaces.
This includes methods for standard latent spaces or manifold latent spaces with
specified geometry and topology. The manifold latent spaces can be based on
analytic expressions or general point cloud representations.
If you find these methods or codes helpful in your project, please cite:
*GD-VAEs: Geometric Dynamic Variational Autoencoders for Learning Nonlinear Dynamics and Dimension Reductions,*
R. Lopez and P. J. Atzberger, (preprint), (2022) `[arXiv] `_ .
.. | @article{lopez_atzberger_gd_vae_2022,
.. | title={GD-VAEs: Geometric Dynamic Variational Autoencoders for
.. | Learning Non-linear Dynamics and Dimension Reductions},
.. | author={Ryan Lopez, Paul J. Atzberger},
.. | journal={arXiv:2206.05183},
.. | month={June},
.. | year={2022},
.. | url={http://arxiv.org/abs/2206.05183}
.. | }
.. toctree::
:maxdepth: 1
:caption: Package Reference
geo_map.rst
vae.rst
nn.rst
utils.rst
log.rst
indices.rst
.. toctree::
:maxdepth: 1
:caption: Links
GitHub for Code / Examples
Atzberger Research Group