Finite Element Methods for Elasticity

Paul J. Atzberger

206D: Finite Element Methods University of California Santa Barbara Biharmonic PDE: Mechanics of plate bending

 $egin{aligned} & E_B\Delta^2 u = -f(x), \ \mathbf{x} \in \Omega \ & \mathbf{n} \cdot
abla u = 0, \ \mathbf{x} \in \partial \Omega \ & u = 0, \ \mathbf{x} \in \partial \Omega. \end{aligned}$

- u(x) deflection in the z-direction.
- f(x) load force in the z-direction.
- E_B bending modulus of the plate.

Finite Element Methods:

Fourth-order PDE \rightarrow weak formulation has two derivatives.

Conforming elements suggests we need C^1 -regularity.

Developing effective C^1 -elements poses challenges.

Elements: Hermite Cubic and Hermite Quintic

Finite Element Approximation

Hermite Cubic

Continuous first derivatives at nodes, but NOT along edges!

Non-conforming first derivatives along edges, only \rightarrow C0.

Poor accuracy in practice for elasticity problems.

Considerations

Hermite Quintic elements yield accurate approximations for elasticity problems.

However, expensive with 21 DOF.

Can accurate elements be developed with fewer DOF?

Candidate Elements

Hermite Quintic

Uses first and second derivatives at nodes.

Uses normal derivatives at midpoints.

Conforming first derivatives along edges \rightarrow C1.

Elements: Morley and Hsieh-Clough-Tocher (HCT)

Candidate Elements

Hsieh-Clough-Tocher C1 (7 nodes , 12 DOF, macroelement 3-cubics)

Morley Quadratic

Only 6 DOF \rightarrow uses values at nodes and normal derivatives at midpoint edges. However, non-conforming \rightarrow C0.

Still yields accurate results for many elasticity problems.

Hsieh-Clough-Tocher (HCT)

Macroelement divided into three parts with each using a cubic. Cubics on each part coupled with C1 continuity imposed along interior edges. Uses first derivatives at triangle vertices and normal derivatives at edge midpoints.

Conforming \rightarrow C1 \rightarrow well-founded convergence theory. 12 DOF \rightarrow provides good trade-off for many elasticity problems.

Finite Element Methods

Hsieh-Clough-Tocher (HCT) Elements

Remarks

Nodes 1-3, 4-9 similar to the hermite elements. Nodes 10-12 similar to bubble nodes.

Cubics facilitate quadratures using standard methods over parts. HCT is widely-used element for elasticity.

0.2

0.4

0.2

0.4

Paul J. Atzberger, UCSB

Finite Element Methods

Numerical Approximation

Biharmonic PDE: Mechanics of plate bending

 $E_B \Delta^2 u = -f(x), \ \mathbf{x} \in \Omega$ $\mathbf{n} \cdot \nabla u = 0, \ \mathbf{x} \in \partial \Omega$

 $u = 0, \ \mathbf{x} \in \partial \Omega.$

- $u(\mathbf{x})$ deflection in the z-direction.
- $f(\mathbf{x})$ load force in the z-direction.
- E_B bending modulus of the plate.

Numerical Solution

(i) variational formulation, (ii) meshing, (iii) assembly,(iv) linear solver.

HCT Elements \rightarrow Ritz-Galerkin Approximation.

Example

Consider case with f(x) = 1, EB = 1 on disk.

By rotational symmetry becomes PDE

$$\nabla^2 = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \left(\frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial}{\partial r} \right) \right) \right) = -f(x) \quad \longrightarrow \text{ quintic polynomial in r.}$$

Paul J. Atzberger, UCSB

Finite Element Methods

Numerical Results: Hsieh-Clough-Tocher (HCT) Elements

Paul J. Atzberger, UCSB

Finite Element Methods

http://atzberger.org/

Paul J. Atzberger, UCSB