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Finite Difference Methods and Von Neumann Analysis
Many partial differential equations can not be solved with closed form solutions. Obtaining
analytic solutions becomes especially challenging when considering general functions and
geometries. As an alternative we can seek discrete models which approximate the solutions
of the partial differential equation while yielding algorithms amenable to efficient compu-
tational implementation. A widely used strategy for this purpose is to use finite difference
approximations to derivatives.

Finite Difference Methods. In finite difference methods a function u is sampled on a
lattice xm to obtain the values um = u(xm). The derivatives of the function appearing in
the PDE are approximated by using differences of these values on the lattice. For example,
consider the advection equation

ut + aux = 0, u(x, 0) = ϕ(x).

The function is approximated by representing its values on the lattice (xm, tn), where xm =
mδx and tn = nδt. We denote the function values by unm = u(xm, tn). There are many ways
we could approximate the derivatives by difference quotients. One such choice is to use

ut =
∂u

∂t
(xm, tn) ≈

un+1
m − unm
δt

ux =
∂u

∂x
(xm, tn) ≈

unm − unm−1

δx
.

Since the lattice spacing δt, δx is held fixed, instead of taking the limit to zero as one would
do to obtain the derivatives in calculus, this is referred to as a finite difference approximation.
By Taylor expansion we can see these each would converge to the derivative as δt → 0 and
δx → 0. This yields the following discrete model vnm aiming to mimic the behavior of the
PDE

vn+1
m − vnm
δt

= a
vnm − vnm−1

δx
.

This can be expressed as the recurrence

vn+1
m = (1− aλ)vnm − aλvnm−1,

where λ = δt/δx. We notice something already distinct about this choice, where the value
vnm is constructed only by using values from the left in space vnm, v

n
m−1. In other words,

information from the initial conditions only propagates with this discretization from left to
right. Thinking about the method of characteristics we have information propagate from
left to right when a > 0 and from right to left when a < 0. As we will discuss in more detail
shortly, this scheme is most promising when a > 0, and a bit suspect when a < 0. Luckily,
there are also many other choices for discretizations and as we shall see some choices work
better in practice than others.

Von Neumann Analysis. An important issue we need to address is how to determine
if the discretization is likely to work well in practice or if it inherently has poor properties
in attempting to approximate the PDE. As we already saw, it is often relatively easy to

1



Math 124 Partial Differential Equations Paul J. Atzberger

construct discretizations that are consistent with the derivatives. However, what will be
crucial is that the numerical scheme is stable in the sense that

∥vn∥2 ≤ CT∥v0∥2.

We use here the lattice ℓ2-norm given by

∥vn∥22 =
∑
m

|vnm|2.

The constant CT only depends on a fixed time T . For n we require that nδt = T for a fixed
T . The stability condition requires that as δt → 0, which has n = T/δt → ∞, that there
exists a constant CT establishing the inequality above. This requires that we show that vn

maintains a magnitude that does not grow unbounded as n→ ∞.
For this purpose, we will use fourier methods and Parseval’s Lemma. We will leverage the

continuous fourier transforms we previously developed but reverse the roles of the frequency
and spatial components. We will use the fourier transforms

v̂(ξ) =
1√
2π

∞∑
m=−∞

vm exp(i2πξm), ξ ∈ [−π, π],

and

vm =
1√
2π

∫ π

−π

v̂(ξ) exp(−i2πξm)dξ.

The above assumes that the lattice spacing is one. In the case when xm = mδx = mh, with
h = δx, we have

v̂(ξ) =
1√
2π

∞∑
m=−∞

vm exp(i2πhξm)h, ξ ∈ [−π/h, π/h],

and

vm =
1√
2π

∫ π/h

−π/h

v̂(ξ) exp(−i2πhξm)dξ.

The Parseval’s Lemma states that
∥v̂∥2 = ∥v∥2.

We use for general h the norms

∥v̂∥22 =
∫ π/h

−π/h

|v̂(ξ)|2dξ, ∥v∥22 =
∑
m

|vm|2h.

