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We seek the minimum of L£(-, A) with fixed A.
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a:XxX—=R, b:XxM—=R, (continuous bilinear forms)

Saddle Point Problems

Find the minimum u € X of

Ju] = %a(u, u) — (f, u) subject to b(u,n) = (g, 1), Y € M.

Consider the Lagrangian
L(u, ) := J[u] + [b(u, ) — (g, N)].
We seek the minimum of L£(-, A) with fixed A. Can we find Ao so this minimum satisfies the constraints?

When L contains only bilinear and quadratic expressions in u and A, we obtain a saddle point problem.
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Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satisfies the conditions:
(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Functional Analysis

A linear mapping L : U — V with U, V normed linear spaces is called an isomorphism if it is bijective and L
and L™ are continuous.

Consider a linear map associated with a bilinear form a by (Lu,v) := a(u,v), Vv e V.
Variational problem: a(u,v) = (f,v), Vv € V = (Lu,v) = {f,v), formally u = L7'f.
Definition: For V C X closed, the V° := {¢ € X' : (¢,v) =0, ¥v € V} is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satisfies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists & > 0 such that

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Functional Analysis

A linear mapping L : U — V with U, V normed linear spaces is called an isomorphism if it is bijective and L
and L™ are continuous.

Consider a linear map associated with a bilinear form a by (Lu,v) := a(u,v), Vv e V.
Variational problem: a(u,v) = (f,v), Vv € V = (Lu,v) = {f,v), formally u = L7'f.
Definition: For V C X closed, the V° := {¢ € X' : (¢,v) =0, ¥v € V} is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satisfies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists & > 0 such that

infsupM2a>0.
veU ey |lullullv]lv

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Functional Analysis

A linear mapping L : U — V with U, V normed linear spaces is called an isomorphism if it is bijective and L
and L™ are continuous.

Consider a linear map associated with a bilinear form a by (Lu,v) := a(u,v), Vv e V.
Variational problem: a(u,v) = (f,v), Vv € V = (Lu,v) = {f,v), formally u = L7'f.
Definition: For V C X closed, the V° := {¢ € X' : (¢,v) =0, ¥v € V} is called the polar set.

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satisfies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists & > 0 such that

infsupM2a>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.
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Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:
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bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if
Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if
|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if
Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if
|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

By (il) = allullu < sup,ey §42
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if
Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if
|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

.. v f,v
By (ii) = af|ullu < sup,cy T\(:’Hv) =sup,cy ﬁ
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if
Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if
|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

.. v f,v
By (i) = allully < sup,cy 222 = sup,cy B2 = |fllyr = |Lullyr
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if
Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if
|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

H ) f,
By (i) = allully < sup,ey 242 = sup,cy 50 = [IFyr = [|Lullv: > ofjullu
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if
Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if
|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

m WV f,v —
By (il) = allullu < sup,ey 242 = sup,cy {52 = [|fllv: = [[Lullv: > allullu = [[L7 v
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if
Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if
|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

.. , f, _ _
By (i) = allully < sup,cy 242 = sup,cy 52 = |IFlys = [|Lullvs = allullu = 1L Fllo < a”[F]lvr,
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if

Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if

|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

By (i) = allull < sup,cy 22 = sup,cy {52 = [l = 1Ll 2 alully = 1L Fllo < a | Fllv, s0 L7

is continuous on Im(L).
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if

Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if

|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

By (i) = allull < sup,cy 52 = sup,cy {52 = |l = 1Ll 2 alllly = 1L Fllo < a | Fllv, s0 L7
is continuous on Im(L). Continuity of L, L™* implies L(U) closed.
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if

Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if

|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

By (ii) = allullu < sup,cy 282 = sup,cy L2 = [llys = [Lullys > alluly = L7 Flu < @™ F]lvr, s0 L~
is continuous on Im(L). Continuity of L, L™" implies L(U) closed. Condition (iii) ensures only element in polar
set is {0}
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if

Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if

|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

By (ii) = allullu < sup,cy 282 = sup,cy L2 = [llys = [Lullys > alluly = L7 Flu < @™ F]lvr, s0 L~
is continuous on Im(L). Continuity of L, L™" implies L(U) closed. Condition (iii) ensures only element in polar
set is {0} so L is surjective (thm).
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < Cllul|u|lv]|v.

(ii) Inf-Sup Condition: There exists a > 0 such that

infsupMZa>0.
veU ey |lullullv]lv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

Proof (sketch):

Condition (i) readily implies the continuity of L : U — V’. Condition (ii) gives us invertibility of L, since if

Luy = Lu, then a(u1, v) = a(uz, v), Vv € V, giving sup,eva(ur — uz,v) = 0. By (ii) this only occurs if

|lun — w2|lu =0, so 1 = wy. For f € L(U), by injectivity, exists unique u = L™*f.

By (ii) = allullu < sup,cy 282 = sup,cy L2 = [llys = [Lullys > alluly = L7 Flu < @™ F]lvr, s0 L~
is continuous on Im(L). Continuity of L, L™" implies L(U) closed. Condition (iii) ensures only element in polar
set is {0} so L is surjective (thm). B
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < C|lul|ul|v]v-

(ii) Inf-Sup Condition: There exists « > 0 such that

infsupM2a>0.
weUvev [lullullviiv
(iii) For each v € V, there exists u € U with a(u, v) # 0.
.
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < C|lul|ul|v]v-

(ii) Inf-Sup Condition: There exists « > 0 such that

infsupM2a>0.
welyev |lullullviiv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

The conditions (i) and (ii) alone imply that L is isomorphism on W° where
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < C|lul|ul|v]v-

(ii) Inf-Sup Condition: There exists « > 0 such that

infsupM2a>0.
welyev |lullullviiv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

The conditions (i) and (ii) alone imply that L is isomorphism on W° where

W={veV|a(uv)=0, Yue U}, W C V.
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < C|lul|ul|v]v-

(ii) Inf-Sup Condition: There exists « > 0 such that

infsupM2a>0.
welyev |lullullviiv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

The conditions (i) and (ii) alone imply that L is isomorphism on W° where
W={veV|a(uv)=0, Yue U}, W C V.

This provides ways to describe correspondence for set U, the equivalent functionals in V’.
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < C|lul|ul|v]v-

(ii) Inf-Sup Condition: There exists « > 0 such that

infsupM2a>0.
welyev |lullullviiv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

The conditions (i) and (ii) alone imply that L is isomorphism on W° where
W={veV|a(uv)=0, Yue U}, W C V.

This provides ways to describe correspondence for set U, the equivalent functionals in V’.
Remark:
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < C|lul|ul|v]v-

(ii) Inf-Sup Condition: There exists « > 0 such that

infsupM2a>0.
welyev |lullullviiv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

The conditions (i) and (ii) alone imply that L is isomorphism on W° where
W={veV|a(uv)=0, Yue U}, W C V.

This provides ways to describe correspondence for set U, the equivalent functionals in V’.
Remark: Lax-Milgram follows as a special case, since
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Functional Analysis

Theorem (Inf-Sup Condition)

For Hilbert spaces U, V, the linear mapping L : U — V' is an isomorphism if and only if the corresponding
bilinear form a: U x V — R satifies the conditions:

(i) Continuity: There exists C > 0 so that |a(u, v)| < C|lul|ul|v]v-

(ii) Inf-Sup Condition: There exists « > 0 such that

infsupM2a>0.
welyev |lullullviiv

(iii) For each v € V, there exists u € U with a(u, v) # 0.

The conditions (i) and (ii) alone imply that L is isomorphism on W° where
W={veV]|auv)=0, Yue U}, W CV.
This provides ways to describe correspondence for set U, the equivalent functionals in V’.
Remark: Lax-Milgram follows as a special case, since
a(v,u) _ a(u,u)
v vl T el

> aflul.
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Functional Analysis

Galerkin Method
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and V}, C V that are finite dimensional.
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that
a(un, v) = (f,v), Vv € V4.
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that
a(un, v) = (f,v), Vv € V4.

Lemma (Convergence)
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that
a(un, v) = (f,v), Vv € V4.

Lemma (Convergence)

Consider a: U x V — R that satisfies the theorem based on Inf-Sup Conditions.
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that

a(un, v) = (f,v), Vv € V4.

Lemma (Convergence)

Consider a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choosing
approximation spaces Uy C V, V,, C V for which the theorem also holds.
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that

a(un, v) = (f,v), Vv € V4.

Lemma (Convergence)

Consider a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choosing
approximation spaces U, C V, V}, C V for which the theorem also holds. Then
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that

a(un, v) = (f,v), Vv € V4.

