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Fourier Methods

We observed in separation of variables that it can be useful to expand functions by rep-
resenting them as a linear combination ϕ(x) =

∑
nAnXn(x) of the eigenfunctions Xn of the

differential operator L of the PDE. In the case that L = −d2/dx2 with boundary conditions
that are Dirichlet, Neumann, or Periodic, the eigenfunctions are trigonometric sine or cosine
functions. This property provides useful approaches for representing functions for solving
many PDEs, analysis, and other tasks. The eigenfunction expansions in this case are referred
to as Fourier Series. We now develop some of the related results, many of which also hold
more generally for eigenfunction expansions for other L and boundary conditions satisfying
symmetry conditions.

Fourier Series (formulation I): Consider functions on [−ℓ, ℓ] and the series expansion

ϕ̃(x) =
1

2
A0 +

∞∑
k=1

An cos

(
kπx

ℓ

)
+

∞∑
k=1

Bn sin

(
kπx

ℓ

)
,

where the coefficients are given by

Ak =
1

ℓ

∫ ℓ

−ℓ

ϕ(x) cos

(
kπx

ℓ

)
, Bk =

1

ℓ

∫ ℓ

−ℓ

ϕ(x) sin

(
kπx

ℓ

)
.

We will have to establish the conditions under which ϕ̃ reconstructs the function ϕ. This
expansion also can be expressed using complex variables using the Euler Identity exp(iθ) =
cos(θ) + i sin(θ). This gives the following equivalent series.

Fourier Series (formulation II): Consider functions on [−ℓ, ℓ] and the series expansion

ϕ̃(x) =
∞∑

k=−∞

cn exp (ikπx/ℓ) ,

where the coefficients are given by

ck =
1

2ℓ

∫ ℓ

−ℓ

ϕ(x) exp (−ikπx/ℓ) .

Conversion Between Formulations: We can relate the coefficients between these series
by using

Ak = ck + ck, Bk = −i (ck − c−k) ,

and

ck =
1

2
Ak − i

1

2
Bk.
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Even, Odd, and Periodic Extensions: Consider a function f and using its evaluation on
the interval [−ℓ, ℓ]. If we expand it as a Fourier series we obtain ϕ̃(x) which gives a periodic
extension of f to the whole real-line R, so ϕ̃(x + 2nℓ) = ϕ̃(x) for any n ∈ Z. We similarly
can consider a function f and use its evaluations on the interval [0, ℓ]. If we expand it as a

Fourier cosine series on [0, ℓ] with An = 2
ℓ

∫ ℓ

0
f(x) cos

(
mπx
ℓ

)
and Bn = 0, we obtain ϕ̃ which

is an even extension ϕ̃(−x) = ϕ̃(x) on the interval x ∈ [−ℓ, ℓ] and this further extends to
be periodic on the whole real line R. If we expand it as a Fourier sine series on [0, ℓ] with

An = 0 and Bn = 2
ℓ

∫ ℓ

0
f(x) sin

(
mπx
ℓ

)
, we obtain ϕ̃ which is an odd extension ϕ̃(−x) = −ϕ̃(x)

on the interval x ∈ [−ℓ, ℓ] and this further extends to be periodic on the whole real line R.

Fourier Transform: We define the Fourier Transform as the operation that gives us the
coefficients from a function Ak, Bk = Fk[ϕ] or equivalently ck = Fk[ϕ]. Collectively, this
gives {Ak, Bk}∞k=0 = F [ϕ] and {ck}∞k=−∞ = F [ϕ]. Here, we take B0 = 0. The Inverse
Fourier Transform is the operation that reconstructs the function from the coefficients to
yield ϕ̃ = F−1[{Ak, Bk}∞k=0] and equivalently ϕ̃ = F−1[{ck}∞k=−∞].

Example: Consider the function ϕ(x) = x on x ∈ [−ℓ, ℓ]. The Fourier coefficients are then
given by

A0 =
1

ℓ

∫ ℓ

−ℓ

xdx = 0, An =
1

ℓ

∫ ℓ

−ℓ

x cos
(mπx

ℓ

)
dx = 0,

Bn =
1

ℓ

∫ ℓ

−ℓ

x sin
(mπx

ℓ

)
dx =

1

ℓ

[
−x

(mπ

ℓ

)
cos

(mπx

ℓ

)]x=ℓ

x=−ℓ
= (−1)m+1 2ℓ

mπ
.

This gives the Fourier series expansion

ϕ̃(x) =
∞∑
n=1

(−1)m+1 2ℓ

mπ
sin

(mπx

ℓ

)
.