We can now use these results to analyze the stability of our finite difference scheme above,

vn+1
m = (1− aλ)vnm − aλvnm−1.
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We can express each term as

vn+1
m =

1√
2π

∫ π/h

−π/h

v̂n+1(ξ) exp(−i2πhξm)dξ

vnm =
1√
2π

∫ π/h

−π/h

v̂n(ξ) exp(−i2πhξm)dξ

vnm−1 =
1√
2π

∫ π/h

−π/h

v̂n(ξ) exp(−i2πhξ) exp(−i2πhξm)dξ.

Substituting these expressions into the recurrence yields

vn+1
m =

1√
2π

∫ π/h

−π/h

[(1− aλ)− aλ exp(−i2πhξ)] v̂n(ξ) exp(−i2πhξm)dξ.

This requires

v̂n+1(ξ) = [(1− aλ)− aλ exp(−i2πhξ)] v̂n(ξ) = g(ξh)v̂n(ξ),

where g(ξh) = (1− aλ)− aλ exp(−i2πhξ). We see that

v̂n(ξ) = (g(ξh))n v̂0(ξ).

By Parseval’s Lemma we have

∥vn∥2 = |g(ξh)|n ∥v̂0∥2.

We see this finite difference scheme is stable only if |g(ξh)|n < C < ∞ for some constant C
as n→ ∞. This requires that |g(ξh)| ≤ 1. In our example above, this requires

|g(ξh)|2 = ((1− aλ)− aλ cos(−2πhξ))2 + (aλ sin(−2πhξ))2

= 1− 4aλ(1− aλ) sin2

(
1

2
hξ

)
.

Now since 0 ≤ |g|2 ≤ 1, we can express this as −1 ≤ −4aλ(1 − aλ) sin2
(
1
2
hξ

)
≤ 0. Since

sin2
(
1
2
hξ

)
≤ 1, we see that |g(ξh)| ≤ 1 only if 0 ≤ aλ ≤ 1. This first requires that a > 0 and

further that λ ≤ 1/a. When this holds the finite difference method is stable. We see that if
a < 0 or if λ is too large the finite difference method is unstable. Provided the method is
stable and consistent, it turns out for well-posed PDEs, this is enough to ensure convergence.
This is the content of the Lax-Richtmyer Equivalence Theorem.

The above analysis can be performed more succinctly by noting that our substitution
of the fourier transforms is equivalent to substituting into our finite difference scheme the
function vnm = g(hξ)n exp(i2πhξm), which can be simplified to vnm = g(θ)n exp(imθ) where
θ = 2πhξ. For the example above, we see this would yield

vn+1
m = (1− aλ)vnm − aλvnm−1

g(θ)n+1 exp(imθ) = (1− aλ)g(θ)n exp(imθ)− aλg(θ)n exp(i(m− 1)θ)

= (1− aλ)g(θ)n exp(imθ)− aλg(θ)n exp(−iθ) exp(imθ)
g = (1− aλ)− aλ exp(−iθ).
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This was obtained by using that exp(i(m − 1)θ) = exp(−iθ) exp(imθ) and dividing both
sides by g(θ)n exp(imθ). This allowed us to solve for g. We then analyze the stability by
determining if the conditions are met for |g| ≤ 1 for all θ.

We remark that for some problems the function g can also depend on the time step
k = δt, as g(θ, k). When this is the case we can loosen this bound slightly, since what we
really need is that |g(θ, k)|n ≤ C as k = δt → 0. In this case we only need to have that
|g(θ, k)| ≤ 1 +Kk. This follows since limn→∞(1 + r

n
)n = er, so we would have |g(θ, k)|n ≤

(1 +Kk)n = (1 + KT
n
)n → eTK < C since k = δt = T/n and T,K are fixed.

This gives a brief introduction to Von Neumann Analysis for finite difference methods.
As a brief summary, the steps are (i) to substitute into the scheme vnm = gn exp(imθ), (ii)
solve for the function g(θ, k), (iii) perform analysis to determine under what conditions we
have |g(θ, k)| ≤ 1 +Kk. When this inequality condition is met, the finite difference method
is stable and for well-posed PDEs the method will produce approximations that converge to
the solution of the PDE by the Lax-Richtmyer Equivalence Theorem.

