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Support Vector Machines: Motivations

Consider data: {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, with features x, labels y.

Example: x ϵ ℝN, y ϵ {-1,+1}, with x=image, y = +1→ Apple, y = -1→ Orange.

Task: Find hyperplane that separates points xi having different labels yi.

Challenges:

What algorithms can be used to find hyperplanes from data?

Many hyperplanes are possible.  Which may have the best generalization?

What if the data is not separable?  

How do we precisely define “separation” and the classification task?

Approach: Support Vector Machines + Kernel Methods.
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Support Vector Machines
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Consider a data set {(𝑥1, 𝑦1), (𝑥2, 𝑦2), … , (𝑥𝑛, 𝑦𝑛)}, where x 

denotes features and y denotes labels.

Example: 𝑥 𝜖 𝑅𝑁, 𝑦 𝜖 {−1,+1},                                                                           

with x=image, y = +1→ Apple, y = -1→ Orange.

Find hyperplane separating points xi having different labels yi

and with the “greatest margin” (helps with generalization).

Find parameters w, b that optimize

This assumes data is separable. Minimizing w maximizes the 

margin.  Classifier h(x) = sign                        .

SVM Separable Case: Summary

subject to (for now,                   )

What if data is not separable?
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Summary: SVM Non-Separable Case
Case of data that is not separable?

Find hyperplane and with biggest margin that minimizes 

extent of misclassifications.

Introduce “slack variables” ξ for the constraint.

Find parameters w, b, ξ that optimize

Tries to find hyperplane and margin that minimizes the 

total amount training data points violate the constraint.

C is crucial regularization parameter determining penalty 

for violating the constraint.  

subject to (for now, )

Insights into generalization using results 

from optimization (duality).

Can apply more generally using kernel 

methods.
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Kernel Methods
Overview
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Data is often not separable.

Mapping points to higher dimensional spaces they can become separable.

Example:

Kernel: associated to map 𝜙 is an inner-product 𝐾 𝑥𝑖, 𝑥𝑗 = 𝜙(𝑥𝑖), 𝜙(𝑥𝑗 ) .

Example: 𝐾 𝑥𝑖, 𝑥𝑗 = 𝜙(𝑥𝑖), 𝜙(𝑥𝑗 ) = 𝑥𝑖,1𝑥𝑗,1 + 𝑥𝑖,2𝑥𝑗,2 + 𝑟𝑖
2𝑟𝑗

2

More generally…

Support Vector Machines (Kernel Trick)

class A

class B

𝑥 = 𝜙 𝑥 = 𝑥1, 𝑥2 , 𝑟
2

𝑟2 = 𝑥1
2 + 𝑥2

2

map 𝜙

𝑥1 𝑥2

𝑟2𝜙

separating 
hyperplane
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Support Vector Machines (Kernel Trick)

Input Space

Feature Space

classification
boundary

separating 
hyperplane
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Support Vector Machines (Kernel Trick)

Data is often not separable but can become separable in higher dimensional spaces.

Inner-products can be replaced by kernel 𝑥𝑖, 𝑥𝑗 → 𝐾(𝑥𝑖 , 𝑥𝑗).

Kernel should be symmetric, positive definite, L2:                                    ,    

Consider: , has countable set of non-negative 

eigenvalues               .

Theorem (Mercer 1909): An L2 kernel K(x,t) that is symmetric positive definite can be represented as 

the product  

Consequence: 𝐾(𝑥𝑖, 𝑥𝑗) = < 𝚽(𝑥𝑖),𝚽(𝑥𝑗) >, so 𝑘(𝑣, 𝑥𝑖) = 𝑤𝑇𝚽(𝑥𝑖) as appears in the SVM constraints.

Note, only action K(x,y) is needed in SVM, so no need to map explicitly to feature space Φ(x).

