
Math 124 Partial Differential Equations Paul J. Atzberger

Discrete Fourier Transforms and Approximate Solutions of PDEs
While we have discussed many solution techniques for partial differential equations that use
fourier methods, this requires that we have ways of effectively obtaining the fourier coeffients
and for reconstructing functions from their fourier representations. For many problems we
can not readily determine analytically the fourier coefficients. This may arise since the func-
tional forms are complicated, integrals are not easily analytically expressable, or because the
input functions are only known empirically, such as tabulated data from experimental mea-
surements. While we could in principle approximate numerically the integrals that appear in
the transforms, in many situations it would be useful to further control these approximations
so that when we perform multiple transformations these serve as exact inverses of each other.

For this purpose, we consider periodic functions u(x) sampled as um = u(xm) at lattice
locations xm = mL/n on the interval [0, L]. We define the following fourier transforms for
this discrete data.
Discrete Fourier Transform (DFT). The function is transformed to a frequency space
representation using

ûk = Fk[{um}] =
1

n

n−1∑
m=0

ume
−i2πkm/n.

Inverse Discrete Fourier Transform (IDFT). The function is reconstructed at the
lattice sites xm using the inverse transform (IDFT) given by

um = F−1
m [{ûk}] =

n−1∑
k=0

ûke
i2πkm/n.

We can also express this concisely by using vector notation û = {ûk}n−1
k=0 and u = {um}n−1

m=0.
The DFT and IDFT are then seen to be linear transforms that are inverses of each other
with

û = F [u], u = F−1[û].

Aliasing. There is an important relationship between the discrete fourier transforms and
the continuous fourier transforms. Consider the continuous fourier transform for periodic
functions on [0, L],

u(x) =
∞∑

k=−∞

Ûke
i2πkx/L, Ûk =

1

L

∫ L

0

u(x)e−i2πkx/Ldx.

When we restrict evaluations to the lattice points xm = mL/n, we can not distinguish
between the fourier modes ei2πkxm/L = ei2π(k+αn)xm/L for any α ∈ Z. As a consequence we
have

um =
n−1∑
k=0

ûke
i2πkm/n

u(xm) =
∞∑

k=−∞

Ûke
i2πkm/n =

n−1∑
k=0

∞∑
α=−∞

Ûk+αne
i2πkm/n.
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Since um = u(xm) we have

ûk =
∞∑

α=−∞

Ûk+αn.

This shows that the discrete fourier transform coefficients ûk are exactly the sum of the con-
tinuous fourier transform coefficients {Ûk′}k′∈K(k), where k′ = k + αn for some α ∈ Z. This
gives a set of n equivalence classes for the fourier modes with respect to the discrete cases,
k = 0, 1, . . . , n − 1. This equivalence is referred to as ”aliasing” of the continuous fourier
modes when they are restricted to being evaluated only on the lattice xm. This aliasing
phenomena associated with discrete samplings has many consequences in signal processing,
computer graphics (anti-aliasing), numerical analysis, and other applications.

Interpolation of Sampled Functions. For functions sampled on the lattice xm, there are
many possible ways to perform interpolation. We shall utilize the connection between the
complex-exponential series representation and the real-valued sine-cosine series. The first
interpolation one might consider is

ũ(x) =
n−1∑
k=0

ûke
i2πkx/L.

However, this does not provide a good interpolation since for some real-valued functions
sampled at xm we can obtain complex values when evaluated off the lattice (x ̸= xm for any
m). For example at location x = 1

2
(x1 + x0). We would like an interpolation that remains

real-valued between the lattice locations. This will require some more careful considerations.
We saw that for a real-valued function we need to have that the discrete fourier coefficients

satisfy
ûk = ûn−k.

This can be verified directly or also seen as following from the continuous coefficients since

Ûk = Û−k using the aliasing formula above. From the real-valued series expansion we have

u(x) =
1

2
A0 +

∞∑
k=1

Ak cos(2πkx/L) +Bk sin(2πkx/L)

=
1

2
A0 +

∞∑
k=1

1

2
(Ak − iBk) exp(2πkx/L) +

1

2
(Ak + iBk) exp(−2πkx/L)

=
∞∑

k=−∞

ck exp(2πkx/L).

We used here Euler’s Identity eiθ = cos(θ) + i sin(θ) to express cos(θ) = 1
2

(
eiθ + e−iθ

)
and

sin(θ) = 1
2i

(
eiθ − e−iθ

)
.

We consider the case when n is odd and let N = n− 1. We can use the aliasing formula
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to obtain for evaluations at the lattice sites

u(xm) =
1

2

∞∑
α=−∞

A0+αn +

N/2∑
k=1

∞∑
α=−∞

Ak+αn cos(2πkxm/L) +Bk+αn sin(2πkxm/L)

=
1

2

∞∑
α=−∞

A0+αn +

N/2∑
k=1

∞∑
α=−∞

1

2
(Ak+αn − iBk+αn) exp(2πkxm/L)

+

N/2∑
k=1

∞∑
α=−∞

1

2
(Ak+αn + iBk+αn) exp(−2πkxm/L).

