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Saddle Point Problems

We consider variational problems with constraints. Let X and M be Hilbert spaces with

a : X × X → R, b : X ×M → R, (continuous bilinear forms)

Saddle Point Problems
Find the minimum u ∈ X of

J[u] =
1

2
a(u, u)− (f , u) subject to b(u, µ) = (g , µ), ∀µ ∈ M.

Consider the Lagrangian
L(u, λ) := J[u] + [b(u, λ)− (g , λ)].

We seek the minimum of L(·, λ) with fixed λ. Can we find λ0 so this minimum satisfies the constraints?

When L contains only bilinear and quadratic expressions in u and λ, we obtain a saddle point problem.
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Saddle Point Problems

Saddle Point Problem I

Find (u, λ) ∈ X ×M with

a(u, v) + b(v , λ) = ⟨f , v⟩, ∀v ∈ X ,
b(u, v) = ⟨g , µ⟩, ∀µ ∈ M.

When the solution (u∗, λ∗) is solution of the saddle-point conditions, this corresponds to

L(u∗, λ) ≤ L(u∗, λ∗) ≤ L(u, λ∗), ∀(u, λ) ∈ X ×M.

Assumes that a(v , v) ≥ 0.

Solution in Infinite-Dimensional Spaces: we must not only have notion for definiteness of the bilinear form a,
but also of properties for the constraints b beyond simply linear independence.

Consider the overall linear mapping for the above problem

L : X ×M → X ′ ×M ′, maps (u, λ) 7→ (f , g).

Need ways to characterize when L is invertible (solvable) and the inverse is continuous (stable).
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Functional Analysis

Isomorphism

A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if

it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .

Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .

Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition:

For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if

the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:

(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .

(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Isomorphism
A linear mapping L : U → V with U,V normed linear spaces is called an isomorphism if it is bijective and L
and L−1 are continuous.

Consider a linear map associated with a bilinear form a by ⟨Lu, v⟩ := a(u, v), ∀v ∈ V .
Variational problem: a(u, v) = ⟨f , v⟩, ∀v ∈ V ⇒ ⟨Lu, v⟩ = ⟨f , v⟩, formally u = L−1f .
Definition: For V ⊂ X closed, the V 0 := {ℓ ∈ X ′ : ⟨ℓ, v⟩ = 0, ∀v ∈ V } is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U,V , the linear mapping L : U → V ′ is an isomorphism if and only if the corresponding
bilinear form a : U × V → R satisfies the conditions:
(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Functional Analysis

Theorem (Inf-Sup Condition)
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(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U → V ′. Condition (ii) gives us invertibility of L, since if
Lu1 = Lu2 then a(u1, v) = a(u2, v), ∀v ∈ V , giving supv∈V a(u1 − u2, v) = 0. By (ii) this only occurs if
∥u1 − u2∥U = 0, so u1 = u2. For f ∈ L(U), by injectivity, exists unique u = L−1f .

By (ii) ⇒ α∥u∥U ≤ supv∈V
a(u,v)
∥v∥V

= supv∈V
⟨f ,v⟩
∥v∥V

= ∥f ∥V ′ ⇒ ∥Lu∥V ′ ≥ α∥u∥U ⇒ ∥L−1f ∥U ≤ α−1∥f ∥V ′ , so L−1

is continuous on Im(L). Continuity of L, L−1 implies L(U) closed. Condition (iii) ensures only element in polar
set is {0} so L is surjective (thm). ■
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The conditions (i) and (ii) alone imply that L is isomorphism on W 0 where

W = {v ∈ V | a(u, v) = 0, ∀u ∈ U}, W 0 ⊂ V ′.

This provides ways to describe correspondence for set U, the equivalent functionals in V ′.
Remark: Lax-Milgram follows as a special case, since

sup
v

a(v , u)

∥v∥ ≥ a(u, u)

∥u∥ ≥ α∥u∥.
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(i) Continuity: There exists C ≥ 0 so that |a(u, v)| ≤ C∥u∥U∥v∥V .
(ii) Inf-Sup Condition: There exists α > 0 such that

inf
u∈U

sup
v∈V

a(u, v)

∥u∥U∥v∥V
≥ α > 0.