Let 𝚽(𝑥) = [Φ𝑘(𝑥)], then 𝐾(𝑥, 𝑡) = < 𝚽(𝑥),𝚽(𝑡) >.
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Theorem (Hilbert-Schmidt): For LK a self-adjoint compact operator there is a                                      

countable complete orthonormal basis {𝜙𝑖} for 𝐿𝜇
2 (Z) so that LK𝜙𝑖 = 𝜆𝑖𝜙𝑖 with 𝜆𝑖 → 0.

Theorem (Mercer 1909):  An L2-kernel K(x,t) that is symmetric positive definite

can be represented as the product  

Remark: We can interpret the Mercer Theorem as stating there exists a non-linear 

transformation z = Φ(𝑥) related to the kernel K as follows.   Let Φ 𝑥 𝑘 = 𝜆𝑘Φ𝑘(𝑥) then              

𝐾 𝑥, 𝑡 = 𝚽 𝑥 ,𝚽 𝑡
l
2 . Also can represent using Reproducing Kernel Hilbert Space (RKHS) (later).

Consequence: This shows that if a kernel is L2 and symmetric positive definite then we can 

interpret it as being the inner-product associated with some non-linear transformation 𝜱 of 

the data!  For instance, ℝ𝑁 → l2 or later ℝ𝑁 → 𝑅𝐾𝐻𝑆 .

Remark: To compute the inner-product we do not need to use 𝚽 𝑥 ,𝚽 𝑡
l
2 which could be 

expensive, instead we only need to evaluate kernel 𝐾 𝑥, 𝑡 .  This called the kernel trick!

Kernel Methods: Hilbert-Schmidt and Mercer Theorem

with 𝜆𝑖 > 0, 𝜆1 ≥ 𝜆2 ≥ 𝜆3… , and 𝜆𝑖 → 0.
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Support Vector Machines (Kernel Trick)
Kernels provide sensitivity to different features of the data, K(x,t) = <Φ(x),Φ(t)>.

Popular Kernels:

Linear:

Radial Basis Function (RBF):

Polynomial (degree d):

Lots of other choices possible.

Input Space

Feature Space

classification
boundary

separating 
hyperplane
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Optimization 
Theory
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𝑔𝑖 𝑥 = 0𝑔𝑖 < 0

f 𝑥

support
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SVM 
Dual Formulations
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SVM Dual Formulation

KKT Conditions:

SVN Non-Separable Case (Primal):

Lagrangian:

Dual Function F(𝛼, 𝛽):

same as separable case! 

→ 𝛼𝑖 ≤ 𝐶 𝛽𝑖 ≤ 𝐶

support

vectors

support

vectors

x = w, 𝑏, 𝜉"𝑓(𝑥)" "𝛼 ⋅ 𝑔(𝑥)"
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SVM Dual Formulation
SVM Non-Separable Case:

SVM Non-Separable Case (Dual P*):

KKT Conditions:

Dual Function F(𝛼, 𝛽):

Inner-products of (xi ⋅ xj) only appear. Kernel Method: 𝑥 = 𝜙 𝑥 holds for 𝑥𝑖 ⋅ ො𝑥𝑗 = 𝜙 𝑥𝑖 ⋅ 𝜙 𝑥𝑗 = 𝑘(𝑥𝑖 , 𝑥𝑗).

Dimension of dual problem is m. Primal problem has dimension N.

Regularization C in primal problem P becomes constraint in dual problem P*.

Provides alternative ways to solve the optimization problem. 

kernel here
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Generalization Error Bounds
for 

Support Vector Machines
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Example: Learning separating hyperplane in ℝN (related to SVM).

For data {(xi,yi)} with xi ∈ ℝN and yi ∈ {-1,1}.  Ideally, find w, b so                                                                                           

that sign(𝒘𝑇𝒙𝑖 + 𝑏) = 𝑦 ሶ𝑖.

Hypothesis class:

H = {h: h 𝐱 = sign(𝐰T𝐱 + b) with 𝒘 ∈ ℝN, b ∈ ℝ}.

