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Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1).

Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition
Consider

i An element domain is a set K ⊆ Rn that is a bounded closed set with non-empty interior and piece-wise
smooth boundary.

ii The shape functions P consist of a finite-dimensional space of functions on K .

iii The nodal variables N = {N1,N2, . . . ,Nk} are any basis of the dual space P ′

A finite element is the triple (K ,P,N ).

This definition of FEM is due to Ciarlet. Sometimes also denoted by (T ,Π,Σ).

Definition

For a finite element (K ,P,N ), the nodal basis {φi}ki=1 of P is the collection of functions for which Ni (φj) = δij .

Example: Consider the finite element with K = [0, 1] and P with linear polynomial basis with N = {N1,N2},
where N1(v) = v(0) and N2(v) = v(1). Then φ1(x) = 1− x and φ2(x) = x .

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Finite Elements

Definition

The nodal variables N are said to determine members of P if for ψ ∈ P we have N(ψ) = 0 ∀N ∈ N
implies ψ ≡ 0.

This means that knowledge of ai = Ni (ψ) is sufficient to distinguish the member ψ ∈ P. This follows
since for bi = Ni (ψ1) and ci = Ni (ψ2), if bi = ci , ∀i , then ψ1 ≡ ψ2.

Lemma
The following statements are equivalent

i For v ∈ P with Ni (v) = 0, ∀i , then v ≡ 0.

ii The collection {N1,N2, . . . ,Nk} is a basis for P ′.

Proof: Suppose {φi} are a basis for P. The {Ni} are basis for P ′ iff for any L ∈ P ′ we have

L = α1N1 + . . .+ αdNd

and L ≡ 0 implies αi = 0.
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Finite Elements

Lemma
The following statements are equivalent

i For v ∈ P with Ni (v) = 0, ∀i , then v ≡ 0.

ii The collection {N1,N2, . . . ,Nk} is a basis for P ′.

Proof:

Finding the αi of L = α1N1 + . . .+ αdNd is equivalent to finding solution to

L(φi ) = α1N1(φi ) + . . .+ αdNd(φi ).

Let matrix Bij = Nj(φi ), then above corresponds to solving Bα = y, where yi = L(φi ), so
(ii) ⇐⇒ B is invertible.

Consider v ∈ P with v =
∑

j βjφj . If Ni (v) = 0, then
∑

j βjNj(φi ) = 0. The v ≡ 0 if βj = 0.
Let matrix Cij = Ni (φj), xj = βj , then above corresponds to Cx = 0 ⇒ x = 0, so
(i) ⇐⇒ C is invertible.

The C = BT so it follows (i) ⇐⇒ (ii). �
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Finite Elements

Definition
Conforming Finite Elements are those that generate a space S with S ⊂ V. The generated space S
is a subspace of the V used for the weak formulation.

Definition
We call admissible a partition of Ω into
T = {T1,T2, . . . ,TM} into triangular or quadrilateral
elements if

i The Ti form a partition Ω =
⋃M

i=1 Ti .

ii For i 6= j the Ti

⋂
Tj only intersect along an

edge or vertex.
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Finite Elements

Theorem
For a bounded domain Ω, admissible partition, and k ≥ 1, a piecewise infinitely differentiable function
v : Ω→ R belongs to Hk(Ω) if and only if v ∈ C k−1(Ω).

Proof: We show this for the case k = 1, and for simplicity R2. The result follows for larger derivatives
by applying the result to the (k − 1)-order derivative functions. (⇐) For v ∈ C 0(Ω), let T = {Tj}Mj=1

be the partition corresponding to the piecewise infinite differentiability property of v . For i = 1, 2, let
wi = ∂iv(x) in interior x ∈ T̊j for each j .
We claim the wi is a weak derivative of v , since ∀φ ∈ C∞0 (Ω)

(wi , φ)0 =

∫
Ω

wiφdx =
∑
j

∫
Tj

φ∂ivdx =
∑
j

(∫
∂Tj

φvdx−
∫
Tj

v∂iφdx

)
= −(v , ∂iφ)0.

The boundary term vanishes since φ(x) = 0 for x ∈ ∂Ω and internal boundary terms cancel.
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Finite Elements

Theorem
For a bounded domain Ω, admissible partition, and k ≥ 1, a piecewise infinitely differentiable function
v : Ω→ R belongs to Hk(Ω) if and only if v ∈ C k−1(Ω).