Lemma (Convergence)

Consider a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choosing
approximation spaces U, C V, V}, C V for which the theorem also holds. Then

c\ .
[lu—un|| < (1+—> inf ||u— wa.
(07 wpEUp
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that
a(un, v) = (f,v), Vv € V4.

Lemma (Convergence)

Consider a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choosing
approximation spaces U, C V, V}, C V for which the theorem also holds. Then

c\ .
[lu—un|| < (1+—> inf ||u— wa.
(07 wpEUp

Remark:
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Functional Analysis

Galerkin Method

Choose approximation spaces U, C U and Vj, C V that are finite dimensional. Given f € V’, we seek solution
up € Uy so that
a(un, v) = (f,v), Vv € V4.

Lemma (Convergence)

Consider a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choosing
approximation spaces U, C V, V}, C V for which the theorem also holds. Then

c\ .
[lu—un|| < (1+—> inf ||u— wa.
(07 wpEUp

Remark: When this criteria holds for the spaces U, Vi, we say they satisfy the Babuska-Brezzi Condition.
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Lemma (Convergence)

Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice
of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U
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Lemma (Convergence)
Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice

of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U

Proof:
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Lemma (Convergence)
Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice

of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U

Proof:
a(u—up,v)=0, Vv E V4
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Lemma (Convergence)

Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice
of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U

Proof:
a(u—up,v)=0, Vv E V4

For any wy, € U, we have
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Lemma (Convergence)

Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice
of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U

Proof:
a(u—up,v)=0, Vv E V4

For any wy, € U, we have
a(upn — wh,v) = a(u — wp, v), Yv € V,
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a(u—up,v)=0, Vv E V4

For any wy, € U, we have
a(upn — wh,v) = a(u — wp, v), Yv € V,

For (¢,v) := a(u — wy, v), we have ||| < Clju — wa]|.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Lemma (Convergence)

Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice
of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U

Proof:
a(u—up,v)=0, Vv E V4

For any wy, € U, we have
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Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice
of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U

Proof:
a(u—up,v)=0, Vv E V4

For any wy, € U, we have
a(upn — wh,v) = a(u — wp, v), Yv € V,

For (¢, v) := a(u — wy, v), we have ||¢|| < Cl|ju — wa||. By conditions (i)-(iii), the mapping L, : U, — V}
obtained from a(uy — wy, -) satisfies ||L, || < a™'. This gives

llun — wll < @™ [lel] < @™ Cllu — .

From triangle inequality,
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of approximation spaces U, C V, V,, C V for which the theorem also holds. Then
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For any wy, € U, we have
a(upn — wh,v) = a(u — wp, v), Yv € V,

For (¢, v) := a(u — wy, v), we have ||¢|| < Cl|ju — wa||. By conditions (i)-(iii), the mapping L, : U, — V}
obtained from a(uy — wy, -) satisfies ||L, || < a™'. This gives
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Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Lemma (Convergence)

Consider bilinear form a: U x V — R that satisfies the theorem based on Inf-Sup Conditions. Consider choice
of approximation spaces U, C V, V,, C V for which the theorem also holds. Then

c\ .
Jlu—u] < (1+—> inf |lu — wa]|.
(6% whpE U

Proof:
a(u—up,v)=0, Vv E V4

For any wy, € U, we have
a(upn — wh,v) = a(u — wp, v), Yv € V,

For (¢, v) := a(u — wy, v), we have ||¢|| < Cl|ju — wa||. By conditions (i)-(iii), the mapping L, : U, — V}
obtained from a(uy — wy, -) satisfies ||L, || < a™'. This gives

llun — wall < a7 |[el] < @™ Cllu — wl.
From triangle inequality,

lu— unll < llu = wall + [[wn — unll < (1+ " C)l|u— wal.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Saddle Point Problems

Returning to our original motivation.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Saddle Point Problem

Returning to our original motivation.

Saddle Point Problem |

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem |

Find (u,A) € X x M with

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem |

Find (u,A) € X x M with

a(u,v)+ b(v,\) = (f,v), VveX,
b(u,u) _<ga:u>7 VMEM
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Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem |
Find (u,A) € X x M with

a(u,v)+ b(v,\) = (f,v), VveX,
b(u,u) =(g,m), Ve M.

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure
solution.
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Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure
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Returning to our original motivation.

Saddle Point Problem |
Find (u,A) € X x M with

a(u,v)+ b(v,\) = (f,v), VveX,
b(u,u) =(g,m), Ve M.

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure
solution.

Consider the overall linear mapping for the above problem

L:XxM—=X xM, maps (u,))+(f,g).
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Saddle Point Problems

Returning to our original motivation.

Saddle Point Problem |
Find (u,A) € X x M with

a(u,v)+ b(v,\) = (f,v), VveX,
b(u,u) =(g,m), Ve M.

Solution in Infinite-Dimensional Spaces: Now have ways to characterize the properties of a, b to ensure
solution.

Consider the overall linear mapping for the above problem
L:XxM—=X xM, maps (u,))+(f,g).

We need to establish conditions for this to be an isomorphism.
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Notation:
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Saddle Point Problems

Notation: V(g) :={v € X : b(v,u) = (g,n), Yu € M},
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Notation: V(g) :={v e X :b(v,pn)=(g,u), Vue M}, V:={ve X:b(v,u) =0, Vu € M}
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Saddle Point Problems

Notation: V(g):={v e X :b(v,un) = (g, u), Vue M}, V:={ve X:b(v,u) =0, Yu € M}
Since b is continuous, V is a closed subspace of X.
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Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form a(-, -)
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Saddle Point Problems

Notation: V(g):={v e X :b(v,un) = (g, u), Vue M}, V:={ve X:b(v,u) =0, Yu € M}
Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form a(-, -)

A: X = X'
(Au,v) = a(u,v), Vv e X.
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Notation: V(g):={v e X :b(v,un) = (g, u), Vue M}, V:={ve X:b(v,u) =0, Yu € M}
Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form a(-, -)

A X=X
(Au,v) = a(u,v), Vv e X.
Similarly, for b(-,-) we define B and adjoint B’ as
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Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form a(-, -)

A X=X
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Similarly, for b(-,-) we define B and adjoint B’ as
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Similarly, for b(-,-) we define B and adjoint B’ as
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Notation: V(g):={v e X :b(v,un) = (g, u), Vue M}, V:={ve X:b(v,u) =0, Yu € M}
Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form a(-, -)
A: X — X
(Au,v) = a(u,v), Vv e X.
Similarly, for b(-,-) we define B and adjoint B’ as
B: X —> M, B":M— X
(Bu,p) = b(u,p), Ype M, (B'A,v)=b(v,\), VveEX

The Saddle Point Problem | can be expressed as

Saddle Point Problem Il
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Saddle Point Problems

Notation: V(g):={v e X :b(v,un) = (g, u), Vue M}, V:={ve X:b(v,u) =0, Yu € M}
Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form a(-, -)

A X=X
(Au,v) = a(u,v), Vv e X.
Similarly, for b(-,-) we define B and adjoint B’ as
B:X— M, B :M— X'
(Bu,p) = b(u,p), Yue M, (B'Av)=Db(v,)), VveX.

The Saddle Point Problem | can be expressed as

Saddle Point Problem Il

Find (u,\) € X x M satisfying
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Notation: V(g):={v e X :b(v,un) = (g, u), Vue M}, V:={ve X:b(v,u) =0, Yu € M}
Since b is continuous, V is a closed subspace of X.

Reformulation as an operator equation using bilinear form a(-, -)

A X=X
(Au,v) = a(u,v), Vv e X.
Similarly, for b(-,-) we define B and adjoint B’ as
B:X— M, B :M— X'
(Bu,p) = b(u,p), Yue M, (B'Av)=Db(v,)), VveX.

The Saddle Point Problem | can be expressed as

Saddle Point Problem Il

Find (u,\) € X x M satisfying
Au+B'X =f,
Bu =
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The following conditions are equivalent
(i) inf L emsup,cx m >pB>0.
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Saddle Point Problems

The following conditions are equivalent
(i) inf L emsup,cx m >pB>0.
(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > 8||v|, Vv e V< .
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
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Saddle Point Problems

The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii).
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Saddle Point Problems

The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w).
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:

The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.

