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support Vector Machines
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Consider data: {(x;, y1), (x2,¥5), ..., (x,, yn)}, with features x, labels y.

Example: x e RN, y € {-1,+1}, with x=image, y = +1-> Apple,y = -1> Orange.

features

Task: Find hyperplane that separates points x; having different labels y;

Challenges:

What algorithms can be used to find hyperplanes from data? P —
Many hyperplanes are possible. Which may have the best generalization?
What if the data is not separable?

How do we precisely define “separation” and the classification task?

Approach: Support Vector Machines + Kernel Methods.



Support Vector Machines b
{ min,b 3 [[wl|* E
subject to y; (w - x; + b) > 1.
Separable Case: S = {(x;, yi)}[2,, H = {h|h(x) =sign(w'x+ b), w e RV, b€ R}. features

Definition: The data is separable if there exists h € H so that h(x;) = sign(w'x; + b) = y;, i € {1,2,...,m}.
Hyperplane: Q = {x | wy x+ bo = 0} = {x | ¢ 'wy x + ¢ 'hy = 0}.

Require: min,, |w'x; + b| = 1 for the w used for a given data set S.

Result: We will always have yi(w'x + b) > 1.

Definition: The geometric margin p(x) of a point x is the distance to the hyperplane Q.

Let x* be st. —w’'x* = b, then w’ x4+ b =w'(x — x*).
w * "x+b
= |y (x=x7)| = ‘WH;W L = p(x).

Consequence:, the closest data point x;« has distance p(x;=) = 1/||w]|.



SVM Separable Case: Summary )

Consider a data set {(x, y1), (x2,¥2), ..., (x,, yn)}, where x
denotes features and y denotes labels.

Example: x ¢ RN,y € {—1,+1},
with x=image, y = +1-> Apple, y =-1-> Orange.

Find hyperplane separating points x; having different labels y; ~ o
and with the “greatest margin” (helps with generalization). el

Find parameters w, b that optimize

1 g
mn = w w
w.h 2

subject to Ui {w"rdb{x,J +b) =1 (for now, o(x;) = x;)

This assumes data is separable. Minimizing w maximizes the
margin. Classifier h(x) = sign (w’ ¢(x) +b) What if data is not separable?



Summary: SYM Non-Separable Case

Case of data that is not separable?

Find hyperplane and with biggest margin that minimizes
extent of misclassifications.

Introduce “slack variables” ¢ for the constraint.

Find parameters w, b, ¢ that optimize

}]
1.
min ;w’aw-’r-( E &

w.h.E; £ :
=

subjectto ¥ (W' db(x;) +b) > 1 =& & >0 (fornow, O(x;) =

Tries to find hyperplane and margin that minimizes the
total amount training data points violate the constraint.

Cis crucial regularization parameter determining penalty
for violating the constraint.

Xi )

Insights into generalization using results
from optimization (duality).

Can apply more generally using kernel
methods.



Kernel Methods
Overview
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Support Vector Machines (Kernel Trick)

Data is often not separable.

Mapping points to higher dimensional spaces they can become separable.

Example:
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d)(x) = (xlixZJTZ)
r? = x? 4+ x2

Kernel: associated to map ¢ is an inner-product K (x;, xj) = (¢ (x;), ¢ (x;)).

Example: K(xi,xj) = (¢ (x), d)(xj)) = Xi1Xj,1 + Xi2Xj 2 + rizrjz

More generally...




Support Vector Machines (Kernel Trick)

Data is often not separable.

Mapping points to higher dimensional spaces they can become separable.

Feature Space
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Kernel: associated to map ¢ is an inner-product K (x;, xj) = (¢ (x;), ¢ (x;)).

Example: K(xi»xj) = (¢p(x), d)(xj)) = Xi1Xj,1 + Xi2Xj 2 + Tizrjz



Support Vector Machines (Kernel Trick)

Data is often not separable but can become separable in higher dimensional spaces.