Proof:
(⇒) Let v ∈ H1(Ω). Consider a neighborhood of an edge and use coordinates based on rotation so the
edge lies along the y -axis as interval [y1 − δ, y2 + δ], δ > 0.
Consider the auxiliary function

Ψ(x) :=

∫ y2

y1

v(x , y)dy .

If v ∈ C∞(Ω), it would follow from Cauchy-Swartz that

|Ψ(x2)−Ψ(x1)|2 =

∣∣∣∣∫ x2

x1

∫ y2

y1

∂1vdxdy

∣∣∣∣2 ≤ ∣∣∣∣∫ x2

x1

∫ y2

y1

12dxdy

∣∣∣∣ · |v |21,Ω ≤ |x2 − x1| · |y2 − y1| · |v |21,Ω.

Since C∞
⋂
H1(Ω) is dense the above bound also holds for general v ∈ H1(Ω).

This means the function Ψ(x) is continuous, in particular at x = 0. Since y1,y2 can be chosen arbitrary
with y1 < y2, Ψ can only be continuous if v is continuous at the edge, ⇒ v ∈ C 0. �
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Finite Elements

Theorem
For a bounded domain Ω, admissible partition, and k ≥ 1, a piecewise infinitely differentiable function
v : Ω→ R belongs to Hk(Ω) if and only if v ∈ C k−1(Ω).

Significance: This shows that provided our elements are smooth piecewise and have derivatives C k−1

across edges, we obtain conforming elements for V = Hk(Ω).

Example: While hat-functions are only C 0, they provide elements conforming to V = H1(Ω). Allows
for approximating in weak form second-order PDEs.

Example: Elements with C 1-regularity across edges are sufficient to conform to V = H2(Ω). Allows for
approximating in weak form fourth-order PDEs.
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Practical Methods: A Few Considerations

Definitions

Two elements are congruent if they can be rigidly transformed into each other (allowing reflections).

A partition by elements is called regular if all the elements are congruent (same type and shape).

The space of polynomials of degree t with x ∈ Rn is denoted by

Pt =

u | u(x) =
∑
|α|≤t

cαxα

 .

Elements with complete polynomials refers to shape spaces using all polynomials with degree ≤ t.

Conforming finite elements are those that generate function spaces contained in the Sobolev space of
the weak formulation.

Other shape spaces, partition types, and non-conforming finite elements are also possible.
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Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T .

Lemma
Consider triangle T with z1, z2, . . . , zs , s = 1 + 2 + · · · (t + 1)
nodes lying on the lines depicted. For every f ∈ C(T ) there is a
unique polynomial p of degree ≤ t satisfying interpolation

p(zi ) = f (zi ), 1 ≤ i ≤ s.

Proof: We proceed by induction. Clearly, in the case of t = 0
when s = 1 we have interpolation by the constant polynomials.

Now if the interpolation for t − 1 holds, we prove it holds for t.
Let p1 be the univariate Lagrange polynomial interpolating the
t + 1 points on the x-axis. Consider the sub-triangle neglecting
the points on the x-axis. Let p2 be the interpolating polynomial

for these points with p2(zi ) = (f (zi )− p1(zi ))/yi , 1 ≤ i ≤ s − (t + 1).
The polynomial q(x , y) = p1(x) + yp2(x , y) interpolates all points.
Uniqueness as exercise (use holds for degree t − 1). �
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Triangular Finite Elements: Lagrange Elements

Consider partition of the domain into triangular elements T .

Definition

Mk :=Mk(T ) := {v ∈ L2(Ω); v |T ∈ Pt for every T ∈ T }
Mk

0 :=Mk(T )
⋂

C 0(Ω) =Mk ⋂H1(Ω)
Mk

0,0 :=Mk ⋂H1
0 (Ω).

The Mk
0 provide C 0 elements ⊂ H1.

Note: Shared common nodes at vertices ensures the continuity.

Mk
0 is called the conforming Pk element.

M1
0 is sometimes called the Courant triangle.

Nodal variables are Nj(u) = u(zj), so also called Lagrange elements.
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Triangular Finite Elements: C 1 Regularity

More challenging to obtain elements with C 1 regularity.