(iii) For each v ∈ V , there exists u ∈ U with a(u, v) ̸= 0.

The conditions (i) and (ii) alone imply that L is isomorphism on W 0 where

W = {v ∈ V | a(u, v) = 0, ∀u ∈ U}, W 0 ⊂ V ′.

This provides ways to describe correspondence for set U, the equivalent functionals in V ′.
Remark:

Lax-Milgram follows as a special case, since

sup
v

a(v , u)

∥v∥ ≥ a(u, u)

∥u∥ ≥ α∥u∥.
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Functional Analysis

Galerkin Method

Choose approximation spaces Uh ⊂ U and Vh ⊂ V that are finite dimensional. Given f ∈ V ′, we seek solution
uh ∈ Uh so that

a(uh, v) = ⟨f , v⟩, ∀v ∈ Vh.

Lemma (Convergence)

Consider a : U × V → R that satisfies the theorem based on Inf-Sup Conditions. Consider choosing
approximation spaces Uh ⊂ V ,Vh ⊂ V for which the theorem also holds. Then

∥u − uh∥ ≤
(
1 +

C

α

)
inf

wh∈Uh

∥u − wh∥.

Remark: When this criteria holds for the spaces Uh,Vh, we say they satisfy the Babuska-Brezzi Condition.
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Lemma (Convergence)

Consider bilinear form a : U × V → R that satisfies the theorem based on Inf-Sup Conditions. Consider choice
of approximation spaces Uh ⊂ V ,Vh ⊂ V for which the theorem also holds. Then

∥u − uh∥ ≤
(
1 +

C

α

)
inf

wh∈Uh

∥u − wh∥.

Proof:
a(u − uh, v) = 0, ∀v ∈ Vh

For any wh ∈ Uh we have
a(uh − wh, v) = a(u − wh, v), ∀v ∈ Vh

For ⟨ℓ, v⟩ := a(u − wh, v), we have ∥ℓ∥ ≤ C∥u − wh∥. By conditions (i)–(iii), the mapping Lh : Uh → V ′
h

obtained from a(uh − wh, ·) satisfies ∥L−1
h ∥ ≤ α−1. This gives

∥uh − wh∥ ≤ α−1∥ℓ∥ ≤ α−1C∥u − wh∥.

From triangle inequality,

∥u − uh∥ ≤ ∥u − wh∥+ ∥wh − uh∥ ≤ (1 + α−1C)∥u − wh∥.

■
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Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem I
Find (u, λ) ∈ X ×M with

a(u, v) + b(v , λ) = ⟨f , v⟩, ∀v ∈ X ,
b(u, µ) = ⟨g , µ⟩, ∀µ ∈ M.

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure
solution.

Consider the overall linear mapping for the above problem

L : X ×M → X ′ ×M ′, maps (u, λ) 7→ (f , g).

We need to establish conditions for this to be an isomorphism.
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Saddle Point Problems

Notation:

V (g) := {v ∈ X : b(v , µ) = ⟨g , µ⟩, ∀µ ∈ M}, V := {v ∈ X : b(v , µ) = 0, ∀µ ∈ M}
Since b is continuous, V is a closed subspace of X .

Reformulation as an operator equation using bilinear form a(·, ·)

A : X → X ′

⟨Au, v⟩ = a(u, v), ∀v ∈ X .

Similarly, for b(·, ·) we define B and adjoint B ′ as

B : X → M ′, B ′ : M → X ′

⟨Bu, µ⟩ = b(u, µ), ∀µ ∈ M, ⟨B ′λ, v⟩ = b(v , λ), ∀v ∈ X .