First-Order Hyperbolic PDE: Transport Equation
Consider the transport equation{

ut + aux, t > 0, x ∈ R
u(x, 0) = ϕ(x), t = 0, x ∈ R.

We first seek a model of the PDE at time tn by approximating the derivatives by the forward-
difference and central differences

ut(xm, tn) ≈ un+1
m − unm
δt

,

ux(xm, tn) ≈
unm+1 − unm−1

2δx
.

Substituting this in place of the derivatives yields

vn+1
m − vnm
δt

= −a
vnm+1 − vnm−1

2δx
.

Let λ = δt/2δx then we can rewrite this as

vn+1
m = vnm − λa

(
vnm+1 − vnm−1

)
.

To perform the von Neumann Analysis we substitute vnm = gn exp(imθ) which yields

gn+1eimθ = gneimθ
(
1− λa

(
eiθ − e−iθ

))
.

By dividing both sides by gneimθ and using Euler identity eiθ = cos(θ) + i sin(θ), we obtain

g(θ) = 1− i2λa (sin(θ)) .

For stability we need that |g(θ)| ≤ 1 for all θ. However, we have

|g(θ)|2 = 12 + 4λ2a2 sin2(θ) > 1, provided θ ̸= απ α ∈ Z.
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This shows the finite difference method based on these central differences is unstable. This
finite difference method does not yield useful results for approximating the solution of the
transport PDE. While we had a stable method based on backward differences in space that
worked for a > 0, how do we obtain a method that is stable for all choices of a ∈ R?

Lax-Friedrichs Method. Consider the finite difference method based at time tn that uses

ut(xm, tn) ≈
un+1
m − 1

2

(
unm+1 + unm−1

)
δt

, ux(xm, tn) ≈
unm+1 − unm−1

2δx
.

Using a similar analysis as above, we now obtain

gn+1eimθ = gneimθ

(
1

2
eiθ +

1

2
e−iθ − λa

(
eiθ − e−iθ

))
.

with λ = δt/2δx and

g(θ) = cos(θ)− i2λa sin(θ).

Stability requires |g(θ)| ≤ 1 for all θ. We have

|g(θ)|2 = cos2(θ) + 4λ2a2 sin2(θ) = 1− sin2(θ) + 4λ2a2 sin2(θ) ≤ 1.

This can be expressed as 1−sin2(θ)+4λ2a2 sin2(θ) ≤ 1, which becomes 0 ≤ (1− 4λ2a2) sin2(θ).
Since 0 ≤ sin2(θ), we will have stability provided that 4λ2a2 ≤ 1. This gives the stability
constraint that λ ≤ 1/(2|a|). This requires the δt and δx satisfy the inequality δt ≤ δx/|a|.
We remark that intuitively the Lax-Friedrichs method achieves stability by introducing some
dissipation through the averaging term 1

2
(vnm+1 + vnm−1). For any choice of a ∈ R the finite

difference method will be stable provided we take an appropriate choice of δt and δx sat-
isfying the inequality. The Lax-Friedrichs method and related variants can be used quite
generally to obtain approximate solutions of transport PDEs and other hyperbolic systems.

Parabolic PDE: Diffusion Equation
Consider the diffusion equation{

ut = κ∆u, t > 0, x ∈ R
u(x, 0) = ϕ(x), t = 0, x ∈ R.

We first seek a model of the PDE at time tn by approximating the derivatives by the forward-
difference and central differences

ut(xm, tn) ≈
un+1
m − unm
δt

, uxx(xm, tn) ≈
unm+1 − 2unm + unm−1

δx2
.

Substituting this in place of the derivatives yields

vn+1
m − vnm
δt

= κ
vnm+1 − 2vnm + vnm−1

δx2
.

Let λ = κδt/δx2 then we can rewrite this as

vn+1
m = vnm + λ

(
vnm+1 − 2vnm + vnm−1

)
.
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To perform the von Neumann Analysis we substitute vnm = gn exp(imθ) which yields

gn+1eimθ = gneimθ
(
1 + λ

(
eiθ + e−iθ − 2

))
.