Argyris element:
Uses P5 which has dimP5 = 21.
Values given of all derivatives up to order 2 at the vertices.
However, this is only 3× 6 = 18 DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses P̃5 = P5 \ Q which has dim P̃5 = 18.
P̃5 restricted to polynomials having normal derivatives along
the edges only of degree 4, (∂np(xe) ∈ P4)).
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.

Use S piecewise cubic polynomials on each subtriangle, dimS = 12.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.
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Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

D. Braess 2007

http://atzberger.org/


Triangular Finite Elements: C 1 Regularity

More challenging to obtain elements with C 1 regularity.

Argyris element:
Uses P5 which has dimP5 = 21.
Values given of all derivatives up to order 2 at the vertices.
However, this is only 3× 6 = 18 DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses P̃5 = P5 \ Q which has dim P̃5 = 18.
P̃5 restricted to polynomials having normal derivatives along
the edges only of degree 4, (∂np(xe) ∈ P4)).
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element:

Macroelement approach.
Subdivide the triangle into three subtriangles.

Use S piecewise cubic polynomials on each subtriangle, dimS = 12.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.

Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

D. Braess 2007

http://atzberger.org/


Triangular Finite Elements: C 1 Regularity

More challenging to obtain elements with C 1 regularity.

Argyris element:
Uses P5 which has dimP5 = 21.
Values given of all derivatives up to order 2 at the vertices.
However, this is only 3× 6 = 18 DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses P̃5 = P5 \ Q which has dim P̃5 = 18.
P̃5 restricted to polynomials having normal derivatives along
the edges only of degree 4, (∂np(xe) ∈ P4)).
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.

Subdivide the triangle into three subtriangles.

Use S piecewise cubic polynomials on each subtriangle, dimS = 12.
Values given of function and first derivative at vertices.
Values of the normal derivative at edge centers.
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Bernstein-Bézier representation of polynomials used to handle derivatives along element boundaries.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

D. Braess 2007

http://atzberger.org/


Triangular Finite Elements: C 1 Regularity

More challenging to obtain elements with C 1 regularity.

Argyris element:
Uses P5 which has dimP5 = 21.
Values given of all derivatives up to order 2 at the vertices.
However, this is only 3× 6 = 18 DOF.
Determine 3 DOF from normal derivative at edge centers.

Bell element:
Uses P̃5 = P5 \ Q which has dim P̃5 = 18.
P̃5 restricted to polynomials having normal derivatives along
the edges only of degree 4, (∂np(xe) ∈ P4)).
Values given of all derivatives up to order 2 at the vertices.

Hsieh-Clough-Tocher element: Macroelement approach.
Subdivide the triangle into three subtriangles.

Use S piecewise cubic polynomials on each subtriangle, dimS = 12.
Values given of function and first derivative at vertices.

Values of the normal derivative at edge centers.
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Quadrilateral Finite Elements

Tensor Product Bases

A tensor-product basis generated by {φk}tk=1 for x ∈ Rn

P̃[φ] := {u(x) |

u(x1, x2, . . . , xn) =
∑

1≤j1,...,jn≤t

cjφj1 (x1) · φj2 (x2) · · ·φjn (xn) }

The polynomial tensor-product basis of degree t is

Qt := {u | u(x) =
∑

maxα≤t

cαxα}

The space Q1 gives bilinear interpolation of nodal values.
In fact, Q1 = {u ∈ C 0(Ω) | v |T ∈ P2, along edges v |∂T ∈ P1}.
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Quadrilateral Finite Elements

Serendipity Element:
Consider Ssd = {u ∈ P3 | u|∂T ∈ P2}, which has dimSsd = 8.
p(x , y) = c0 + c1x + c2y + c3xy

+c4(x2 − 1)(y − 1) + c5(x2 − 1)(y + 1)
+c6(x − 1)(y 2 − 1) + c7(x + 1)(y 2 − 1).

Nodal locations are vertices of rectangle and edge mid-points.

9-Point Element:
Consider S9 = Ssd

⊕
{c8(x2 − 1)(y 2 − 1)}.

Nodal locations are vertices of rectangle and edge mid-points.
Add nodal location at the center of the rectangle.