The Saddle Point Problem I can be expressed as

Saddle Point Problem II
Find (u, λ) ∈ X ×M satisfying

Au + B ′λ = f ,
Bu = g .
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Saddle Point Problems

Inf-Sup Lemma

The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent

(i) infµ∈M supv∈X
b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.

(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii).

For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w).

By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥.

Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.

Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.

Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) ⇒ (ii). For v ∈ V⊥ let g ∈ V 0 defined by mapping w 7→ (v ,w). By (iii) B ′ is an isomorphism so
there exists λ ∈ M so that

b(w , λ) = (v ,w), ∀w ∈ V .

From the definition of the functional ∥g∥ = ∥v∥. Also, ∥B ′µ∥ ≥ β∥µ∥ so ∥v∥ = ∥g∥ = ∥B ′λ∥ ≥ β∥λ∥.
Substituting into b(·, ·) above w = v , we have

sup
µ∈M

b(v , µ)

∥µ∥ ≥ b(v , µ)

∥µ∥ =
(v , v)

∥λ∥ ≥ β∥v∥.

The B : V⊥ → M ′ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) ⇒ (ii).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
We show (ii) ⇒ (i).

By (ii), B : V⊥ → M ′ is an isomorphism. For µ ∈ M, we have by duality of the norms

∥µ∥ = sup
g∈M′

⟨g , µ⟩
∥g∥ = sup

v∈V⊥

⟨Bv , µ⟩
∥Bv∥ = sup

v∈V⊥

b(v , µ)

∥Bv∥ ≤ sup
v∈V⊥

b(v , µ)

β∥v∥ .

Therefore, (ii) ⇒ (i).
■

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
We show (ii) ⇒ (i). By (ii), B : V⊥ → M ′ is an isomorphism.

For µ ∈ M, we have by duality of the norms

∥µ∥ = sup
g∈M′

⟨g , µ⟩
∥g∥ = sup

v∈V⊥

⟨Bv , µ⟩
∥Bv∥ = sup

v∈V⊥

b(v , µ)

∥Bv∥ ≤ sup
v∈V⊥

b(v , µ)

β∥v∥ .

Therefore, (ii) ⇒ (i).
■

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
We show (ii) ⇒ (i). By (ii), B : V⊥ → M ′ is an isomorphism. For µ ∈ M, we have by duality of the norms

∥µ∥ = sup
g∈M′

⟨g , µ⟩
∥g∥ = sup

v∈V⊥

⟨Bv , µ⟩
∥Bv∥ = sup

v∈V⊥

b(v , µ)

∥Bv∥ ≤ sup
v∈V⊥

b(v , µ)

β∥v∥ .

Therefore, (ii) ⇒ (i).
■

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
We show (ii) ⇒ (i). By (ii), B : V⊥ → M ′ is an isomorphism. For µ ∈ M, we have by duality of the norms

∥µ∥ = sup
g∈M′

⟨g , µ⟩
∥g∥

= sup
v∈V⊥

⟨Bv , µ⟩
∥Bv∥ = sup

v∈V⊥

b(v , µ)

∥Bv∥ ≤ sup
v∈V⊥

b(v , µ)

β∥v∥ .

Therefore, (ii) ⇒ (i).
■

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
We show (ii) ⇒ (i). By (ii), B : V⊥ → M ′ is an isomorphism. For µ ∈ M, we have by duality of the norms

∥µ∥ = sup
g∈M′

⟨g , µ⟩
∥g∥ = sup

v∈V⊥

⟨Bv , µ⟩
∥Bv∥

= sup
v∈V⊥

b(v , µ)

∥Bv∥ ≤ sup
v∈V⊥

b(v , µ)

β∥v∥ .

Therefore, (ii) ⇒ (i).
■

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
We show (ii) ⇒ (i). By (ii), B : V⊥ → M ′ is an isomorphism. For µ ∈ M, we have by duality of the norms

∥µ∥ = sup
g∈M′

⟨g , µ⟩
∥g∥ = sup

v∈V⊥

⟨Bv , µ⟩
∥Bv∥ = sup

v∈V⊥

b(v , µ)

∥Bv∥

≤ sup
v∈V⊥

b(v , µ)

β∥v∥ .