By dividing both sides by gneimθ and using Euler identity eiθ = cos(θ) + i sin(θ), we obtain

g(θ) = 1− 2λ (1− cos(θ)) = 1− 4λ sin2

(
θ

2

)
.

We used the trigonometric identity sin2
(
θ
2

)
= 1

2
(1− cos(θ)). For stability we need that

|g(θ)| ≤ 1 for all θ. This requires −1 ≤ 1 − 4λ sin2
(
θ
2

)
≤ 1. Using that | sin2

(
θ
2

)
| ≤ 1, we

find this requires 0 ≤ 4λ ≤ 2, ⇒ 0 ≤ λ ≤ 1
2
. This gives the stability constraint

δt ≤ 1

2
κ−1δx2.

Provided this condition holds we have as δx → 0 from the Lax-Richtmyer Theorem the
finite difference method will produce an approximation that converges to the solution of the
diffusion PDE. An important issue that arises in practice is that that as we refine the mesh
with δx small we need to take δt ∼ δx2 very small to ensure stability. This can result in
finite difference approximations that seem overly expensive in some cases, especially when
the initial conditions are relatively smooth functions.

Crank-Nicolson Method for the Diffusion Equation. As an alternative way to ap-
proximate solutions of the PDE, we consider developing a finite difference method based at
time tn+1/2 for symmetry. We approximate the derivatives by the central differences

ut(xm, tn+1/2) ≈ un+1
m − unm
δt

,

uxx(xm, tn+1/2) ≈ 1

2

un+1
m+1 − 2un+1

m + un+1
m−1

δx2
+

1

2

unm+1 − 2unm + unm−1

δx2
.

Substituting this in place of the derivatives yields the Crank-Nicolson Method

vn+1
m − vnm
δt

=
κ

2

[
vn+1
m+1 − 2vn+1

m + vn+1
m−1

δx2
+
vnm+1 − 2vnm + vnm−1

δx2

]
.

Let λ = κδt/δx2 then we can rewrite this as

vn+1
m − 1

2
λ
(
vn+1
m+1 − 2vn+1

m + vn+1
m−1

)
= vnm +

1

2
λ
(
vnm+1 − 2vnm + vnm−1

)
.

To perform the von Neumann Analysis we substitute vnm = gn exp(imθ) which yields

gn+1eimθ

(
1− 1

2
λ
(
eiθ + e−iθ − 2

))
= gneimθ

(
1 +

1

2
λ
(
eiθ + e−iθ − 2

))
.

By dividing both sides by gneimθ and using Euler identity eiθ = cos(θ) + i sin(θ), we obtain

g(θ) =
1− λ (1− cos(θ))

1 + λ (1− cos(θ))
.
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For stability, we need that |g(θ)| ≤ 1 for all θ. Let γ = λ (1− cos(θ)), then we can express
g as

g(θ) =
1− γ

1 + γ
.

Since γ ≥ 0 for any λ ≥ 0 and choice of θ, we have that |g(θ|) ≤ 1. This shows the
Crank-Nicolson Method is unconditionally stable! In other words, for stability there is
no restriction on the choice of discretization parameters δx and δt. Of course, we still do
need to worry about the accuracy of the results produced by these methods. An advantage
of unconditionally stable methods is that the accuracy becomes the main concern on how
large the parameters can be taken.

This increased stability does come with a few extra computational steps. By letting vn

be a vector with components [vn]m = vnm and letting L be the finite difference operator
[Lvn]m = vnm+1 − 2vnm + vnm−1, we can express the collective updates as(

I − 1

2
λL

)
vn+1 =

(
I +

1

2
λL

)
vn.

The approximation at time tn+1 is only given by these equations implicitly. At each time-step
we have to solve the linear system to obtain

vn+1 =

(
I − 1

2
λL

)−1(
I +

1

2
λL

)
vn.

In practice, this often can be done either by using fourier transforms to obtain expressions
similar to those above, or by developing iterative methods, both of which often yield efficient
methods. The benefit of the Crank-Nicolson Method is that there are no stability restrictions
on how we refine δx and δt and we are only restricted by considerations of accuracy.