Inner-products can be replaced by kernel (x; x;) > K(x;, xj).
N

Kernel should be symmetric, positive definite, L2 Y _ aa;K(z;.x;) >0 ,/X/XK(fff)?dﬂ(f)dﬂ(f) <00
i,5=1

Consider: Ly : L7 (X) — L (X) , Ly f(x) = / K(x. t)f(t)dp(t) has countable set of non-negative
eigenvalues {\.}<,. -

Theorem (Mercer 1909): An L2 kernel K(x,t) that is symmetric positive definite can be represented as

the product

K(z.t)= Z Arop(x)op(t)  Let d(x) = [@p(x)], then K(x, t) =< &(x), ®(t) >.
k=1

Consequence: K (x;,xj) = < ®(xi), ®(x;) >, s0 k(v,x;) = wle(x;) as appearsin the SVM constraints.

Note, only action K(x,y) is needed in SVM, so no need to map explicitly to feature space @(x).



Kernel Methods: Hilbert-Schmidt and Mercer Theorem

Theorem (Hilbert-Schmidt): For Ly a self-adjoint compact operator thereis a
countable complete orthonormal basis {¢;} for L% (2) so that Ly, = A, with 4, - 0.

r - ——
————— ———

Theorem (Mercer 1909): An L2-kernel K(x,t) that is symmetric positive definite [
can be represented as the product

Z Aeon(2)or () with A, > 0,4, = A, > A5 ...,and 4, — 0.

Remark: We can interpret the Mercer Theorem as stating there exists a non-linear
transformation z = ®(x) related to the kernel K as follows. Let [®(x)], = \/A—kcbk(x) then

K(x,t) = <q)(x>,¢(t))ez . Also can represent using Reproducing Kernel Hilbert Space (RKHS) (later).

Consequence: This shows that if a kernel is L2 and symmetric positive definite then we can
interpret it as being the inner-product associated with some non-linear transformation & of
the data! For instance, RY —» ¢ or later RY - RKHS.

Remark: To compute the inner-product we do not need to use (@(x), ®(t)) . which could be
expensive, instead we only need to evaluate kernel K(x,t). This called the kernel trick!

pp———p w
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Support Vector Machines (Kernel Trick)

Kernels provide sensitivity to different features of the data, K(x,t) = <#(x),®(t)>.

Popular Kernels:
Linear:
K(x,y) = (x,y)

Radial Basis Function (RBF):
K(x,y) =exp [—v[x — y|?]

Polynomial (degree d):
K(x,y) = (v(x,y) +7)°

Lots of other choices possible.
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Optimization
Constrained Optimization Problem (Primal P)

minyex f(x)
subject to gi(x) < 0.

Definition: The Lagrangian L of P is o1

L(x,a) = f(x)+ >, aigi(x) — L(x,a) =f(x)+ a-g(x), where a =

Definition: A saddle-point (x*, &™) of the Lagrangian L is a point satisfying
L(x",a) < L(x",a") < L(x,a™), holding for Vx € X, o > 0.

For constrained optimization problem P, a saddle-point (x*, &™) of the
Lagrangian L is a solution of P.

http://atzberger.org/
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Optimization
Constrained Optimization Problem (Primal P)

minyex f(x)
subject to gi(x) < 0.

Lagrangian
L(x,) = F(x) + - g(x)

For constrained optimization problem P, a saddle-point (x*, ™) of the
Lagrangian L is a solution of P.

Proof: From L(x",a) < L(x",a") = a-g(x") < a™ -g(x"),Va > 0,= g(x") < 0.

If gi(x*) > 0 then take «; large so that ;- gi(x*) > ¢; for any given ¢; € R. Let ¢ = o™ - g(x™).

Furthermore, o™ - g(x*) = 0. Consider &« — 0 then 0 < ™ - g(x*) <0, = o™ - g(x*) = 0.
From L(x*, a") < L(x,a™), Vx = f(x") < f(x) + a” - g(x) for all x s.t. g(x) <0.