Therefore, (ii) ⇒ (i).
■

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Saddle Point Problems

Inf-Sup Lemma
The following conditions are equivalent
(i) infµ∈M supv∈X

b(v,µ)
∥v∥∥µ∥ ≥ β > 0.

(ii) The operator B : V⊥ → M ′ is an isomorphism and ∥Bv∥ ≥ β∥v∥, ∀v ∈ V⊥.
(iii) The operator B ′ : M → V 0 ⊂ X ′ is an isomorphism and ∥B ′µ∥ ≥ β∥µ∥, ∀µ ∈ M.

Proof:
We show (ii) ⇒ (i). By (ii), B : V⊥ → M ′ is an isomorphism. For µ ∈ M, we have by duality of the norms

∥µ∥ = sup
g∈M′

⟨g , µ⟩
∥g∥ = sup

v∈V⊥

⟨Bv , µ⟩
∥Bv∥ = sup

v∈V⊥

b(v , µ)

∥Bv∥ ≤ sup
v∈V⊥

b(v , µ)

β∥v∥ .

Therefore, (ii) ⇒ (i).
■
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Saddle Point Problems

Notation:

V (g) := {v ∈ X : b(v , µ) = ⟨g , µ⟩, ∀µ ∈ M}, V := {v ∈ X : b(v , µ) = 0, ∀µ ∈ M}

A central theorem for saddle point problems.

Brezzi’s Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X ×M → X ′ ×M ′ if and only if the
following two conditions are satisfied
(i) The bilinear form a(·, ·) is elliptic (coercive) in V , a(v , v) ≥ α∥v∥2, ∀v ∈ V with α > 0, V given above.
(ii) The bilinear form b(·, ·) satisfies the inf-sup condition

inf
µ∈M

sup
v∈X

b(v , µ)

∥v∥∥µ∥ ≥ β.

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V ).

Provides conditions directly in terms of the bilinear forms a and b concerning solveability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).
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Mixed Finite Element Methods

Mixed FEM I

Find (uh, λh) ∈ Xh ×Mh so that

a(uh, v) + b(v , λh) = ⟨f , v⟩, ∀v ∈ Xh

b(uh, µ) = ⟨g , µ⟩, ∀µ ∈ Mh.

Remark: Need to chose the spaces Xh and Mh carefully so have compatibility so the inf-sup conditions satisfied.
Notation: Vh := {v ∈ Xh : b(v , µ) = 0, ∀µ ∈ Mh}.

Definition: Babuska-Brezzi Condition
We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xh,Mh if there exists
α > 0, β > 0 independent of h so that
(i) Bilinear form a(·, ·) is Vh-elliptic with constant α > 0.
(ii) The condition holds

sup
v∈Xh

b(v , λh)

∥v∥ ≥ β∥λh∥, ∀λh ∈ Mh.

Remark: Also referred to as the Inf-Sup Conditions.
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Notation: Vh := {v ∈ Xh : b(v , µ) = 0, ∀µ ∈ Mh}.

Definition: Babuska-Brezzi Condition
We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xh,Mh if there exists
α > 0, β > 0 independent of h so that

(i) Bilinear form a(·, ·) is Vh-elliptic with constant α > 0.
(ii) The condition holds

sup
v∈Xh

b(v , λh)

∥v∥ ≥ β∥λh∥, ∀λh ∈ Mh.

Remark: Also referred to as the Inf-Sup Conditions.
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Mixed Methods

Theorem

When Xh and Mh satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

∥u − uh∥+ ∥λ− λh∥ ≤ c

(
inf

vh∈Xh

∥u − vh∥+ inf
µh∈Mh

∥λ− µh∥
)

Remark: Generally, Vh ̸⊂ V (non-conforming). We usually do get better results in conforming case Vh ⊂ V .