Second-Order Hyperbolic PDE: Wave Equation
Consider the wave equation

utt = c2∆u, t > 0, x ∈ R
u(x, 0) = ϕ(x), t = 0, x ∈ R.
ut(x, 0) = ψ(x), t = 0, x ∈ R.

As an initial method we will first approximate the derivatives by the central differences

ut(xm, tn) ≈
un+1
m − 2unm + un−1

m

δt2
, uxx(xm, tn) ≈

unm+1 − 2unm + unm−1

δx2
.

We remark there are also other alternative more sophisticated methods available for hyper-
bolic systems that often work better than this, but this gives one method to start. Substi-
tuting this in place of the derivatives yields

vn+1
m − 2vnm + vn−1

m

δt2
= c2

vnm+1 − 2vnm + vnm−1

δx2
.
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Let λ = c2δt2/δx2 then we can rewrite this as

vn+1
m = λvnm+1 + 2(1− λ)vnm + λvnm−1 − vn−1

m .

To perform the von Neumann Analysis we substitute vnm = gn exp(imθ) which yields

gn+1eimθ = gneimθλeiθ + gneimθ2(1− λ) + gneimθλe−iθ − gn−1eimθ.

By dividing both sides by gn−1eimθ and using Euler identity eiθ = cos(θ)+ i sin(θ), we obtain
that g must satisfy the following quadratic equation

g2 = (2λ cos(θ) + 2(1− λ)) g − 1 ⇒ g2 − βg + 1 = 0,

where β = 2− 2α with α = λ(1− cos(θ)). This arose since we had a second-order recurrence
equation with vn+1 depending on the two previous time-steps vn and vn−1. The solutions for
g are given by the roots of the quadratic equation as

g± =
β ±

√
β2 − 4

2
= 1− α±

√
α2 − 2α.

We used here that β2 = 4 + 4α2 − 8α. For stability, we need that |g±(θ)| ≤ 1 for all θ. The
roots for g are real when α2 − 2α ≥ 0 ⇒ α ≥ 2. For α = 2 we would have g± = −1. In
the case of α > 2, we have 1− α < −1 and |g−| > 1 for the negative root. This requires the
roots be complex and that α ≤ 2. To avoid 1− α becoming more than one, we also need to
have α ≥ 0. Together these give the conditions 0 ≤ α ≤ 2 to ensure that |g±| ≤ 1. Since this
must hold for all choices of θ, this provides the stability condition that 0 ≤ 2λ ≤ 2 which
requires λ ≤ 1. Since λ = c2δt2/δx2 this constrains the discretization to have δt ≤ δx/c.

We remark that this condition arises often, especially for explicit methods, and is referred
to as the Courant-Friedrichs-Lewy (CFL) condition. It can intuitively be interpreted as
requiring that we not propagate information of the solution on the mesh with spacing δx
faster than would occur in the wave equation, which has the wave speed c. The time-scale
τ for propagation of a wave with speed c over the distance δx is given by τ = δx/c. The
stability requires that our time-step satisfy δt ≤ τ .

While this finite difference method is stable, it will tend to accumulate many discretiza-
tion artifacts and not handle well the case when there are sharp jumps in the solution. There
are many alternative methods that have been designed that are better suited to the behav-
iors of the wave equation and more general applications of hyperbolic PDEs. We discuss one
such approach based on a coupled system of first-order hyperbolic PDEs.

Lax-Wendroff Method. We formulate the wave equation as a coupled system of first-order
hyperbolic PDEs. This is done by expressing the wave equation in “conservation form” by
defining

∂w

∂t
= − ∂

∂x
F, w =

[
u
v

]
, F =

[
−cv
−cu

]
.

The system above can be expressed completely in terms of w = [w(1), w(2)]T with w(1) =
u, w(2) = v. We can express the flux term as

F(w) = Aw, A =

[
0 −c

−c 0

]
, A2 =

[
c2 0
0 c2

]
.
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There are also other formulations for the wave equation. We can now discretize using the
Lax-Wendroff Method, which approximates the derivatives as

wt(xm, tn) ≈ wn+1
m −wn

m

δt
,

−Awx(xm, tn) ≈ −A
wn

m+1 −wn
m−1

2δx
+

1

2
δtA2w

n
m+1 − 2wn

m +wn
m−1

δx2
.