We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w). By (iii) B’ is an isomorphism so
there exists A € M so that
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w). By (iii) B’ is an isomorphism so
there exists A € M so that
b(w,A) = (v,w), Yw € V.
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w). By (iii) B’ is an isomorphism so
there exists A € M so that
b(w,A) = (v,w), Yw € V.
From the definition of the functional ||g|| = ||v||.
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(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w). By (iii) B’ is an isomorphism so
there exists A € M so that

b(w,A) = (v,w), Yw € V.
From the definition of the functional ||g|| = ||v||. Also, ||B'u|| > Bllull so ||v]l = llgll = [|1B'All > Bl
Substituting into b(:,-) above w = v, we have
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w). By (iii) B’ is an isomorphism so
there exists A € M so that

b(w,A) = (v,w), Yw € V.
From the definition of the functional ||g|| = ||v||. Also, ||B'u|| > Bllull so ||v]l = llgll = [|1B'All > Bl
Substituting into b(:,-) above w = v, we have

b(v. )  b(v,) _ (v.v)
Tl = T

sup
uem el

> Blvll.
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The following conditions are equivalent

(i) inf L emsup,cx m >pB>0.

(i) The operator B : V+ — M’ is an isomorphism and ||Bv|| > B||v|, Vv e V< .

(i) The operator B : M — V°® C X’ is an isomorphism and ||B || > B]|ull, VYu € M.

Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w). By (iii) B’ is an isomorphism so
there exists A € M so that

b(w,A) = (v,w), Yw € V.
From the definition of the functional ||g|| = ||v||. Also, ||B'u|| > Bllull so ||v]l = llgll = [|1B'All > Bl
Substituting into b(:,-) above w = v, we have

b(v. )  b(v,) _ (v.v)
Tl = T

The B : V1 — M’ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.

> Blvll.

sup
uem el
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Proof:
The equivalence of (i) and (iii) follows from the considerations in the previous Inf-Sup Lemma.
We show (iii) = (ii). For v € V* let g € V° defined by mapping w — (v, w). By (iii) B’ is an isomorphism so
there exists A € M so that

b(w,A) = (v,w), Yw € V.
From the definition of the functional ||g|| = ||v||. Also, ||B'u|| > Bllull so ||v]l = llgll = [|1B'All > Bl
Substituting into b(:,-) above w = v, we have

b(v.s) - b(v.p) _ (v.v)
[l (A
The B : V1 — M’ satisfies the conditions of Inf-Sup Lemma so the mapping B is an isomorphism.
Therefore, (iii) = (ii).
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Saddle Point Problems

The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i).
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Saddle Point Problems

The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V= — M’ is an isomorphism.
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The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V* — M’ is an isomorphism. For ;1 € M, we have by duality of the norms
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The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V* — M’ is an isomorphism. For ;1 € M, we have by duality of the norms

(g, 1)
||l = sup
gem gl
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Saddle Point Problems

The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V* — M’ is an isomorphism. For ;1 € M, we have by duality of the norms

= sup & — g (BLA)
sem llgll veve 1B
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Saddle Point Problems

The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V* — M’ is an isomorphism. For ;1 € M, we have by duality of the norms

(&n) _ o Bvow o b(v,p)

[[ull = sup
eew gl veve [1BvIl  veve (1Bl
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The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V* — M’ is an isomorphism. For ;1 € M, we have by duality of the norms

& _ g B g b)) g b )
veve Bllvl

[[ull = sup
eew gl veve [1BvIl  veve (1Bl
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Saddle Point Problems

The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V* — M’ is an isomorphism. For ;1 € M, we have by duality of the norms

& _ g B g b)) g b )
veve Bllvl

[[ull = sup
eew gl veve [1BvIl  veve (1Bl

Therefore, (ii) = (i).
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Saddle Point Problems

The following conditions are equivalent

(i) infuem sup, ex iy > B > 0.

(i) The operator B : V* — M’ is an isomorphism and ||Bv| > B]|v|, Vv € V*.

(i) The operator B’ : M — V° C X’ is an isomorphism and ||B || > B]|ull, Vi€ M.

Proof:
We show (ii) = (i). By (ii), B: V* — M’ is an isomorphism. For ;1 € M, we have by duality of the norms
(g, 1) (Bv, 1) b(v, p) < sup b(v, 1)

l[pll = sup = sup = sup :
gem gl veve 1BVl yeve 1BVl T eve Blivil

Therefore, (ii) = (i).
|
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Saddle Point Problem

Notation:
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Saddle Point Problems

Notation: V(g) :={v € X : b(v,u) = (g, 1), Yu € M},
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem
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Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L: X x M — X' x M’
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied
(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
(i) The bilinear form b(-, -) satisfies the inf-sup condition
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
(i) The bilinear form b(-, -) satisfies the inf-sup condition

inf sup M > .
neM yex vl
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
(i) The bilinear form b(-, -) satisfies the inf-sup condition

b(v, 1)

inf sup ————= > (3.
neM yex vl

Remark:
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
(i) The bilinear form b(-, -) satisfies the inf-sup condition

b(v, 1)

inf sup ————= > (3.
neM yex vl

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/
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Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
(i) The bilinear form b(-, -) satisfies the inf-sup condition
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Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
(i) The bilinear form b(-, -) satisfies the inf-sup condition

b(v, 1)

inf sup ————= > (3.
neM yex vl

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).

Provides conditions directly in terms of the bilinear forms a and b concerning solveability.
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Saddle Point Problems

Notation: V(g):={v e X :b(v,pn) = (g,u), Vue M}, V:={ve X :b(v,u) =0, Yu € M}

A central theorem for saddle point problems.

Brezzi's Splitting Theorem

For the Saddle Point Problem I, the mapping L is an isomorphism L : X x M — X’ x M’ if and only if the
following two conditions are satisfied

(i) The bilinear form a(-,-) is elliptic (coercive) in V, a(v,v) > a|v||?, Vv € V with a >0, V given above.
(i) The bilinear form b(-, -) satisfies the inf-sup condition

b(v, 1)

inf sup ————= > (3.
neM yex vl

Remark: Note the coercivity is assumed only for v in kernel of B (see def. of V).
Provides conditions directly in terms of the bilinear forms a and b concerning solveability.

Referred to as the Brezzi Conditions or Ladyzhenskaya-Babuska-Brezzi (LBB-Conditions).
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Mixed Finite Element Methods
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, 1) = (g,p); Y € Mh.
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, 1) = (g,p); Y € Mh.

Remark:
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, 1) = (g,p); Y € Mh.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, 1) = (g,p); Y € Mh.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation:
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, ) = (g, 1), Y € Mp.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation: V} := {v € Xi: b(v, ) =0,V € Mp}.

Definition: Babuska-Brezzi Condition
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Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, ) = (g, 1), Y € Mp.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation: V} := {v € Xi: b(v, ) =0,V € Mp}.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xi, M}, if there exists
a > 0,8 > 0 independent of h so that
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, ) = (g, 1), Y € Mp.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation: V} := {v € Xi: b(v, ) =0,V € Mp}.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xi, M}, if there exists
a > 0,8 > 0 independent of h so that
(i) Bilinear form a(-,-) is Vj-elliptic with constant o > 0.
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, ) = (g, 1), Y € Mp.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation: V} := {v € Xi: b(v, ) =0,V € Mp}.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xi, M}, if there exists
a > 0,8 > 0 independent of h so that

(i) Bilinear form a(-,-) is Vj-elliptic with constant o > 0.

(ii) The condition holds
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, ) = (g, 1), Y € Mp.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation: V} := {v € Xi: b(v, ) =0,V € Mp}.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xi, M}, if there exists
a > 0,8 > 0 independent of h so that
(i) Bilinear form a(-,-) is Vj-elliptic with constant o > 0.
(ii) The condition holds
b(V, A/7)
sup
vexy v

> BllAnll, YAn € M.
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, ) = (g, 1), Y € Mp.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation: V} := {v € Xi: b(v, ) =0,V € Mp}.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xi, M}, if there exists
a > 0,8 > 0 independent of h so that
(i) Bilinear form a(-,-) is Vj-elliptic with constant o > 0.
(ii) The condition holds
b(V, A/7)
sup
vexy v

> BllAnll, YAn € M.

Remark:
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Mixed Finite Element Methods

Find (un, An) € Xp X M} so that

a(up,v)+ b(v,\n) =(f,v), VveX,
b(un, ) = (g, 1), Y € Mp.

Remark: Need to chose the spaces X, and M, carefully so have compatibility so the inf-sup conditions satisfied.
Notation: V} := {v € Xi: b(v, ) =0,V € Mp}.

Definition: Babuska-Brezzi Condition

We say the Babuska-Brezzi Condition is satisfied by a family of finite element spaces Xi, M}, if there exists
a > 0,8 > 0 independent of h so that
(i) Bilinear form a(-,-) is Vj-elliptic with constant o > 0.
(ii) The condition holds
b(V, A/7)
sup
vexy v

> BllAnll, YAn € M.