Definition
The spaces Xh ⊂ X and Mh ⊂ M, are said to satisfy condition (C) provided Vh ⊂ V .

Significance: Condition (C) ⇒ ∀vh ∈ Xh, b(vh, µh) = 0, ∀µh ∈ Mh ⇒ b(vh, µ) = 0, ∀µ ∈ M.

Theorem
Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

∥u − uh∥ ≤ c inf
vh∈Xh

∥u − vh∥.
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Mixed Methods

Theorem

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM I satisfies

∥u − uh∥ ≤ c inf
vh∈Xh

∥u − vh∥.

Proof:
Consider vh ∈ Vh(g). It follows that

a(uh − vh, v) = a(uh, v)− a(u, v) + a(u − vh, v)

= b(v , λ− λh) + a(u − vh, v)

≤ C∥u − vh∥ · ∥v∥.

Holds ∀v ∈ Vh since b(v , λ− λh) = 0 from Condition (C).

Let v := uh − vh, then ∥uh − vh∥2 ≤ α−1C∥uh − vh∥ · ∥u − vh∥. Dividing by ∥uh − vh∥, we have
∥uh − vh∥ ≤ α−1C∥u − vh∥.

By triangle inequality, ∥u − uh∥ ≤ ∥u − vh∥+ ∥vh − uh∥ and the result follows.
■
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Poisson Problem: Mixed Methods

Poisson Problem:

∆u = −f , x ∈ Ω, u = 0, x ∈ Γ0, ∇u · n = 0, x ∈ Γ1.

We use that ∆u = div gradu. Let σ = grad u, then the Poisson problem becomes

grad u = σ

divσ = −f

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).
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X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation

Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (σ, u) ∈ L2(Ω)
d × H1

0 (Ω) so that

(σ, τ)0,Ω − (τ,∇u)0,Ω = 0, ∀τ ∈ L2(Ω)
d

− (σ,∇v)0,Ω = −(f , v)0,Ω, ∀v ∈ H1
0 (Ω).

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0
=

−(τ,∇v)0,Ω
∥τ∥0

→ (∇v ,∇v)0,Ω
∥∇v∥0

= |v |1 ≥
1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0
=

−(τ,∇v)0,Ω
∥τ∥0

→ (∇v ,∇v)0,Ω
∥∇v∥0

= |v |1 ≥
1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0

=
−(τ,∇v)0,Ω

∥τ∥0
→ (∇v ,∇v)0,Ω

∥∇v∥0
= |v |1 ≥

1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0
=

−(τ,∇v)0,Ω
∥τ∥0

→ (∇v ,∇v)0,Ω
∥∇v∥0

= |v |1 ≥
1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0
=

−(τ,∇v)0,Ω
∥τ∥0

→ (∇v ,∇v)0,Ω
∥∇v∥0

= |v |1 ≥
1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0
=

−(τ,∇v)0,Ω
∥τ∥0

→ (∇v ,∇v)0,Ω
∥∇v∥0

= |v |1

≥ 1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0
=

−(τ,∇v)0,Ω
∥τ∥0

→ (∇v ,∇v)0,Ω
∥∇v∥0

= |v |1 ≥
1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X := L2(Ω)
d ,M := H1

0 (Ω)

a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

The Inf-Sup Condition holds since

b(τ, v)

∥τ∥0
=

−(τ,∇v)0,Ω
∥τ∥0

→ (∇v ,∇v)0,Ω
∥∇v∥0

= |v |1 ≥
1

c
∥v∥1.

This establishes stability of the formulation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

http://atzberger.org/


Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X := L2(Ω)
d ,M := H1

0 (Ω), a(σ, τ) := (σ, τ)0,Ω, b(τ, v) := −(τ,∇v)0,Ω.

Saddle-Point Problem:

a(σ, τ)− b(τ, v) = 0

b(σ, τ) = −⟨f , v⟩0,Ω.