We use here that A2 is positive definite. Part of the intuition for this choice of discretization is
that the second term in wx approximation provides some dissipation that helps stabilize the
numerical method −Awx ≈ −Awx+

1
2
δtA2wxx. The extra term weakens with a diminishing

contribution to the solution as we take δt→ 0. Let λ = δt/δx be the constant that arose in
advection problems and γ = δt/δx2 be the constant that arose in diffusion problems. This
gives the Lax-Wendroff Method

wn+1
m = wn

m − 1

2
λA

(
wn

m+1 −wn
m−1

)
+

1

2
δtγA2

(
wn

m+1 − 2wn
m +wn

m−1

)
.

To analyze stability, we can reduce this to a scalar problem by performing a change of
variable to the eigenbasis, with q = Pw and P having columns that are the eigenvectors.
The eigenvalues r± of A are readily seen to be r± = ±c. This gives that PAP−1 = D where

D =

[
c 0
0 −c

]
.

By substituting in w = P−1q we obtain

P−1qn+1
m = P−1qn

m − 1

2
λAP−1

(
qn
m+1 − P−1qn

m−1

)
+

1

2
δtγA2P−1

(
qn
m+1 − 2qn

m + qn
m−1

)
.

By multiply each side by P we obtain the equivalent recurrence

qn+1
m = qn

m − 1

2
λD

(
qn
m+1 − qn

m−1

)
+

1

2
δtγD2

(
qn
m+1 − 2qn

m + qn
m−1

)
.

Clearly, if qn
m is stable then so is wn

m, since they only differ by a non-singular linear change
of variable. Since D is diagonal, the system decouples and we need only analyze the two
scalar problems

qn+1
m = qnm ± 1

2
cλ

(
qnm+1 − qnm−1

)
+

1

2
δtγc2

(
qnm+1 − 2qnm + qnm−1

)
.

We perform the von Neumann Analysis by substitution qnm = gn exp(imθ) which gives

gn+1eimθ = gneimθ ± icλgneimθ sin(θ)− λ2c2gneimθ (1− cos(θ)) .

We used that λ2 = δtγ. Let µ = λc, then this gives

g(θ) = 1± iµ sin(θ)− µ2 (1− cos(θ))

= 1± iµ sin(θ)− 2µ2 sin2

(
θ

2

)
.
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This has modulus

|g|2 = µ2 sin2(θ) +

(
1− 2µ2 sin2

(
θ

2

))2

= µ2 sin2(θ) + 1 + 4µ4 sin4

(
θ

2

)
− 4µ2 sin2

(
θ

2

)
= 1− 4µ2(1− µ2) sin2

(
θ

2

)
≤ 1

⇒ −µ2(1− µ2) ≤ 0.

We used here the trigonometric identity

sin2(θ) = 4 cos2
(
θ

2

)
sin2

(
θ

2

)
= 4

(
1− sin2

(
θ

2

))
sin2

(
θ

2

)
.

We have |g| ≤ 1 provided that µ2 ≤ 1 which requires λ < 1/c. Since λ = δt/δx this requires
δt ≤ δx/c. With these choices for δt and δx the method will be stable and by the Lax-
Richtmyer Theorem the finite difference method provides approximations that will converge
to the solution of the wave equation. The Lax-Wendroff Method can also be applied to other
hyperbolic PDEs and first-order hyperbolic systems of equations by putting them into the
conservation form above. This and related approaches are widely used to obtain approximate
solutions of hyperbolic PDEs for applications.

Summary. These approaches to analyzing finite difference methods is referred to as von
Neumann Analysis. There are many variants of this approach to deal with boundary condi-
tions, higher dimensions, and roles of geometry. The overall idea is to make use of fourier
representations and Parseval’s Lemma to determine how the amplitudes of the fourier modes
behave and what constraints we need on δt and δx as we refine the discretizations with
δt, δx → 0. There are also other related eigenvalue methods that can be used to analyze
stability. The fourier methods and eigenvalue approaches presented here can be used to gain
insights helpful in the selection and design of finite difference methods to approximate the
solutions of PDEs.
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