Example: Consider the function ϕ(x) = 1 on x ∈ [0, ℓ] and the Fourier sine series expansion.
The Fourier coefficients are then given by

An = 0

Bn =
2

ℓ

∫ ℓ

−ℓ

1 sin
(mπx

ℓ

)
dx =

2

ℓ

[
−
(

ℓ

mπ

)
cos

(mπx

ℓ

)]x=ℓ

x=0

=

(
2

mπ

)
(1− (−1)m) .

The term (1− (−1)m) evaluates to zero when m is even, so B2j = 0, and evaluates to 2 when
m is odd, so B2j+1 = 4/((2j + 1)π). This gives the Fourier series expansion

ϕ̃(x) =
∞∑
j=0

4

(2j + 1)π
sin

(mπx

ℓ

)
=

∑
m :odd

4

mπ
sin

(mπx

ℓ

)
.
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L2-Analysis: It is convenient to organize our analysis using the notion of Lebesgue integrals
and functions that are square integrable. We define the L2-inner product of two functions
f, g as the following operation

(f, g) =

∫ b

a

f(x)g(x)dx.

We say that a function is square integrable in the L2-sense, whenever the integral in (f, f)
is defined and evaluates to a finite value. More succinctly, we say that f is L2 and denote
this by f ∈ L2[a, b].

The L2-norm of a function f is defined as

∥f∥L2 =
√

(f, f) =

(∫ b

a

f(x)f(xdx

)1/2

.

Intuitively, we can think of the L2-inner product and L2-norm as a way to generalize the
dot-product and norm from linear algebra, where we would have (u, v) = uv̇ =

∑n
k=1 ukvk.

In the L2-inner product (f, g) the vector u, v with component index k ∈ Z is replaced with
the functions f, g with parameter x ∈ R. The sum over products of the discrete components
is now replaced with an integral over the continuum of products of the functions.

This also allows us to generalize many of the concepts from linear algebra and related
geometry. We define two functions to be orthogonal in the L2-sense if

(f, g)L2 = 0.

We also have for L2-inner-products the Cauchy-Swartz Inequality

(f, g) ≤ ∥f∥L2∥g∥L2 .

Least-Squares Approximation: To demonstrate the utility of these concepts and ap-
proaches, consider the problem of approximating a function f(x) using least-squares. For
an expansion ϕN(x) =

∑N
n=1 AnXn(x), this requires finding a collection of coefficients An so

that ∥ϕN − f∥2L2 is as small as possible. This requires solving the problem

min
An

∥ϕN − f∥2L2 .

We will consider here the case when the expansion functions {Xn} are mutually orthogonal,
(Xn, Xk) = 0 when n ̸= k. We can express this as (Xn, Xk) = (Xk, Xk) δn,k = ∥Xk∥2 δn,k.
The δn,k denotes the Kronecker δ-function which is one when the indices agree n = k and
zero when n ̸= k. We can solve the least-squares problem by differentiating in Ak and setting
the derivative to zero to find the critical points. This yields

∂

∂Ak

∥ϕN − f∥2L2 =
∂

∂Ak

(ϕN − f, ϕN − f) =
∂

∂Ak

(ϕN , ϕN)−
∂

∂Ak

2(f, ϕN) +
∂

∂Ak

(f, f)

=
N∑

n=1

N∑
n′=1

∂

∂Ak

AnAn′(Xn, Xn′)− 2
N∑

n=1

∂

∂Ak

An(f,Xn)

=
N∑

n=1

2An(Xn, Xk)− 2(f,Xk)

= 2Ak(Xk, Xk)− 2(f,Xk) = 0.
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This gives the solution

Ak =
(f,Xk)

(Xk, Xk)
.

This contributes in the expansion ϕN the term

AnXn(x) = (f, X̃n)X̃n, where X̃n =
Xn

∥Xn∥
.

From the inner-products, we see the contribution of the nth term in the expansion can be in-
terpreted geometrically as the projection of the function f onto the unit function X̃n. Note
how the form of the coefficient An gives the normalization terms, so that we can express
things in terms of X̃n with ∥X̃n∥ = 1. Hence the least-square fit projects orthogonally the
function f onto the hyper-plane spanned by linearly combining the functions {Xn}. The
L2-analysis gives a useful way to generalize a lot of the techniques and intuition from the
finite dimensional setting.

Convergence of Fourier Series: We consider three different types of convergence

(i) pointwise convergence

(ii) uniform convergence

(iii) L2-convergence.

We give below more details on each of these forms of convergence. We remark that which
form of convergence to use will depend on the circumstances and what types of information
is needed about the system.