We have f(x*) < f(x) so (x",a™) solves P. I

http://atzberger.org/
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Optimization
Definition: Strong Constraint Qualification (Slater’s Condition)

dx € interior(X), Vie{1,2,...,m}, gi(x) <O.

Definition: Weak Constraint Qualification (Weak Slater’s Condition)
dx € interior(X), Vie {1,2,...,m}, (gi(X) <0)V(gi(x)=0A gi(x) = ax + b (affine)).

Theorem: (when saddle point is necessary w/ strong slater)

Let f, g be convex functions with strong slater condition holding.
If x* is a solution to P then Ja™ > 0 s.t. (x*, &™) satisfies the saddle condition for L.

Theorem: (when saddle point is necessary w/ weak slater)

Let f, g be convex and differentiable functions with weak slater condition holding.
If x* is a solution to P then da™ > 0 s.t. (x", &™) satisfies the saddle condition for L.
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Optimization:

Theorem: Karuch-Kuhn-Tucker (KKT) Conditions

Let f, gi be convex and differentiable functions where the weak constraint qualification is satisfied.
A X is a solution to the constrained optimization problem P if and only if & > 0 s.t.

ViL(X, @) = Vif+a-Veg(x)=0. <0 Jfg (=0
NN

Voal(x,&) = gx) <0. @ ()
a-g(x) = Z aigi(X) = 0.

SVM Separable Case (KKT): L(w, b, a) = 3||w||* = 37, cii [yi (w - x; + b) — 1].

support
vectors

Vwﬁzw—zm:a;y;x;zo, = W=Zm:a,-y,-x;.
i=1

i=1

g 0 support
"o ° vectors

Vbﬁz—zm:af,:yizo, = Zm:a»,-y,-zo
i=1 i=1

Vijailyi(w-xi+b)—1 =0, = ai=0Vy(w-xi+b)=1 >

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/



SYM
Dual Formulations
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Optimization:

Definition: Dual Function
Voo >0, F(a) = infxex L(x, o).

Definition: Dual Optimization Problem P*
{ max, cpm F (o)

subject to «; > 0.
SVM Separable Case (Dual Form): L(w, b, o) = Z|lw||*> = Y7, ai[yi (w-xi + b) — 1].
From KKT we have w = > " a;yixi and > 7 a;y; = 0. This gives
Dual Function: F(a) = Y7 o — 5 207, iy (xi - %))
MaXa Y iy @i — 5 215 iy yiy; (Xi - %))

Dual Optimization Problem P*:
subject to ;i > 0A DY 7 aiiyi =0, Vie{1,2,...,m}

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/



SVM Dual Formulation

SVN Non-Separable Case (Primal):
. 1 2 i P
min 5wl +C;£i

subject to y;(w-x; +b) >1—& A & > 0,i € [1,m)]

Lagrangian:
m support
L(w,b,€, 0, B) = *||W||2+CZ£% S oulps(wxi 1h) 146 A
N L=t i=1 J
o "f(x)" "a-g(x)" x=(w,b,¢)
KKT Conditions:
Vwl =w — Zﬂiy;x; =0 = w = Zﬂ‘i?ixi .
i=1 =1 o support
m m "o ° vectors
Vil =—> iy =0 = Y awy=0
=1 =1
?£i£={?—m—ﬁi=ﬂ = Cl‘,“l"ﬁi:C %aiSCﬁiSC
Hi.a;[y,—{w~x;+b]—l+£,-]=ﬂ - a; =0Vy(w-x;40)=1-§&
Vi, Bi& =0 = ﬁ:—ﬂva—ﬂ
Dual Funct|0n F(a ,8) L= _” Zamyzxz“ - Z azajyzyg Xi - x] Zamyzb'i'zam —» L= ZO{Z - = Z QY lY4 (Xz XJ)
i,j=1 i,j=1
-3 2= a:;jyiyj (xi-x;) 0 same as separable case!