What is the 𝑽𝑪𝒅𝒊𝒎 H ?

Claim: 𝑉𝐶𝑑𝑖𝑚 H = N + 1 

In separable case we have bound on generalization error (pr > 1 - δ)

We can do even better in bounding sampling complexity using special structure of SVM.  

We want bounds independent of feature dimension N so can handle large N or even N= ∞.

VC-Dimension: Hyperplanes
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SVM: Generalization Error
Definition: The geometric margin of a data point x is

Definition: The margin of linear classifier h(x) = sign(w ∙ x + b) for 

data set S = (x1, x2,…, xm) is

Definition: We define a marginal loss function using   

Definition: We define empirical marginal loss as   

marginal loss function 

𝑦 ∈ −1,1 depending on side of hyperplane



Paul J. Atzberger                                                                      Machine Learning: Foundations and Appl ications http://atzberger.org/

Theorem (Margin bound for binary classification): For any fixed 𝜌 > 0 and δ > 0,                                                                    

we have with probability 1- δ that the generalization error for marginal loss function is

Key idea: obtain bounds using the Rademacher Complexity of                                                                             

H = {h: h 𝐱 = sign(𝐰T𝐱 + b) with 𝒘 ∈ ℝN, b ∈ ℝ}.

Notational convention: Suppress the 𝑏 term by using

𝒙 =
𝑥
1
, 𝑤 =

𝑤
𝑏

, H = {h: h 𝒙 = sign(𝒘T𝒙) with 𝒘 ∈ ℝN+1}.

SVM: Generalization Error
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Theorem (Margin bound for binary classification): For any fixed 𝜌 > 0 and δ > 0,                                                                    

we have with probability 1- δ that the generalization error for marginal loss function is

We have the marginal loss is bounded by hinge loss 

Φ1 x ≤ max(1 − x,0)

Theorem: For any fixed δ > 0, we have with probability 1- δ that the                                                   

generalization error for marginal loss function is

Key Result: The SVM objective function → makes small the RHS bound!  

Trade-off: make slack variables small while making margin 𝜌 = 1/||w|| large.  Allows for 𝑁 = ∞.
Regularization: Make ||w||2≤ 𝛬2 small → serves as regularization term (controlled by Λ = Λ(𝐶−1)).

SVM: Generalization Error

empirical

risk

class complexity

(regularization)

sampling

confidence

marginal loss function 
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Example of SVM
Classifying Apples & Oranges
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Apple Image Set Orange Image Set

Average Apple Average Orange

Support Vector Machines (Apples and Oranges Training Data)
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Supervised Learning (Apples and Oranges)

Red, Green, Blue: [Pixel (RGB)] Hue, Luminance, Saturation: [Pixel (HLS)]

What features to use to distinguish apples and oranges?

• Natural to use the colors of the objects in the images.
• However, many different color spaces can be used (RGB, HLS, …)
• Does the choice matter?
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HLS Training DataRGB Training Data

Support Vector Machines (Apples and Oranges Training Data)
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SVM Performance

SVM Results:
HLS FeaturesRGB Features

Apple Images Orange Images Item Features

Feature Value

Roundness 0.8

Sweetness 0.9

Redness 0.1

Greenness 0.3

Linear:

RBF:

Polynomial:
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SVM Results:

SVM Performance

HLS FeaturesRGB Features

Importance of features used?
Importance of regularization C?
How does training set generalize?

Apple Images Orange Images Item Features

Feature Value

Roundness 0.8

Sweetness 0.9

Redness 0.1

Greenness 0.3



Paul J. Atzberger                                                                      Machine Learning: Foundations and Appl ications http://atzberger.org/Paul J. Atzberger,                                                                                                           Machine Learning: Foundations and Applicationshttp://atzberger.org/

SVM Example
Apples vs Oranges vs Blueberries
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Support Vector Machines (Apples and Oranges and Blueberries)

Apple Image Set Orange Image Set

Average Apple Average Orange Average Blueberry

Blueberry Image Set

How might we train on more than two data sets?
Three data sets: Apples, Oranges, and Blueberries.
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SVM Multi-class 
Classification
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Many classification involve multiple classes.