Remark: Also referred to as the Inf-Sup Conditions.
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Mixed Methods

When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then
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Mixed Methods

When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

= A= £ inf — inf ||\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]
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When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

= A= £ inf — inf ||\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]

Remark:
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Mixed Methods

When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

= A= £ inf — inf ||\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]

Remark: Generally, Vj, ¢ V (non-conforming). We usually do get better results in conforming case Vi, C V.

Definition
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Mixed Methods

When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

= A= £ inf — inf ||\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]

Remark: Generally, Vj, ¢ V (non-conforming). We usually do get better results in conforming case Vi, C V.

Definition

The spaces X, C X and M, C M, are said to satisfy condition (C) provided V}, C V.
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When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

= A= £ inf — inf ||\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]

Remark: Generally, Vj, ¢ V (non-conforming). We usually do get better results in conforming case Vi, C V.

Definition

The spaces X, C X and M, C M, are said to satisfy condition (C) provided V}, C V.

Significance:
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Mixed Methods

When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

- A=l <c inf flu— inf [|\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]

Remark: Generally, Vj, ¢ V (non-conforming). We usually do get better results in conforming case Vi, C V.

Definition

The spaces X, C X and M, C M, are said to satisfy condition (C) provided V}, C V.

Significance: Condition (C) = Vv, € Xu, b(vh, un) =0, Yun € My = b(vs, ) = 0,V € M.
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Mixed Methods

When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

- A=l <c inf flu— inf [|\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]

Remark: Generally, Vj, ¢ V (non-conforming). We usually do get better results in conforming case Vi, C V.

Definition

The spaces X, C X and M, C M, are said to satisfy condition (C) provided V;, C V.

Significance: Condition (C) = Vv, € Xu, b(vh, un) =0, Yun € My = b(vs, ) = 0,V € M.

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies
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When X;, and M, satisfy the Babuska-Brezzi conditions (and assumptions of the prior theorem), then

- A=l <c inf flu— inf [|\ —
o= anll 413 = 2wl < ¢ (i, = wll + inf 1A= ]

Remark: Generally, Vj, ¢ V (non-conforming). We usually do get better results in conforming case Vi, C V.

Definition

The spaces X, C X and M, C M, are said to satisfy condition (C) provided V;, C V.

Significance: Condition (C) = Vv, € Xu, b(vh, un) =0, Yun € My = b(vs, ) = 0,V € M.

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

llu— up|| < c inf [ju— va.
VhEXp
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi(g).
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that

a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that

a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
b(v, A — An) + a(u — vp, v)
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
= b(v,A— )+ a(u — vp,v)
< Cllu= vl - vl
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
= b(v,A— )+ a(u — vp,v)
< Cllu= vl - vl

Holds Vv € V, since b(v, A — Ay) = 0 from Condition (C).
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
= b(v,A— )+ a(u — vp,v)
< Cllu= vl - vl

Holds Vv € V, since b(v, A — Ay) = 0 from Condition (C).

Let v := up — v, then |jus — vi|]> < a2 Cllun — va|| - ||u — val.
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
= b(v,A— )+ a(u — vp,v)
< Cllu= vl - vl

Holds Vv € V, since b(v, A — Ay) = 0 from Condition (C).

Let v := up — v, then |jus — vi||> < @™ C|lup — || - ||u — val|. Dividing by |lup — val
llun = vall < ™ Cllu = .

, we have
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
= b(v,A— )+ a(u — vp,v)
< Cllu= vl - vl

Holds Vv € V, since b(v, A — Ay) = 0 from Condition (C).

Let v := up — v, then |jup — vi||> < @ C|lup — || - ||u — va||. Dividing by |lup — val||, we have

llun = vall < @™ Cllu = vl

By triangle inequality, ||u — un|| < ||u — val| + ||va — us|
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
= b(v,A— )+ a(u — vp,v)
< Cllu= vl - vl

Holds Vv € V, since b(v, A — Ay) = 0 from Condition (C).

Let v := up — v, then |jup — vi||> < @ C|lup — || - ||u — va||. Dividing by |lup — val||, we have

llun = vall < @™ Cllu = vl

By triangle inequality, ||u — us|| < ||u — va|| + ||vi — un|| and the result follows.
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Mixed Methods

Suppose assumptions of prior theorem and Condition (C) satisfied. The solution to Mixed FEM | satisfies

lu—un|| < c inf |Ju— vl
vpEXp

Proof:
Consider v, € Vi,(g). It follows that
a(up — vh,v) = a(up,v)—a(u,v)+ a(u— vy, v)
= b(v,A— )+ a(u — vp,v)
< Cllu= vl - vl

Holds Vv € V, since b(v, A — Ay) = 0 from Condition (C).

Let v := up — v, then |jup — vi||> < @ C|lup — || - ||u — va||. Dividing by |lup — val||, we have

llun = vall < @™ Cllu = vl

By triangle inequality, ||u — us|| < ||u — va|| + ||vi — un|| and the result follows.
|
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Poisson Problem: Mixed Methods

Poisson Problem:
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Poisson Problem: Mixed Methods

Poisson Problem:

Au=—f, x€Q,

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poisson Problem: Mixed Methods

Poisson Problem:

Au=—f, x€Q, u=0, x €y,

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poisson Problem: Mixed Methods

Poisson Problem:

Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.

We use that Au = divgradu.
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.

We use that Au = divgradu. Let 0 = grad u,
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.
We use that Au = divgradu. Let o0 = grad u, then the Poisson problem becomes

gradu = o
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.
We use that Au = divgradu. Let o0 = grad u, then the Poisson problem becomes

gradu = o

dive = -—f
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.
We use that Au = divgradu. Let o0 = grad u, then the Poisson problem becomes

gradu = o

dive = -—f

Poisson Problem: Mixed Formulation
Find (o, u) € L2(Q)9 x H}(Q) so that
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.
We use that Au = divgradu. Let o0 = grad u, then the Poisson problem becomes

gradu = o

dive = -—f

Poisson Problem: Mixed Formulation
Find (o, u) € L2(Q)9 x H}(Q) so that

(Uv T)O,Q - (T7 vU)O,Q = 0, Vre Lz(Q)d
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.
We use that Au = divgradu. Let o0 = grad u, then the Poisson problem becomes

gradu = o

dive = -—f

Poisson Problem: Mixed Formulation
Find (o, u) € L2(Q)9 x H}(Q) so that

(Uv T)O,Q - (T7 vU)O,Q = 0, Vre Lz(Q)d
— (O’, VV)O,Q = —(f, V)O)Q, Yv € H&(Q)
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Poisson Problem: Mixed Methods

Poisson Problem:
Au=—f, x€Q, u=0,x€ly,, Vu-n=0, xeTl;.
We use that Au = divgradu. Let o0 = grad u, then the Poisson problem becomes

gradu = o

dive = -—f

Poisson Problem: Mixed Formulation
Find (o, u) € L2(Q)9 x H}(Q) so that

(Uv T)O,Q - (T7 vU)O,Q = 0, Vre Lz(Q)d
— (O’, VV)O,Q = —(f, V)O)Q, Yv € H&(Q)
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation
Find (o, u) € L(Q)? x H3(Q) so that
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation
Find (o, u) € L(Q)? x H3(Q) so that

(0,7)oa — (1, Vu)oa = 0, Vr e Lo(Q)?
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation
Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o.2 — (1, Vu)oa 0, V1 € Lr()?
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o2 — (7, Vu)og 0, V7 € Lo(Q)°
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).

Poisson Problem: Saddle-Point Formulation
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o2 — (7, Vu)og 0, V7 € Lo(Q)°
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).

Poisson Problem: Saddle-Point Formulation
Let
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o2 — (7, Vu)og 0, V7 € Lo(Q)°
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).

Poisson Problem: Saddle-Point Formulation
Let

X = L(Q)Y, M := Hy ()
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o2 — (7, Vu)og 0, V7 € Lo(Q)°
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).

Poisson Problem: Saddle-Point Formulation
Let
X = L(Q)Y, M := Hy ()

a(o,7) :=(0,7)o,0, b(7,v):=—(7,VVv)oa.
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o2 — (7, Vu)og 0, V7 € Lo(Q)°
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).

Poisson Problem: Saddle-Point Formulation
Let

X = L(Q)Y, M := Hy ()

a(o,7) :=(0,7)o,0, b(7,v):=—(7,VVv)oa.