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/



SVM Dual Formulation

SVM Non-Separable Case:
KKT Conditigns:
T—"wﬂ = W — Zn,—y;x; =0

i=1 i=

|

g

|
hg

9

:H

vbf-: —Zm:ﬂiyi =1

= Y ay=0
i=1 i=1
VelLl=C—a;— 3 =0 = o;+3=C SVM Non-SeparabIe Case (Dual 7%):
Vi,opyi(w-x+b) —1+&]=0 = a; =0Vy(w-x+b)=1-§ Z Z )
. m e - - max Q; — — alajylyj X; X5

Vi, B:& =0 = =0V =0. - bt —

m kernel here
Dual Function F(a,8): £= Zai -3 Z iy (Xi - Xj) subject to: 0 < o < CA Y ony; = 0,i € [1,m].
IJ‘ 1 i=1

Inner-products of (x;- x;) only appear. Kernel Method: ¥ = ¢(x) holds for %; - %; = ¢(x;) - p(x;) = k(x;, x)).
Dimension of dual problem is m. Primal problem has dimension N.
Regularization C in primal problem & becomes constraint in dual problem &

Provides alternative ways to solve the optimization problem.

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/



Generalization Error Bounds
| for
Support Vector Machines



Image Database

J
¢

VC-Dimension: Hyperplanes

Example: Learning separating hyperplane in RN (related to SVM).
For data {(x;,y)} with x, € RNand y; € {-1,1}. Ideally, find w, b so
that sign(w”x; + b) = y;. A

€ene
soee
Qe e O
¢ ¢ @
Sevee
SO ®
& oe

7Y

Linear Classifier

Hypothesis class:
%€ = {h: h(x) = sign(wx + b) withw € RN, b € R}.

What is the VCdim (5€)?

features

Claim: VCdim(%€) =N + 1

J e @

[ (( e

In separable case we have bound on generalization error (pr > 1 - )

-~ 2(N + 1) log 2% log L
R(h) < R(h) +\/ ( log w1 ek
' m 2m

We can do even better in bounding sampling complexity using special structure of SVM.

features

We want bounds independent of feature dimension N so can handle large N or even N= co.



SVM: Generalization Error marginal Ioss funcion

Definition: The geometric margin of a data point x is

. b = >
p(z) = % y € {—1,1} depending on side of hyperplane 0p1 %
Definition: The margin of linear classifier h(x) = sign(w - x + b) for 4
data set S = (X4, X9,..., Xy) IS
p= min BV Xi+h)
1<ism [jw]|

Definition: We define a marginal loss function using

0 fp<z
Q,(x)=q1—-x/p f0<z<p >
1 if x <0.

Definition: We define empirical marginal loss as

Ro(h) = — @, (uih(z.))



SVM: Generalization Error

Theorem (Margin bound for binary classification): For any fixed p > 0 and & > 0,
we have with probability 1- & that the generalization error for marginal loss function is T }

¢

log %

RO < Byl) + =R (H) + [ 5

~ 2 log%
h) < h)+ — H —
RH) < Ry () + =R (1) + 3 5

Key idea: obtain bounds using the Rademacher Complexity of
F = {h: h(x) = sign(w'x + b) with w € RN, b € R}.

Notational convention: Suppress the b term by using
X = [ch] W= [‘Z] F = {h: h(%) = sign(wT%) with w € RN*1},



SVM: Generalization Error

Theorem: (Radamacher Complexity of Constrained Hyperplanes for Bounded Data S)

Let S C {x: ||x]| < r} be a sample of size m and let # = {h | h(x) = sign(w - x) | [|w| < A}.
The Rademacher complexity satisfies

Rs(H) < \/ 222,

m

N 1 [ m 1 m Cauchy-Swartz Lemma:
Proof: RS(H) = EEO- sup ZO’;W'X,’ = EEG sup W'ZO’,’X,’ abS ||a||||b||
[ Iwll <A 4= R

m m 2~1/2 Jensen Inequality:

< Pel|Son ] .y [ S o ] #(EIX]) < E[6(X)]
m : m . 2 2
i=1 i=1 (E[X]) < E [X ]
1/2 . 1/2 )

< A E Zm: / A Z ” ”2 / < AN mr2 2\ - Radamacher Random Variables:
= mb e S| =TT NS B El] = Bl ol =0

Talagrand’'s Lemma:

Let ® : R — R be an ¢-Lipschitz function ||®(x) — ®(y)|| < ¢|x —y/|, then
Rs(® oH) < {Rs(H).