We can now extend this off-lattice which yields real-values since

u(x) =
1

2

∞∑
α=−∞

A0+αn +

N/2∑
k=1

∞∑
α=−∞

Ak+αn cos(2πkx/L) +Bk+αn sin(2πkx/L)

=
1

2

∞∑
α=−∞

A0+αn +

N/2∑
k=1

∞∑
α=−∞

1

2
(Ak+αn − iBk+αn) exp(2πkx/L)

+

N/2∑
k=1

∞∑
α=−∞

1

2
(Ak+αn + iBk+αn) exp(−2πkx/L)

=

N/2∑
k=−N/2

∞∑
α=−∞

ck+αn exp(2πkx/L)

=

N/2∑
k=−N/2

ûk exp(2πkx/L).

We remark an alternative more abstract derivation also could have been performed by using
ck = c−k and conjugacy conditions of the complex exponentials. From the considerations
above, we obtain a real-valued interpolation for approximating the function between the
lattice sites by using

ũ(x) =

N/2∑
k=−N/2

ûke
i2πkx/L,

where N = n− 1. It will also be useful sometimes to express this as

ũ(x) = I[{um}](x) = Î[{ûk}](x) =
N/2∑

k=−N/2

ûke
i2πkx/L.

The derivation above also can be further extended to obtain a real-valued interpolation
when n is even. We remark that to obtain a real-valued interpolation we needed to center
the expansion between −(n − 1)/2 to (n − 1)/2 to balance the complex terms. Here, we
leveraged the aliasing to accomplish this balance to obtain a real-valued interpolation. We
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will refer to I[{um}](x) and Î[{ûk}](x) as the fourier interpolation for the function sampled
at the lattice locations xm with values um. The only difference between I and Î is the
notation for if we are thinking of the interpolation as being obtained from the lattice values
{um} directly or the fourier modes {ûk}, but ultimately they yield the same final function
ũ.

Approximating Solutions of Poisson PDE. Consider the Poisson Partial Differential
Equation (PDE) on the interval [0, L],

∆u = −f, u(0) = u(L),

∫ L

0

u(x)dx = 0.

To approximate the solution, consider the case when the function can be represented exactly
as

ũ(x) =

N/2∑
k=−N/2

ûke
i2πkx/L.

The Laplacian of such a function would then be given by

∆ũ(x) =

N/2∑
k=−N/2

(
−4π2k2

L2

)
ûke

i2πkx/L

=

N/2∑
k=−N/2

L̂kûke
i2πkx/L.

The fourier symbol of the Laplacian is L̂k =
(
−4π2k2

L2

)
. Similarly, consider the case when f

is of the form

f̃(x) =

N/2∑
k=−N/2

f̂ke
i2πkx/L.

By setting ∆ũ = −f̃ we obtain

ûk =
−fk

L̂k

.

This holds for k ̸= 0. In the case k = 0, we have ûk = 0 by the integral condition. This
provides the solution, since these are the fourier coefficients {ûk}n−1

k=0 needed to construct

ũ = Î[{ûk}n−1
k=0 ]. The assumptions about the form of u and f were that we could represent

it exactly using the finite expansion. In general this will not be the case. Instead, we can
think about how functions sampled on the lattice would be projected to functions of this
form. From the aliasing formula above, we then have some insight into the errors of this
approximation.

To obtain an approximate solution to the Poisson PDE, we proceed as follows. Sample
the function f at the lattice locations xm and compute the discrete fourier transform (DFT)
to obtain f̂k = Fk[f ]. Compute the fourier coefficients ûk = −fk/L̂k as above. Now compute
the inverse discrete fourier transform to obtain the solution u at the lattice locations xm. This
solution also can be interpolated off the lattice using the fourier coefficients ûk to obtain the
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approximate solution function ũ(x) = Î[{ûk}](x). The approach above provides for smooth
functions f typically good approximations of the solution of the PDE. The approaches above
also can be readily extended to higher dimensions for rectangles, cubes, and other geometries.

Summary: The discrete fourier transform provides some versatile ways to obtain approxi-
mate solutions to the Poisson PDE. Since these approximation methods make use of prop-
erties of the spectrum of the differential operator, eigenvalues and eigenfunctions, they are
referred to as spectral numerical methods. We emphasize that the above procedures did not
require knowledge of the functional form of f or computing any integrals, only that we can
sample the function at the lattice locations xm. The efficiency of the methods will depend
on how one computes the DFT and IDFT. In practice, these can be computed in O(n log(n))
time by using fast fourier transforms. This provides some general ways to solve elliptic par-
tial differential equations and also works for other geometries. Much of the efficiency then
depends on the approximation of fourier expansions or development of alternative fourier-
like representations. The spectral methods also tend to work best for functions which are
smooth. When functions have more localized features there are also alternative approaches
that are widely used such as finite difference methods and finite element methods to approx-
imate the solutions of PDEs. We also remark that the discrete fourier transforms (DFTs)
and (IDFTs) are also widely used in other related settings for approximating soutions of
PDEs, signal processing, statistical analysis, and other applications.
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