Saddle-Point Problem:

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o2 — (7, Vu)og 0, V7 € Lo(Q)°
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).

Poisson Problem: Saddle-Point Formulation
Let

X = L(Q)Y, M := Hy ()

a(o,7) :=(0,7)o,0, b(7,v):=—(7,VVv)oa.
Saddle-Point Problem:

a(o,7)—b(r,v) = 0
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Poisson Problem: Mixed Methods

Poisson Problem: Mixed Formulation

Find (o, u) € L(Q)? x H3(Q) so that

(0,7)o2 — (7, Vu)og 0, V7 € Lo(Q)°
—(0,Vv)oa = —(f,v)oaq, Vv e Hy(Q).

Poisson Problem: Saddle-Point Formulation
Let

X = L(Q)Y, M := Hy ()
a(o,7) :=(0,7)o,0, b(7,v):=—(7,VVv)oa.
Saddle-Point Problem:
a(o,7) — b(r,v) 0
b(o,7) = —{(f,v)oa.
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let

X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.
Saddle-Point Problem:
a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa-

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

Let
X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.

Saddle-Point Problem:

a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa-
The Inf-Sup Condition holds since
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.

Saddle-Point Problem:

a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa- |
The Inf-Sup Condition holds since
b(r, v)
lI7llo
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.

Saddle-Point Problem:

a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa-

The Inf-Sup Condition holds since

b(r,v)  —(7,Vv)oa
lI7llo [I7llo
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.

Saddle-Point Problem:

a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa-

The Inf-Sup Condition holds since

b(r,v) —(7,Vv)o,a (Vv,Vv)o,a
— —
lI7llo [I7llo Vvilo
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.

Saddle-Point Problem:

a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa-

The Inf-Sup Condition holds since

b(r,v) —(7,Vv)o,a (Vv,Vv)o,a
— —
lI7llo [I7llo Vvilo

= |vx
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.

Saddle-Point Problem:

a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa-

The Inf-Sup Condition holds since

b - 1
(.v) _ =(z.Vv)oa N (Vv,Vv)oa _ vh > vl
lI7llo I7llo IVvllo c
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation
Let

X = [(Q)% M = Hy(Q)
a(o,7) == (0,7)o,, b(r,v):=—(7,Vv)oa.

Saddle-Point Problem:

a(o,7)— b(r,v) = 0
b(o,7) = —(f,v)oa-

The Inf-Sup Condition holds since

b(r,v) _ =(r. Vv)oa  (Vv.Vv)ea _ Ly
I71lo 7o IVvilo <

This establishes stability of the formulation.
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.

Saddle-Point Problem:

a(o,7)—b(r,v) = 0
b(o,7) = —(f,v)oa.
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.

Saddle-Point Problem:

a(o,7)—b(r,v) = 0
b(o,7) = —(f,v)oa.

We can obtain stable Finite Element discretizations for triangulations 7.
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.

Saddle-Point Problem:

a(o,7)—b(r,v) = 0
b(o,7) = —(f,v)oa.

We can obtain stable Finite Element discretizations for triangulations 7. For k > 1, let
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.
Saddle-Point Problem:

a(o,7) = b(r,v) = 0
b(o,7) = —(f,v)oa.

We can obtain stable Finite Element discretizations for triangulations 7. For k > 1, let

Poisson Problem: Stable Mixed Finite Element Spaces
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.
Saddle-Point Problem:

a(o,7) = b(r,v) = 0
b(o,7) = —(f,v)oa.

We can obtain stable Finite Element discretizations for triangulations 7. For k > 1, let

Poisson Problem: Stable Mixed Finite Element Spaces

d
Xh = (Mk_l) = {on € La(Q)%; on|T € Picr, YT € Ti}
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.
Saddle-Point Problem:

a(o,7) = b(r,v) = 0
b(o,7) = —(f,v)oa.

We can obtain stable Finite Element discretizations for triangulations 7. For k > 1, let

Poisson Problem: Stable Mixed Finite Element Spaces

d
Xp = (Mk_l) = {O'h € Lz(Q)d;O'h|T € Pr—1, VT € 771}
My := Mg o = {vh € Hy(Q); il € Pr, VT € Tr}
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Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.
Saddle-Point Problem:

a(o,7)—b(r,v) = 0
b(o,7) = —(f,v)oa.

We can obtain stable Finite Element discretizations for triangulations 7. For k > 1, let

Poisson Problem: Stable Mixed Finite Element Spaces

d
Xh = (Mk_l) = {on € La(Q)%; on|T € Picr, YT € Ti}
My == Mo = {vi € Hy(Q); wi|T € Px, YT € Th}

Note that VM, C Xj, allow us to verify same as in continuous case.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poisson Problem: Mixed Methods

Poisson Problem: Saddle-Point Formulation

X = L(Q)%, M := Hy(Q), a(o,7):=(0,7)0q, b(r,v):=—(7,VVv)oa.
Saddle-Point Problem:

a(o,7)—b(r,v) = 0
b(o,7) = —(f,v)oa.

We can obtain stable Finite Element discretizations for triangulations 7. For k > 1, let

Poisson Problem: Stable Mixed Finite Element Spaces

d
Xh = (Mk_l) = {on € La(Q)%; on|T € Picr, YT € Ti}
My == Mo = {vi € Hy(Q); wi|T € Px, YT € Th}

Note that VM, C Xj, allow us to verify same as in continuous case.
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

Raviart-Thomas Element

RTo MO
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

Xh = RTk = {T (S LQ(Q)21 TlT = (ZT) T CcT (;)7 ar, bT>CT S P/ﬂ VT S 77777— “ne 6(87—)}
T

Raviart-Thomas Element

RTo MO
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

X, = RTy:= {TG LQ(Q)Q; T|T = (ZT) —l—cr(;), ar,br,cr € Pk, VT € Tp,7-n € C(@T)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

Raviart-Thomas Element

RTo MO
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Raviart-Thomas Element

X, = RTy:= {TG LQ(Q)Q; T|T = (ZT) —l—cr(;), ar,br,cr € Pk, VT € Tp,7-n € C(@T)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

TheT-n¢ 6(8T) denotes that 7 - n is continuous on the inter-element boundaries.

Raviart-Thomas Element

RTo MO
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Raviart-Thomas Element

X, = RTy:= {TG LQ(Q)Q; T|T = (ZT) —l—cr(;), ar,br,cr € Pk, VT € Tp,7-n € C(@T)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

TheT-n¢ 6(8T) denotes that 7 - n is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

Raviart-Thomas Element

RTo MO
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

X, = RTy:= {TG LQ(Q)Q; T|T = (ZT) —l—cr(;), ar,br,cr € Pk, VT € Tp,7-n € C(@T)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

TheT-n¢ 6(8T) denotes that 7 - n is continuous on the inter-element boundaries.
These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For k=0, p € (P1)? has

Raviart-Thomas Element

RTo MO
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

X, = RTy:= {TG LQ(Q)Q; T|T = (ZT) —l—cr(;), ar,br,cr € Pk, VT € Tp,7-n € C(@T)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

TheT-n¢ 6(8T) denotes that 7 - n is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For k=0, p € (P1)? has
a X
p(X,y) = b +c v Raviart-Thomas Element

The n- p is constant on ax 4+ By = ¢ when n orthogonal to the line.

RTo M°
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

Xh = RTk = {Te LQ(Q)21 TlT: (ZT) +CT(;)> aTbe>CT€Pk7 VT€7777T.'16 6(87—)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

TheT-n¢ 6(8T) denotes that 7 - n is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For k=0, p € (P1)? has
a X
p(X,y) = b +c v Raviart-Thomas Element

The n- p is constant on ax 4+ By = ¢ when n orthogonal to the line.
Edge values determine the polynomial p.

RTo M°
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

Xh = RTk = {Te LQ(Q)21 TlT: (ZT) +CT(;)> aTbe>CT€Pk7 VT€7777T.'16 6(87—)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

TheT-n¢ 6(8T) denotes that 7 - n is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For k=0, p € (P1)? has
a X
p(X,y) = b +c v Raviart-Thomas Element

The n- p is constant on ax 4+ By = ¢ when n orthogonal to the line.
Edge values determine the polynomial p. Formally, elements are triple

RTo M°
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Poisson Problem: Mixed Methods

Raviart-Thomas Element

Xh = RTk = {Te LQ(Q)21 TlT: (ZT) +CT(;)> aTbe>CT€Pk7 VT€7777T.'16 6(87—)}
T
M, = Mk('ﬁ,) ={v e Lx(Q); v|r € Pk, VT € Tp}

TheT-n¢ 6(8T) denotes that 7 - n is continuous on the inter-element boundaries.