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/



SVM: Generalization Error

Theorem (Margin bound for binary classification): Forany p > 0 and & > 0,
we have with probability 1- & that the generalization error for marginal loss function is T }

¢

log %

RO < Byl) + =R (H) + [ 5

~ 2 log%
h) < h)+ — H —
RH) < Ry () + =R (1) + 3 5

Key idea: obtain bounds using the Rademacher Complexity of
F = {h: h(x) = sign(w'x + b) with w € RN, b € R}.

Notational convention: Suppress the b term by using
X = [ch] W= [‘Z] F = {h: h(%) = sign(wT%) with w € RN*1},



SVM: Generalization Error

Theorem (Margin bound for binary classification): For any fixed p > 0 and & > 0,
we have with probability 1- d that the generalization error for marginal loss function is

H = {h| h(x) =sign(w - x) | [w]| < A}

—_—
p—p————

r2A2 [ p? log %
+ ' marginal loss function

R(h) < R,(h) +2

(h) < Ry(h) 2m A h(x;) = sign(w - x;)
We have the marginal loss is bounded by hinge loss \ Ro(h) = L7 &, (yih(x;))
®,(x) < max(1 —x,0) '

.

0 P 1

Theorem: For any fixed d > 0, we have with probability 1- & that the Oy (yih(xi)) < max{l — yih(x;),0}
generalization error for marginal loss function is —  max{1l — y;sign(w - x;), 0}
r? ’k’ = &
R(h) < ZH,HM .
m ?m Ro(h) < 257 &
emplrlcal class compIeX|ty sampllng SVM Objective:

risk (regularization)  confidence

S &+ 5wl
Key Result: The SVM objective function - makes small the RHS bound! ' '
Trade-off: make slack variables small while making margin p = 1/||w|| large. Allows for N = oo.
Regularization: Make ||w]|2< A% small = serves as regularization term (controlled by A = A(C™?)).




Example of SVYM
(lassifying Apples & Oranges



Support Vector Machines (Apples and Oranges Training Data)
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d @ o o @ ® ¢ 0 0 ¢
® O 7§ O
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achine
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Supervised Learning (Apples and Oranges)

A

| What features to use to distinguish apples and oranges?

Natural to use the colors of the objects in the images.
However, many different color spaces can be used (RGB, HLS, ...)

- - * Does the choice matter?
Hue, Luminance, Saturation: [Pixel (HLS)]

Red, Green, Blue: [Pixel (RGB)]

ssaujybug




Support Vector Machines (Apples and Oranges Training Data)

RGB Training Data

Red and Green Features

e®e atz_apple
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HLS Training Data

Hue and Saturation Features (hue shift 0.5)
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SVM Performance Apple Images  Orange Images

Linear: K(x,y) = (x,y) © @O @ P o .
RBF: K(x.y)=exp [-y[x—y|] 9 e @ ¢ 0O
. d Redness 0.1
POIynomlal: K(x’ Y) — (’Y<x7 Y> + T) ' ’ e ﬂ ‘ @ Greenness 0.3
SVM Results:
RGB Features HLS Features
C=1e+08 C=1e+08
Linear Kernel Linear Kernel Il Linear Kernel Linear Kernel Il
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Red Red Red Red
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5 a8 5 a8 5| camtT 5 cave
5 o \ T ; s o ’ o) o*
Red Red Red Red
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SVM Performance

Importance of features used?
Importance of regularization C?
How does training set generalize?