We can obtain stable Finite Element discretizations for triangulations Th. For k ≥ 1, let

Poisson Problem: Stable Mixed Finite Element Spaces

Xh :=
(
Mk−1

)d
= {σh ∈ L2(Ω)

d ;σh|T ∈ Pk−1, ∀T ∈ Th}

Mh := Mk
0,0 = {vh ∈ H1

0 (Ω); vh|T ∈ Pk , ∀T ∈ Th}

Note that ∇Mh ⊂ Xh, allow us to verify same as in continuous case.
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

Xh := RTk :=

{
τ ∈ L2(Ω)

2; τ |T =

(
aT
bT

)
+ cT

(
x

y

)
, aT , bT , cT ∈ Pk , ∀T ∈ Th, τ · n ∈ C̃(∂T )

}
Mh := Mk(Th) := {v ∈ L2(Ω); v |T ∈ Pk , ∀T ∈ Th}

The τ · n ∈ C̃(∂T ) denotes that τ · n is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For k = 0, p ∈ (P1)
2 has

p(x , y) =

(
a

b

)
+ c

(
x

y

)
.

The n · p is constant on αx + βy = c0 when n orthogonal to the line.
Edge values determine the polynomial p. Formally, elements are triple(

T , (P0)
2 + x · P0, ni · p(zi ), i = 1, 2, 3, zi is edge midpoint.

)
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Edge values determine the polynomial p. Formally, elements are triple

(
T , (P0)

2 + x · P0, ni · p(zi ), i = 1, 2, 3, zi is edge midpoint.
)
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Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

∥τ∥0,h :=

∥τ∥20 + h
∑
e⊂Γh

∥τn∥20,e

1/2

|v |1,h :=

∑
T∈Th

|v |21,T + h−1
∑
e⊂Γh

∥J(v)∥20,e

1/2

.

The a(σ, τ) := (σ, τ)0,Ω and b(τ, v) := −(τ,∇v)0,Ω defined for τ, σ ∈ L2(Ω)
d .

Properties of a: Ellipticity of a(·, ·) follows from

∥τ∥0,h ≤ C∥τ∥0, ∀τ ∈ RTk ⇒ a(τ, τ) = ∥τ∥20,Ω ≥ C−2∥τ∥20,h.

Properties of b: Use Green’s Identity to rewrite as

b(τ, v) = −
∑
T∈T

∫
T

τ · grad v dx +

∫
Γh

J(v)τnds.

J(v) is jump of v in normal direction n. Γh :=
⋃

T (∂T
⋂

Ω) interior bnds.

The b continuity with Mesh-Norms follows readily.

Inf-Sup Condition must be established.
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

sup
τ∈RTk

b(τ, v)

∥τ∥0,h
≥ β|v |1,h, ∀v ∈ Mk ,

where β > 0 and depends on k and the shape regularity of the triangulation Th.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e ⊂ Γh.
This implies there exists τ ∈ RT0 so that

τn = h−1J(v)

on each edge e ⊂ Γh. Since in this case the area term in Green’s Identity
for b vanishes, we have

b(τ, v) = h−1

∫
Γh

|J(v)|2ds = ch−1
∑
e⊂Γh

∥J(v)∥20,e = |v |21,h.
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■
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Stokes Hydrodynamic Equations

Stokes Flow

∆u + grad p = −f , x ∈ Ω

div u = 0, x ∈ Ω

u = u0, x ∈ ∂Ω.

The u : Ω → Rn is fluid velocity and p : Ω → R is pressure.

The div u = 0 is constraint for fluid to be incompressible.

Only imposes p up to constant, usually use condition
∫
pdx = 0.

Variational Formulation: X = H1
0 (Ω)

n, M = L2,0(Ω) :=
{
q ∈ L2(Ω);

∫
qdx = 0

}
.

a(u, v) =

∫
Ω

grad u : grad v dx , b(v , q) =

∫
Ω

div(v) q dx .
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Stokes Hydrodynamic Equations

Variational Formulation: X = H1
0 (Ω)

n, M = L2,0(Ω) :=
{
q ∈ L2(Ω);

∫
qdx = 0

}
.

a(u, v) =

∫
Ω

grad u : grad v dx , b(v , q) =

∫
Ω

div(v) q dx .