These can be shown to satisfy the Inf-Sup Condition for the Poisson Problem Mixed Formulation.

For k=0, p € (P1)? has
a X
p(X,y) = b +c v Raviart-Thomas Element

The n- p is constant on ax 4+ By = ¢ when n orthogonal to the line.
Edge values determine the polynomial p. Formally, elements are triple

(T, (Po)? +x-Po, ni-p(z),i =1,2,3, z is edge midpoint.) RT, MO
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Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:
1/2

Irllos == {1715+ h D lI7nllG.e

eCrly

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:
1/2 1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

2
0,e

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:

1/2 1/2
= (ITI8+hA D lrnlse | Ivha=| D IWlEr+h" D [4(v) :
TET eCrly

eCrly

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:
1/2 1/2

on = (1Tl +h D Nrallse | Iviue = D IvEr+h7" > (V)]

eCrly TET eCrly

2
0,e

il

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a:

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-Thomas Element

Mesh-Dependent Norms:
1/2 1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

2
0,e

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-

Mesh-Dependent Norms:
1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

1/2

2
0,e
The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

I7llo.n < Cli7llo, V7 € RTi = a(r,7) = |I7ll60 = C*|I7llg,n-

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-

Mesh-Dependent Norms:
1/2 1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

2
0,e

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

I7llo.n < Cli7llo, V7 € RTi = a(r,7) = |I7ll60 = C*|I7llg,n-

Properties of b:

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-

Mesh-Dependent Norms:
1/2 1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

2
0,e

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

I7llo.n < Cli7llo, V7 € RTi = a(r,7) = |I7ll60 = C*|I7llg,n-

Properties of b: Use Green's Identity to rewrite as

Raviart-Thomas Element

RTo MO
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Poisson Problem: Raviart-

Mesh-Dependent Norms:
1/2 1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

2
0,e

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

I7llo.n < Cli7llo, V7 € RTi = a(r,7) = |I7ll60 = C*|I7llg,n-

Properties of b: Use Green's Identity to rewrite as

b(r,v) = — Z /TT -grad v dx +/r J(v)Tnds.
h

Raviart-Thomas Element
TeT

RTo MO
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Poisson Problem: Raviart-

Mesh-Dependent Norms:
1/2 1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

2
0,e

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

I7llo.n < Cli7llo, V7 € RTi = a(r,7) = |I7ll60 = C*|I7llg,n-

Properties of b: Use Green's Identity to rewrite as

b(T’ V) == Z /TT ’ grad vdx + /I' J(V)Tnds. Raviart-Thomas Element
TeT h

J(v) is jump of v in normal direction n. Ty :=J; (0T () interior bnds.

RTo MO
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Poisson Problem: Raviart-

Mesh-Dependent Norms:
1/2 1/2

Irllos = (1716 +h D lirallse | Iviue:={ D IvEr+h7" > (1(V)]

eCrly TET eCrly

2
0,e

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

I7llo.n < Clirllo, ¥7 € RTk = a(7,7) = |I7l3.0 = C2||7[l5,1-
Properties of b: Use Green's Identity to rewrite as
b(T’ V) == Z / T grad vdx + / J(V)Tnds. Raviart-Thomas Element
TeT’T Th
J(v) is jump of v in normal direction n. Ty :=J; (0T () interior bnds.

The b continuity with Mesh-Norms follows readily.

RTo MO
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Poisson Problem: Raviart-

Mesh-Dependent Norms:
1/2 1/2

Irllos = {176+ h D Nrnllse | Iviue:= | D IviEr+47" > V)G

0,e
eCrly TET eCrly

The a(o,7) := (0, 7)o,a and b(7,v) := —(7, Vv)o,a defined for 7,0 € L»(Q)“.
Properties of a: Ellipticity of a(-, ) follows from

I7llo.n < Clirllo, ¥7 € RTk = a(7,7) = |I7l3.0 = C2||7[l5,1-
Properties of b: Use Green's Identity to rewrite as
b(T’ V) == Z / T grad vdx + / J(V)Tnds. Raviart-Thomas Element
TeT’T Th
J(v) is jump of v in normal direction n. Ty :=J; (0T () interior bnds.

The b continuity with Mesh-Norms follows readily.

Inf-Sup Condition must be established. RTo MO
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies
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Poisson Problem: Raviart-

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies
b(7, v)

> BIvlih, Vv € MK,
rerT, 1710,
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Poisson Problem: Raviart-

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

> BIvlih, Vv € MK,
rerT, 1710,

where 8 > 0 and depends on k

Paul J. Atzberger, UCSB Finite Element Methods

http://atzberger.org/


http://atzberger.org/

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

TERT) HT|

> BIvlih, Vv € MK,

0,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

TERT) HT|

> BIvlih, Vv € MK,

0,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

TERT) HT|

> BIvlih, Vv € MK,

0,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e C .
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

> Blv|ih, Vv e MK

rerT, 1710,

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e C .
This implies there exists 7 € RTy so that

n=h""J(v)

on each edge e C [y.
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Poisson Problem: Raviart-

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

> Blv|ih, Vv e MK

rerT, 1710,

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e C .
This implies there exists 7 € RTy so that

n=h""J(v)

on each edge e C I's. Since in this case the area term in Green's Identity

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Poisson Problem: Raviart-

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

> Blv|ih, Vv e MK

rerT, 1710,

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e C .
This implies there exists 7 € RTy so that

n=h""J(v)
on each edge e C I's. Since in this case the area term in Green's Identity
for b vanishes, we have
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies
b(7, v)

0,h

> Blv|ih, Vv e MK

TERT) HT|

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e C .
This implies there exists 7 € RTy so that

n=h""J(v)
on each edge e C I's. Since in this case the area term in Green's Identity
for b vanishes, we have

b(r,v)=h"" [ |J(v)|ds
Th
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies
b(7, v)

0,h

> Blv|ih, Vv e MK

TERT) HT|

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e C .
This implies there exists 7 € RTy so that

n=h""J(v)
on each edge e C I's. Since in this case the area term in Green's Identity
for b vanishes, we have

2
0,e

b(r, v) = h’l/r ()Pds = ch™ 3 ()|

eCrly
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies
b(7, v)

0,h

> Blv|ih, Vv e MK

TERT) HT|

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch):
Consider case k = 0, then J(v) is constant along each edge e C .
This implies there exists 7 € RTy so that

n=h""J(v)
on each edge e C I's. Since in this case the area term in Green's Identity
for b vanishes, we have

2
1,h-

b(r,v) = b~ / () Pds = ch™ S I IEe = v

eCrly
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Poisson Problem: Raviart-

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

TERT HTHO,h

> Blv|in, Vv € MK,

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch) (continued):

b(r,v) = b / (W)2ds = ch ™ 37 IR = Vi
h

eCrly
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Poisson Problem: Raviart-

Lemma: The Inf-Sup Condition

The bilinear form b with the RT-elements satisfies

b(7, v)

> Blv|in, Vv € MK,

TERT HTHO,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch) (continued):

br.v) = [ |0)Pds = ch™ 3 101 = Vi
Th eCrly,
We also have

Paul J. Atzberger, UCSB Finite Element Methods

http://atzberger.org/


http://atzberger.org/

Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies
b(7, v)

rerT, |I7]

> Blv|in, Vv € MK,

0,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch) (continued):

b(r,v) = b / (W)2ds = ch ™ 37 IR = Vi
h

eCrly
We also have
I7llo.n < ch > lIrlloe=ch™ > 1 d(W)s.e = clvfin
eCly eCrly
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

rerT, |I7]

> Blv|in, Vv € MK,

0,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch) (continued):

b(r,v) = b / (W)2ds = ch ™ 37 IR = Vi
h

eCrly
We also have

7050 < ch D lI7llge = ch™ > 1(v)]

eCly eCrly

(2),e = C| Vlih'

By taking |v\ih = |v\1’hc_1/2

[I7{lo,n,
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

rerT, |I7]

> Blv|in, Vv € MK,

0,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch) (continued):

b(r,v) = b / (W)2ds = ch ™ 37 IR = Vi
h

eCrly
We also have

7050 < ch D lI7llge = ch™ > 1(v)]

eCly eCrly

(2),e = C| Vlih'

By taking |v\ih = |v\1’hc_1/2

17 ]l0,n, we have b(r,v) > c~/?|v

1,47 llo,5-
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies

b(7, v)

rerT, |I7]

> Blv|in, Vv € MK,

0,h

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch) (continued):

br.v) = [ |0)Pds = ch™ 3 101 = Vi
Th eCrly,
We also have

7050 < ch D lI7llge = ch™ > 1(v)]

eCly eCrly

(2),e = C| Vlih'

By taking |v\ih = |v\1’hc_1/2

17 ]l0,n, we have b(r,v) > c~/?|v

1,h|7]lo,n. Establishes the Inf-Sup Condition.
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Poisson Problem: Raviart-Thomas Element

Lemma: The Inf-Sup Condition
The bilinear form b with the RT-elements satisfies
b(7, v)

0,h

> Blv|in, Vv € MK,

rerT, |I7]

where 8 > 0 and depends on k and the shape regularity of the triangulation 7.

