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1. The Support Vector Machine (SVM) is a widely used method that performs classification
by finding in some sense the best hyperplane that separates the data. The criteria used by
SVM for defining the best hyperplane is to try to obtain good generalization by looking for a
hyperplane with largest margin separating the classes of the training data samples {xi, yi}mi=1.
In the case of separable data sets this is captured by the constrained optimization problem

min
w,b
‖w‖2 (1)

subject:
(
wTxi + b

)
yi ≥ 1. (2)

(a) What is the VC-dimension of the set of hyperplane classifiers for x ∈ Rn? The hypothesis
space is H = {h|h(x) = sign(wTxi + b),w ∈ Rn, b ∈ R}.

(b) We discussed in lecture the derivation of the dual problem by defining the dual function
and use of the Karush-Kuhn-Tucker conditions. Derive the dual formulation of the SVM
in the separable case.

(c) How does the weight vector w depend on the training data samples {xi, yi}mi=1? In
particular, which training data samples contribute with non-zero coefficients to w? Hint:
Use the KKT conditions to obtain representation formula for w in terms of the data.

2. (Kernels and RKHS) Consider the classification of points x = (x1, x2) ∈ R2 having labels asso-
ciated with the XOR operation y = x1⊕x2 with S = {(−1,−1, F ), (−1, 1, T ), (1,−1, T ), (1, 1, F )}.
There is no direct linear classifier h(x) = sign(wTx+ b) that can correctly label these points,
where (F = −1, T = 1). However, if we use the feature map φ(x) = [φ1(x), φ2(x), φ3(x)] =
[x1, x2, x1x2] into R3 there is a linear classifier of the form h(x) = sign(wTφ(x) + b).

(a) Find weights w and b that correctly classifies the points with XOR labels.

(b) Give the kernel function k(x, z) associated with this feature map into R3.

(c) Show the Reproducing Kernel Hilbert Space (RKHS) H for this feature map consists of
all the functions of the form f(·) = ax1 + bx2 + cx1x2. Using that φ(z) = k(·, z), give
the inner-product 〈f, g〉H for two functions f(·) and g(·) from this space.

(d) Show k(·, z) has the reproducing property under this inner-product.

(e) Show that we can express w =
∑

i αik(·,xi) and that the classifier can be expressed
using only kernel evaluations as h(x) = sign(

∑
i αik(x,xi) + b).

Hint: Recall that the dot-product expressions are short-hand wTφ(x) = 〈w,φ(x)〉H.

3. (Kernel PCA and Dimension Reduction) Consider the data set of points in Rn on an em-
bedded circle with random orientation. For concreteness, consider n = 4 with ideal data
S = {(cos(θ`) − sin(θ`), cos(θ`) + sin(θ`), cos(θ`) − sin(θ`), cos(θ`) + sin(θ`))|θ` = 2π(` − 1 −
1
2(m − 1))/(m − 1), ` = 1, 2, . . . ,m,m = 6}. You are also welcome to create your own data
sets with more points m or add a small amount of noise to explore the methods.
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(a) Perform Kernel-PCA to reduce this data set to a 1D description using the feature
map φ(x) = [arccos(wT

1 x), arcsin(wT
2 x),xTx] − φ0, where w1 = (1, 1, 1, 1)/4, w2 =

(−1, 1,−1, 1)/4, φ0 = 1
m

∑m
i=1 φ(xi). This has kernel k(x, z) = φ(x)Tφ(z).

(b) How can this 1D description found (singular vector) be interpreted geometrically back
in the original input space R4?

(c) Bonus: If we did not have a good idea for the choice of w1 and w2 how might you find
them to obtain a data-dependent kernel? Hint: PCA could again be useful here.
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