Problem: From data x learn for k classes C1,C2,…,Ck a classifying function 𝑓 𝑥 → 𝑦 ∈ 𝐶1, 𝐶2, … 𝐶𝑘 .

Binary classification: 𝑓 𝑥 → 𝑦 ∈ −1,1 which corresponds to k = 2 classes 𝐶1 = −1, 𝐶2 = 1.

Multi-class classification: 𝑓 𝑥 → 𝑦 ∈ 1,2,… , 𝑘 corresponds to k classes 𝐶1 = 1, 𝐶2 = 2,… , 𝐶𝑘 = 𝑘.

How can we extend linear classifier methods to handle multiple classes?

Two common approaches:

One vs All (OvA):  Reduce to a collection of k binary classification problems to determine                                  
one category labeled +1 vs rest of the data labeled -1.  Pick classification with the 
greatest margin.

One vs One (OvO): Reduce to a collection of 
𝑘
2

= 𝑘(𝑘 − 1)/2 binary classification problems to 

determine one category labeled +1 vs one other category labeled -1.  Consider 

each classifier as a voter and pick class with the most number of votes.

Above heuristics do not always work well in practice. Alternatives: optimization formulations (more expensive).

Support Vector Machines (Multi-Class Case)
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Optimization of Maximum Margin (OMM): Classes C = {C1,C2,…,Ck}, with Cl = l, data (xi,yi) with yi ∈ C.

min𝑾, 𝝃
1

2
σ𝑙=1
𝑘 𝒘𝑙

2 + 𝐶σ𝑖=1
𝑚 𝜉𝑖

subject: ∀𝑖 ∈ 1,𝑚 , ∀𝑙 ∈ C ∖ {𝑦𝑖}
𝒘𝑦𝑖

∙ 𝜱 𝒙𝑖 ≥ 𝒘𝑙 ∙ 𝜱 𝒙𝑙 + 1 − 𝜉𝑖 , 𝜉𝑖 ≥ 0

Classifier obtained: ℎ 𝒙 = argmax
𝑙 ∈ C 𝒘𝒍 ∙ 𝜱 𝒙𝑙 , where 𝜱 𝒙 is transformation of the data. 

Dual Optimization Problem (Keneralization): 𝐾 𝒙𝑖, 𝒙𝑗 = 𝜱 𝒙𝒊 , 𝜱 𝒙𝑗

Generalization Bounds:

Support Vector Machines (Multi-Class Classification)

H = ℎ 𝒙 = argmax𝑙 ∈C 𝒘𝒍 ∙ 𝜱 𝒙 𝑾 = 𝒘1,𝒘2, … , 𝒘𝑘
𝑇,

𝑙=1

𝑘

𝒘𝑙
2 ≤ Λ2}

(for any 𝛿 > 0 holds with probability 1 − 𝛿)
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Support Vector Machines (Apples and Oranges and Blueberries)

Apple Image Set Orange Image Set

Average Apple Average Orange Average Blueberry

Blueberry Image Set

How might we train on more than two data sets?
Three data sets: Apples, Oranges, and Blueberries.
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SVM Results:

Supervised Learning (SVM Results: Apples, Oranges and Blueberries)
How does SVM distinguish between three data sets?
Importance of features used.
Importance of regularization C.
How does training set generalize?

HLS FeaturesRGB Features
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SVM Results:

Supervised Learning (SVM Results: Apples, Oranges and Blueberries)

HLS FeaturesRGB Features

Linear:

RBF:

Polynomial:
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Supervised Learning (SVM Results: Apples, Oranges and Blueberries)

SVM Results:

How does SVM distinguish between three data sets?
Importance of features used.
Importance of regularization C.
How does training set generalize?

HLS FeaturesRGB Features
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