Pointwise Convergence: We say a sequence of functions ϕN pointwise convergences to a
function f if for each x ∈ (a, b) we have

|ϕN(x)− f(x)| → 0, as N → ∞.

Uniform Convergence: A sequence of functions ϕN uniformly convergences to a function
f if on [a, b] we have

sup
x∈[a,b]

|ϕN(x)− f(x)| → 0, as N → ∞.

L2-Convergence: In the case of L2-convergences, we have the sequence ϕN converges to
function f on [a, b] in the L2-sense

∥ϕN − f∥2L2 → 0, as N → ∞.

We now state some results concerning when Fourier series converge in these different ways.
Consider a target function f(x) and the Fourier series approximation ϕN =

∑N
n=1AnXn(x).

Let f̄(x) = 1
2
[f(x−) + f(x+)], which gives a function having the average of the evaluations

around points of discontinuity. In particular, f̄ is the average of the left x− and right x+
limits of f at x.
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Theorem: Uniform Convergence. The Fourier series has uniform convergence on
[a, b] when the following holds

(i) f(x), f ′(x), f ′′(x) exist and are continuous on [a, b].

(ii) f(x) satisfies the same boundary conditions (BCs) as Xn(x).

Theorem: Pointwise Convergence.

• If f̄(x) is continuous and f̄ ′(x) exists then the classical Fourier series (sine,cosine) has
ϕN → f̄ with pointwise convergence.

• If f(x) is only piecewise continuous, then if f ′(x) exists and is piecewise continuous
the Fourier series has ϕN → f̄ with pointwise convergence.

Theorem: L2-Convergence. The Fourier series has L2-convergence for any f ∈ L2[a, b].
In other words, provided that f is a Lebesgue measurable function and has finite L2-norm

∥f∥22 =
∫ b

a

|f(x)|2dx < ∞.

We can see that the conditions become progressively less stringent as we move from
asking for uniform convergence to only pointwise convergence to L2-convergence. The L2

theory is also closely related to the concept of weak convergence.

Weak Convergence and Approximation: It can be shown that convergence in L2 implies
that (ϕN , w)L2 → (f, w)L2 for all w ∈ L2. This follows from the Cauchy-Swartz Inequality,
since (ϕN − f, w)L2 ≤ ∥ϕN − f∥ ∥w∥ and ∥ϕN − f∥ → 0. We can think about w serving the
role of a test function that probes the properties of a function g and reports its results as a
scalar value r as r = (g, w)L2 . With this in mind, the L2-convergence (ϕN , w)L2 → (f, w)L2

can be viewed as saying that for each test function w the function properties characterized
for ϕN by rN = (ϕN , w)L2 converge to the value r = (f, w)L2 . In this way, we obtain in
the limit from ϕN the same properties as when probing the function f , so rN → r. In this
sense, we have a weak notion of convergence of functions which turns out to be very useful
for analysis and in many practical settings, including numerical approximation.

Green’s Identities: In many of the derivations we will use integration by parts which
follow a similar pattern. These also have analogues in higher dimensions. To organize our
calculations along these lines and to help in identifying these commonalities, we will make
use of the following two identities.

Green’s First Identity: ∫ b

a

uvxx − uxvxdx = [uvx]
x=b
x=a .

Green’s Second Identity:∫ b

a

uvxx − uxxvdx = [uvx − uxv]
x=b
x=a .
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Solution of Parabolic PDEs with Homogeneous Dirichlet Boundary Conditions
Consider 

ut = κuxx, t > 0, 0 < x < ℓ
u(0, t) = u(ℓ, t) = 0, t > 0
u(x, 0) = ϕ(x), t = 0.

(1)

We aim to construct a solution by seeking at each time t a representation in terms of the
Fourier series expansion

u(x, t) =
∞∑
n=1

un(t) sin
(nπx

ℓ

)
.

Formally, differentiating through the series using ∂
∂t

and ∂2

∂x2 yields the ODE

u′
n(t) = −

(nπ
ℓ

)2

κun = −κλnun.

In general, as we shall see in other examples, we do need to be cautious about differentiating
series, since this may not always yield a valid result, especially when the series expansion for
the derivative does not converge uniformly. In the ODE, we are using that the differential

operator is L = − ∂2

∂x2 and λn =
(
nπ
ℓ

)2
is the eigenvalue of LXn = λnXn. The eigenfunctions

are Xn = sin
(√

λnx
)
. The solution to the ODE is given by

un(t) = un(0) exp (−κλnt) .

To obtain the solution, we need to choose un(0) so that we match the initial condition at
time t = 0

u(x, 0) =
∞∑
n=1

un(0) sin
(nπx

ℓ

)
= ϕ(x).