SVM Results:
RGB Features

C=1le+6.9
Linear Kernel Linear Kernel Il
o o
- N R = o R
[ o0 [ o0
o ° o °
S ""o & o’"‘.
« * #
Red Red
Radial Basis Function Polynomial Kernel
o o
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Q oo Q o0
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Apple Images
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SVM Example
Apples vs Oranges vs Blueberries




Support Vector Machines (Apples and Oranges and Blueberries)

How might we train on more than two data sets?
Three data sets: Apples, Oranges, and Blueberries.

Apple Image Set Orange Image Set Blueberry Image Set

2 0¢ @€
e e
S OO
G eee¢

-
0
ﬁ

s ee
oeKee

e ¢ @

9
9
»
¢

e ns @

Average Apple Average Orange Average Blueberry
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SVM Multi-class
(lassification
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Support Vector Machines (Multi-Class Case)

Many classification involve multiple classes.

Problem: From data x learn for k classes C;,C,,...,Cy a classifying function f(x)> y € {Cy,C,, ... C}.
Binary classification: f(x)> y € {—1,1} which corresponds to k =2 classes ¢; = —-1,C, = 1.
Multi-class classification: f(x)> vy € {1,2,...,k} corresponds to k classes C; = 1,C, = 2, ...,C, = k.
How can we extend linear classifier methods to handle multiple classes?

Two common approaches:
One vs All (OvA): Reduce to a collection of k binary classification problems to determine
one category labeled +1 vs rest of the data labeled -1. Pick classification with the

greatest margin.

One vs One (OvO): Reduce to a collection of (Izc) = k(k — 1)/2 binary classification problems to

determine one category labeled +1 vs one other category labeled -1. Consider
each classifier as a voter and pick class with the most number of votes.

Above heuristics do not always work wellin practice. Alternatives: optimization formulations (more expensive).



Support Vector Machines (Multi-Class Classification)

Optimization of Maximum Margin (OMM): Classes € ={C;,C,,...,.C,}, with C,=¢, data (x;y;) with y; € C.

mmw; Zk lw > + C ¥, &
Subject Vi € [1,m],VI € € \ {yi}
Wyl’¢(xl)2Wl'¢(xl)+1_El, 6120

Classifier obtained: h(x) = argmax; . e w; - ®(x;) , where @(x) is transformation of the data.

Dual Optimization Problem (Keneralization): K(x;, x;) = (®(x;), ®(x)))
m 1 m
i ;ai €y T 5 ;(ai ca;) K (i, 7;5)
subject to: Vi € [1,m], (0 < ayy, < C) A (V) # i, 55 <0) A (-1 =0)
k
Generalization Bounds: R(h) = E ]-h(; #f())  F€={n(x) = argmax, _ew; ®(x) |W = (wy,w,, ..., w)7, Z”Wlnz < A%}

TzAQ 3

R(h) < — Z & + 2k> (for any § > 0 holds with probability 1 — )

where & = max (1 — [wy, - — MaxX, %, W, - ®(x;)],0) for all i € [1,m]



Support Vector Machines (Apples and Oranges and Blueberries)

How might we train on more than two data sets?
Three data sets: Apples, Oranges, and Blueberries.

Apple Image Set Orange Image Set Blueberry Image Set
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Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/



Superwsed Learning (SVM Results: Apples, Oranges and Blueberries)

SVM Results:

o

RGB Features

Linear Kernel

Green
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How does SVM distinguish between three data sets?
Importance of features used.

Importance of regularization C.

How does training set generalize?
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Superwsed Learning (SVM Results: Apples, Oranges and Blueberries)

Linear: K(x,y) = (x,y)

. RBF: K(x,y)=exp[—v|x—y|]

Polynomial: K (x,y) = (v(x,y) + )"

SVM Results:

RGB Features HLS Features
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Paul J. Atzberger

Machine Learning: Foundations and Applications
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Supervised Learning (SVM Results: Apples, Oranges and Blueberries)

How does SVM distinguish between three data sets?
Importance of features used.
Importance of regularization C.
How does training set generalize?
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SVM Results:

Linear Kernel
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