Saddle-Point Problem (Stokes)

X = H1
0 (Ω)

n, M = L2,0(Ω) :=
{
q ∈ L2(Ω);

∫
qdx = 0

}
.

a(u, v) + b(v , p) = (f , v)0, ∀v ∈ X

b(u, q) = 0, ∀q ∈ M.

Need to establish the Inf-Sup Conditions.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

V := {v ∈ X ; (div v , q)0,Ω = 0, ∀q ∈ L2(Ω)} , V⊥ := {u ∈ X ; (grad u, grad v)0,Ω = 0, ∀v ∈ V } .

The V⊥ is H1-orthogonal complement of V .
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Theorem I
Let Ω ⊂ Rn be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms

div : V⊥ → L2,0(Ω)

v 7→ div v .

For any q ∈ L2(Ω) with
∫
q dx = 0, there exists v ∈ V⊥ ⊂ H1

0 (Ω)
n with

div v = q and ∥v∥1,Ω ≤ c∥q∥0,Ω,

where c = c(Ω) constant.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Theorem II

Let Ω ⊂ Rn be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H−1(Ω)n

grad : L2(Ω) → H−1(Ω)n

(2) For f ∈ H−1(Ω)n, if
⟨f , v⟩ = 0, ∀v ∈ V .

(3) There is constant c = c(Ω) so that

∥q∥0,Ω ≤ c (∥grad q∥−1,Ω + ∥q∥−1,Ω) ∀q ∈ L2(Ω),

∥q∥0,Ω ≤ c∥grad q∥−1,Ω ∀q ∈ L2,0(Ω).
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

sup
v∈X

b(v , q)

∥v∥1
≥ β∥q∥0.

Proof (sketch):
(By Theorem I): For a q ∈ L2,0, exists v ∈ H1

0 (Ω)
n satisfying div v = q and ∥v∥1,Ω ≤ c∥q∥0,Ω (from previous

thm.) This implies

sup
v∈X

b(v , q)

∥v∥1
=

(div v , q)

∥v∥1
=

∥q∥20
∥v∥1

≥ ∥q∥20
c∥q∥0

=
1

c
∥q∥0.

This gives the Brezzi Condition for b.
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Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}

Mh := M1
0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}

Mh := M1
0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}

Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: Taylor-Hood Element

Consider triangulation Th and polymomial shape spaces Pj .

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

Xh :=
(
M2

0,0

)d
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xh := M1
0,0

(
Th/2

)2
=
{
vh ∈ C(Ω̄)d

⋂
H1

0 (Ω)
d ; vh|T ∈ P2, ∀T ∈ Th/2

}
Mh := M1

0

⋂
L2,0 =

{
qh ∈ C(Ω)

⋂
L2,0(Ω); qh|T ∈ P1, T ∈ Th

}
Figure: x denotes pressure values, · denotes velocity values.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/

Taylor-Hood Element

x x

x

x x

x

(i) (ii)

http://atzberger.org/


Stokes Hydrodynamic Equations: MINI Element

MINI Elements: Achieves stability by using interior ”bubble” elements.

For triangle, let λ1, λ2, λ3 denotes the barycentric coordinates of a points x.

Add to the shape space the ”bubble” function

b(x) = λ1λ2λ3.

Note, b vanishes on boundary of T .
The finite element spaces are

Xh :=
[
M1

0,0 ⊕ B3

]2
, Mh := M1

0

⋂
L2,0(Ω),

where B3 := {v ∈ C 0(Ω̄); v |T ∈ span[λ1λ2λ3], ∀T ∈ Th}.

Figure: x denotes pressure values, · denotes velocity values.
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