6-Point Element:
Consider Ssd \ Q for some Q of polynomials terms.
For Q = {c4(x2 − 1)(y − 1)

⊕
c5(x2 − 1)(y + 1)},

drop midpoint nodes on edges with y = ±1.
For Q = {c6(x − 1)(y 2 − 1)

⊕
c7(x + 1)(y 2 − 1)},

drop midpoint nodes on edges with x = ±1.
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Affine Families of Elements

Definition

We define for canonical representation a reference element (Tref,Πref,Σref).
A collection of finite element spaces Sh for partitions Th ⊂ Ω ⊂ Rd is called an affine family if

i For every Tj ∈ Th there exists an affine map Fj : Tref → Tj so that when v ∈ Sh when restricted
to Tj is of the form

v(x) = p(F−1
j x) with p ∈ Πref .

The finite elements Mk
0 are an affine family.

The quadrilateral elements we defined using nodal values give affine families.

However, the Argyris elements are not since they involve normal derivatives.
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Application to Elliptic PDEs

Poisson Equation as Model Problem :

Consider Poisson equation with Dirichlet boundary conditions and Ritz-Galerkin (RG)
Approximation:

{
∆u = −g , x ∈ Ω
u = f , x ∈ ∂Ω.

}
→
{

a(u, v) = −(g , v), v ∈ S
a(u, v) =

∫
Ω
∇u · ∇vdx.

}
(RG-Approximation)

Motivations: Steady-state heat equation, electrostatics, incompressibility constraints.

Finite Element Approximation Steps:

i Select element type for generating a space S.

ii Mesh the domain to obtain a collection of elements.

iii Calculate the stiffness matrix and load vector using weak form.

iv Solve the linear system Ku = f.
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∆u = −g , x ∈ Ω
u = f , x ∈ ∂Ω.

}
→
{

a(u, v) = −(g , v), v ∈ S
a(u, v) =

∫
Ω
∇u · ∇vdx.

}
(RG-Approximation)

Discretization:

Divide domain into triangular elements Tj .

Denote triangle vertices as xi .

Use for shape space P1.

Take nodal variables as Ni [v ] = v(xi ).

Nodal basis {φi} are 2D ”hat functions.”

Functions in v ∈ S can be represented as

v(x) =
n∑

i=1

v(xi )φi (x) ∈ H1.
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a(u, v) =

∫
Ω
∇u · ∇vdx.

}
(RG-Approximation)

Discretization:

Divide domain into triangular elements Tj .

Denote triangle vertices as xi .

Use for shape space P1.

Take nodal variables as Ni [v ] = v(xi ).

Nodal basis {φi} are 2D ”hat functions.”

Functions in v ∈ S can be represented as

v(x) =
n∑

i=1

v(xi )φi (x) ∈ H1.
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Mesh Refinement:

Can increase accuracy by refining the mesh.

Many strategies possible.

Here, edges of triangle are bisected.

Recursively yields mesh refinements.

Quality of the triangle shapes is important.

Quality impacts condition number of the
stiffness matrix K .

Convergence expected sufficiently uniform refinements.
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a(u, v) =

∫
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∇u · ∇vdx.

}
(RG-Approximation)

Example:

Consider PDE with
g(x , y) = π2 sin(πx) + π2 cos(πx)
f (x , y) = sin(πx) + cos(πx).

Solution is
u(x , y) = sin(πx) + cos(πx).

Refinement of the mesh increases solution accuracy.
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g(x , y) = π2 sin(πx) + π2 cos(πx)
f (x , y) = sin(πx) + cos(πx).

Solution is
u(x , y) = sin(πx) + cos(πx).

Study the error vs mesh refinement N ∼ h−2.

Log-log plots yield information on convergence rate
ε = Chr → log(ε) = log(h)r + log(C) ⇒ −r/2 = s ∼ −0.9→ r ∼ 1.8.

Indicates 2nd -order convergence rate.

Need to develop theory to predict from element properties.
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Log-log plots yield information on convergence rate
ε = Chr → log(ε) = log(h)r + log(C) ⇒ −r/2 = s ∼ −0.9→ r ∼ 1.8.

Indicates 2nd -order convergence rate.

Need to develop theory to predict from element properties.
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