Proof (sketch) (continued):

b(r,v) = b / (W)2ds = ch ™ 37 IR = Vi
h

eCrly

We also have
2 2
0,e = C|V|1,h'

7050 < ch D lI7llge = ch™ > 1(v)]

eCly eCrly
—1/2

lo.n, we have b(7,v) > ¢~ Y2|v|1 4]|7|lo,s. Establishes the Inf-Sup Condition.

By taking |v|{, = [v[1nc™ /2|7
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Stokes Hydrodynamic Equations
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
0, xeQ

divu
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
dvue = 0, xeQ
u = u, x € 0.
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
dvue = 0, xeQ
u = u, x € 0.

The u: Q — R" is fluid velocity and p: Q — R is pressure.
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
dvue = 0, xeQ
u = u, x € 0.

The u: Q — R" is fluid velocity and p: Q — R is pressure.

The divu = 0 is constraint for fluid to be incompressible.

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
dvue = 0, xeQ
u = u, x € 0.

The u: Q — R" is fluid velocity and p: Q — R is pressure.
The divu = 0 is constraint for fluid to be incompressible.

Only imposes p up to constant, usually use condition fpdx =0.
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
dvue = 0, xeQ
u = u, x € 0.

The u: Q — R" is fluid velocity and p: Q — R is pressure.
The divu = 0 is constraint for fluid to be incompressible.
Only imposes p up to constant, usually use condition fpdx =0.

Variational Formulation: X = Hj(Q)", M = L20(Q) := {q € L2(Q); [ qdx = 0}.
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
dvue = 0, xeQ
u = u, x € 0.

The u: Q — R" is fluid velocity and p: Q — R is pressure.
The divu = 0 is constraint for fluid to be incompressible.
Only imposes p up to constant, usually use condition fpdx =0.

Variational Formulation: X = Hj(Q)", M = L20(Q) := {q € L2(Q); [ qdx = 0}.

a(u,v) = / grad u : grad v dx,
Q
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Stokes Hydrodynamic Equations

Au+gradp = —f, xeQ
dvue = 0, xeQ
u = u, x € 0.

The u: Q — R" is fluid velocity and p: Q — R is pressure.
The divu = 0 is constraint for fluid to be incompressible.
Only imposes p up to constant, usually use condition fpdx =0.

Variational Formulation: X = Hj(Q)", M = L20(Q) := {q € L2(Q); [ qdx = 0}.

a(u,v) = /Qgrad u : grad v dx, b(v,q) = /Qdiv(v) q dx.
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Stokes Hydrodynamic Equations

Variational Formulation: X = H3(Q)", M = L50(Q) := {q € L2(Q); [ qdx =0}.

a(u,v) = / grad u : grad v dx, b(v,q) = / div(v) q dx.
Q Q
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Stokes Hydrodynamic Equations

Variational Formulation: X = H3(Q)", M = L50(Q) := {q € L2(Q); [ qdx =0}.

a(u,v) = / grad u : grad v dx, b(v,q) = / div(v) q dx.
Q Q

Saddle-Point Problem (Stokes)
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Stokes Hydrodynamic Equations

Variational Formulation: X = H3(Q)", M = L50(Q) := {q € L2(Q); [ qdx =0}.

a(u,v) = / grad u : grad v dx, b(v,q) = / div(v) q dx.
Q Q

Saddle-Point Problem (Stokes)

X =Hs(Q)", M= L20(Q) := {q € L2(Q); [qdx =0}
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Stokes Hydrodynamic Equations

Variational Formulation: X = H3(Q)", M = L50(Q) := {q € L2(Q); [ qdx =0}.

a(u,v) = / grad u : grad v dx, b(v,q) = / div(v) q dx.
Q Q

Saddle-Point Problem (Stokes)

X =Hs(Q)", M= L20(Q) := {q € L2(Q); [qdx =0}

a(u,v)+ b(v,p) = (f,v)o, VveX
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Stokes Hydrodynamic Equations

Variational Formulation: X = H3(Q)", M = L50(Q) := {q € L2(Q); [ qdx =0}.

a(u,v) = / grad u : grad v dx, b(v,q) = / div(v) q dx.
Q Q

Saddle-Point Problem (Stokes)

X =Hs(Q)", M= L20(Q) := {q € L2(Q); [qdx =0}

a(u,v)+ b(v,p) = (f,v)o, VveX
b(u, q) 0, Vg e M.
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Stokes Hydrodynamic Equations

Variational Formulation: X = H3(Q)", M = L50(Q) := {q € L2(Q); [ qdx =0}.

a(u,v) = / grad u : grad v dx, b(v,q) = / div(v) q dx.
Q Q

Saddle-Point Problem (Stokes)

X =Hs(Q)", M= L20(Q) := {q € L2(Q); [qdx =0}

a(u,v)+ b(v,p) = (f,v)o, VveX
b(u, q) 0, Vg e M.

Need to establish the Inf-Sup Conditions.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have
Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have
Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms

div: VI = Lho(Q)
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms

div: VI = Lho(Q)

v +— divv.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms

div: VI = Lho(Q)
v +— divv.

For any g € L»(Q) with [ gdx =0,
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms

div: VI = Lho(Q)
v +— divv.

For any g € L2(2) with [ gdx = 0, there exists v € V* C Hj(Q)"
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms

div: VI = Lho(Q)
v +— divv.

For any g € L»(2) with [ gdx = 0, there exists v € V= C Hj(Q)" with

divv =g and |v[1Le < clqlloe,
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

For Stokes we have

Vi={veX; (divv,qa=0, Vg La(Q)}, V' :={uveX; (gradu,gradv)on=0, Vve V}.

The V* is H*-orthogonal complement of V.
Following two theorems used to establish inf-sup (for proof see literature: Necas 1965, Duvant, Lions 1976).

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary. The following mappings are
isomorphisms

div: VI = Lho(Q)
v — divv.
For any g € L»(2) with [ gdx = 0, there exists v € V= C Hj(Q)" with
divv =g and |v[1Le < clqlloe,

where ¢ = ¢(f) constant.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H~}(Q)"
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H~}(Q)"

grad : [»(Q) — H1(Q)"
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H~}(Q)"

grad : [»(Q) — H1(Q)"

(2) For f € HX(Q)", if
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H~}(Q)"

grad : [»(Q) — H1(Q)"

(2) For f € HH(Q)", if
(f,v)y =0, Vv e V.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H~}(Q)"

grad : [»(Q) — H1(Q)"

(2) For f € HH(Q)", if
(f,v)y =0, Vv e V.

(3) There is constant ¢ = ¢(2) so that
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H~}(Q)"

grad : [»(Q) — H1(Q)"

(2) For f € HX(Q)", if
(F,v) =0, Vv e V.

(3) There is constant ¢ = ¢(2) so that

lalloe < c(llgradqll-1,0 +[lqll-1,.2)  Vq € L2(Q),
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Let Q C R" be a bounded connected domain with Lipschitz continuous boundary.

(1) For the following linear mapping, the image is closed in H~}(Q)"

grad : [»(Q) — H1(Q)"

(2) For f € HTY(Q)", if
(f,v) =0, Vv € V.
(3) There is constant ¢ = ¢(2) so that

lalloe < c(llgradqll-1,0 +[lqll-1,.2)  Vq € L2(Q),
llallo,e < cllgradqgll-10 Vg € Lro(R).

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

sup
veX ||V||1

> Bllqllo-
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

sup
veX ||V||1

> Bllqllo-
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

sup
veX ||V||1

> Bllqllo-

Proof (sketch):
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

sup
veX ||V||1

> Bllqllo-

Proof (sketch):
(By Theorem 1):
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):
(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous
thm.)
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):
(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous
thm.) This implies
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):
(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous
thm.) This implies

b
sup (v,q)
vexX ”V”l
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):
(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous
thm.) This implies

sup b(v,q) _ (divv,q)
vex vilx vl
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes
b(v,q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):
(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous
thm.) This implies

b(v,q) _ (divv,q) _ |lqll§
sup = =
vex |Ivii vl [[vilx
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):
(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous
thm.) This implies

up 20 0) _ (@ivv.a) gl | lal}

vex vl Ivllx [vile — cllgllo
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):

(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous

thm.) This implies

b(v.q) _ (divv.q) _ [lal} . llal} _ 1
= ~ligllo-

cllallo

sup = =
vex |Ivii vl [[vilx
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q)

lIvilx

sup > Bllallo-
veX

Proof (sketch):

(By Theorem I): For a q € Ly, exists v € Hj(Q)" satisfying divv = g and ||v|1.0 < c|/qllo,0 (from previous

thm.) This implies

b(v.q) _ (divv.q) _ [lal} . llal} _ 1
= ~ligllo-

cllallo

sup = =
vex |Ivii vl [[vilx

This gives the Brezzi Condition for b.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem Il):
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem Il): For q € Ly, and second inequality of Il, that ||grad q||—1 > ¢ *||q]lo.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

(v,grad q)o,n
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

1
(v.gradqloa > Sllviliflgrad gl
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

1 1
(v,grad @)or > 3 1vlsllgrad all-1 = 5_[lglo.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

1 1
(v,grad @)or > 3 1vlsllgrad all-1 = 5_[lglo.

By Greens Identity b(v,q) = — [ v - grad g dx we have
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

1 1
(v,grad @)or > 3 1vlsllgrad all-1 = 5_[lglo.

By Greens Identity b(v,q) = — [ v - grad g dx we have

b(iva q)
Ivilx
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

1 1
(v,grad @)or > 3 1vlsllgrad all-1 = 5_[lglo.

By Greens Identity b(v,q) = — [ v - grad g dx we have

M = (v,grad q)o,0
vl
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

(v.grad g)oa > 3 1vlsligrad all-1 > 5 llgllo.
By Greens Identity b(v,q) = — [ v - grad g dx we have
b(ivaq)

1
||V||1 (v,gra q)O;Q = 2CHq||0
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

1 1
(v,grad @)or > 3 1vlsllgrad all-1 = 5_[lglo.

By Greens Identity b(v,q) = — [ v - grad g dx we have

b(ivaq) 1
——2* = (v,gradq)o,0 > — .
||V||1 ( g q)OQ 2CHq||0

This gives the Brezzi Condition for b.
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Stokes Hydrodynamic Equations: Inf-Sup Conditions

Lemma: Inf-Sup for Stokes

b(v, q
sup 229 5 g,
S8 v

Proof (sketch):
(By Theorem I1): For q € L, and second inequality of Il, that ||grad g||—1 > ¢ *||q|lo. From def. of negative
norm, there exists v € Hg(Q)" with ||v|: =1 and

1 1
(v,grad @)or > 3 1vlsllgrad all-1 = 5_[lglo.

By Greens Identity b(v,q) = — [ v - grad g dx we have

b(iva q) 1
||V||1 (v,gra q)O;Q = 2CHq||0
This gives the Brezzi Condition for b.
|

Paul J. Atzberger, UCSB Finite Element Methods http://atzberger.org/


http://atzberger.org/

Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element

Consider triangulation 75, and polymomial shape spaces P;.

0]
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Stokes Hydrodynamic Equations: Taylor-Hood Elem

Consider triangulation 75, and polymomial shape spaces P;.

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

0]
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Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation 75, and polymomial shape spaces P;.

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

0]

X o= (Mdo)" = {w e CQN M@ wlr e P2, T €T3}
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Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation 75, and polymomial shape spaces P;.

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

0]

X (Mg,o)d = {w e CQ M@ wlr € P2, VT € T}

Mp Méﬂl-z,o = {qh € C(Q)mLz,o(Q); gulr €P1, T € 771}
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Stokes Hydrodynamic Equations: Taylor-Hood Element
Taylor-Hood Element
Consider triangulation 75, and polymomial shape spaces P;.

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

@)
Xy = (Mg,o)d = {w € CQMHQ); wlr € P2, VT € Tr )
M, = Méng,o = {qh € C(Q)mLz,o(Q); grlTr €P1, T € 771}

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)
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Stokes Hydrodynamic Equations: Taylor-Hood Element
Taylor-Hood Element
Consider triangulation 75, and polymomial shape spaces P;.

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

@)
Xy = (Mg,o)d = {w € CQMHQ); wlr € P2, VT € Tr )
M, = Méng,o = {qh € C(Q)mLz,o(Q); grlTr €P1, T € 771}

Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)

Xp = Mo (Tip)’ = {wn € CQ M wilr € P2, VT € Topo}
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Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation 75, and polymomial shape spaces P;.

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

0]

Xp = (MS,O)d = {w e CQ'NHQ): wir € P, VT € Th}
My = Mg[ )Ly = {qh € C(Q)[ ) L2o(Q); anlT €P1, T € 771}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)
Xp = Mo (Tip)’ = {wn € CQ M wilr € P2, VT € Topo}
My = Mb(leo={an e C(A) () L2o(: ailr € Pr, T €Tr}
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Stokes Hydrodynamic Equations: Taylor-Hood Element

Taylor-Hood Element
Consider triangulation 75, and polymomial shape spaces P;.

Taylor-Hood Elements: Stability achieved by velocity field
in polynomial space larger degree than the pressure space.

0]

Xy = (MS,O)d - {vh € C()! (M Ha(Q); walr € P2, VT € Th}
My = Mg[ )Ly = {qh € C(Q)[ ) L2o(Q); anlT €P1, T € 771}
Modified Taylor-Hood Element: Use piece-wise linear functions on sub-triangles (macro element)
Xy = Mio(Top)? = {vh € C(Q)? N HAQ); valr € Po, VT € Th/2}
My = ME(VLoo = {an € CQ) () Loo(@): anlr € Pr. T € T3}

Figure: x denotes pressure values, - denotes velocity values.
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Stokes Hydrodynamic Equations: MINI Element

MINI Element

MINI Elements: Achieves stability by using interior "bubble” elements.

P1 Element Bubble Element
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Stokes Hydrodynamic Equations: MINI Element

MINI Element

MINI Elements: Achieves stability by using interior "bubble” elements.

For triangle, let A1, A2, A3 denotes the barycentric coordinates of a points x.

P1 Element Bubble Element
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Stokes Hydrodynamic Equations: MINI Element

MINI Element

MINI Elements: Achieves stability by using interior "bubble” elements.
For triangle, let A1, A2, A3 denotes the barycentric coordinates of a points x.

Add to the shape space the "bubble” function
b(X) = )\1)\2)\3.

Note, b vanishes on boundary of T.

P1 Element Bubble Element
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Stokes Hydrodynamic Equations: MINI Element

MINI Element

MINI Elements: Achieves stability by using interior "bubble” elements.
For triangle, let A1, A2, A3 denotes the barycentric coordinates of a points x.

Add to the shape space the "bubble” function
b(X) = )\1)\2)\3.

Note, b vanishes on boundary of T.
The finite element spaces are

Xp = |:M(1),o @ B3]2 » M= M(l) ﬂ LZVO(Q)’

P1 Element Bubble Element
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Stokes Hydrodynamic Equations: MINI Element

MINI Element

MINI Elements: Achieves stability by using interior "bubble” elements.
For triangle, let A1, A2, A3 denotes the barycentric coordinates of a points x.

Add to the shape space the "bubble” function
b(X) = )\1)\2)\3.

Note, b vanishes on boundary of T.
The finite element spaces are

Xp = |:M(1),o @ B3]2 » M= M(l) ﬂ LZVO(Q)’

where B3 := {V S CO(Q), V|T € span[)\l)\z)\gL VT € 777} P1 Element Bubble Element
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Stokes Hydrodynamic Equations: MINI Element

MINI Element

MINI Elements: Achieves stability by using interior "bubble” elements.
For triangle, let A1, A2, A3 denotes the barycentric coordinates of a points x.
Add to the shape space the "bubble” function

b(X) = )\1 )\2 )\3 .

Note, b vanishes on boundary of T.
The finite element spaces are

Xp = |:M(1),o @ B3]2 » M= M(l) ﬂ LZVO(Q)’

where B3 := {V S CO(Q), V|T € span[)\l)\z)\gL VT € 777} P1 Element Bubble Element

Figure: x denotes pressure values, - denotes velocity values.
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