This gives that

un(0) =
2

ℓ

∫ ℓ

0

ϕ(x) sin
(nπx

ℓ

)
.

This gives the Fourier series representation for the solution

u(x, t) =
∞∑
n=1

un(0) exp (−κλnt) sin
(nπx

ℓ

)
.

Alternative Derivation without Series Differentiation: We now show how we can
avoid differentiation of the series and obtain more reliable solution techniques. Consider the
Fourier expansions of the function u and its derivatives ut, ux, uxx,

un(t) =
2

ℓ

∫ ℓ

−ℓ

u(x, t) sin
(nπx

ℓ

)
dx, vn(t) =

2

ℓ

∫ ℓ

−ℓ

∂u

∂t
sin

(nπx
ℓ

)
dx,

qn(t) =
2

ℓ

∫ ℓ

−ℓ

∂u

∂x
sin

(nπx
ℓ

)
dx, wn(t) =

2

ℓ

∫ ℓ

−ℓ

∂2u

∂x2
sin

(nπx
ℓ

)
dx.
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Since ut = κuxx and the coefficients of Fourier series are unique we have vn = κwn. We now
use that we can expression u′

n as

u′
n(t) =

∂

∂t

2

ℓ

∫ ℓ

−ℓ

u(x, t) sin
(nπx

ℓ

)
dx =

2

ℓ

∫ ℓ

−ℓ

∂u

∂t
sin

(nπx
ℓ

)
dx = vn(t).

This yields that u′
n(t) = vn(t). Using that vn(t) = κwn(t) we obtain u′

n(t) = κwn(t). Now we
use integration by parts twice to relate wn(t) to un(t), which is equivalent to Green’s second
identity. Integration by parts yields

wn =
2

ℓ

∫ ℓ

−ℓ

∂2u

∂x2
sin

(nπx
ℓ

)
dx

=
2

ℓ

∫ ℓ

−ℓ

u
∂2

∂x2
sin

(nπx
ℓ

)
dx+

2

ℓ

[
u
∂

∂x
sin

(nπx
ℓ

)
− ux sin

(nπx
ℓ

)]x=ℓ

x=0︸ ︷︷ ︸
=0

= −
(nπ

ℓ

)2 2

ℓ

∫ ℓ

−ℓ

u sin
(nπx

ℓ

)
dx = −

(nπ
ℓ

)2

un = −λnun.

We used here in the integration by parts that the boundary terms u(0, t) = u(ℓ, t) = 0 and
similarly the sine terms vanish. This yields wn = −λnun and combining this with vn = κwn

we obtain the ODE

u′
n(t) = −κλnun,

with solution un(t) = un(0) exp (−κλnt). This yields the series representation for the solution

u(x, t) =
∞∑
n=1

un(0) exp (−κλnt) sin
(nπx

ℓ

)
.

We emphasize that while the solution is the same as we obtained before, it was derived
without differentiating through the series. As we will see for many PDEs, this alternative
approach will be crucial for obtaining viable solution techniques.

Solution of Parabolic PDEs with Inhomogeneous Dirichlet Boundary Conditions
Consider 

ut = κuxx, t > 0, 0 < x < ℓ
u(0, t) = h(t), u(ℓ, t) = j(t), t > 0
u(x, 0) = ϕ(x), t = 0.

(2)

We aim to construct a solution using a representation in terms of a Fourier series expansion
of the form

u(x, t) =
∞∑
n=1

un(t) sin
(nπx

ℓ

)
.
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In this case, we can already see such an expansion would not technically satisfy pointwise
the inhomogeneous boundary conditions, since when evaluated at x = 0 and x = ℓ we always
get the sine term is zero. However, we do know that the Fourier series can still converge to
approximate functions in the weaker sense of L2-convergence (which by design does not rely
on pointwise evaluations of the functions). In this case, we are seeking a weak solution u of
the inhomogeneous PDE in the sense{

(ut, w) = (κuxx, w), t > 0, 0 < x < ℓ, ∀w ∈ W
(u(x, 0), w) = (ϕ(x), w), t = 0, ∀w ∈ W .

(3)

In the notation, we are using the L2-inner product (f, g) = (f, g)L2 =
∫
f(x)g(x)dx. The W

refers to a space of test functions, such as C∞
0 . The C∞

0 here denotes the collection of all
infinitely continuously differentiable functions f with compact support in [−ℓ, ℓ]. Compact
support means for a given function f(x) there exists some compact set K ⊂ [−ℓ, ℓ] outside of
which the function vanishes, that is x ̸∈ K then f(x) = 0. For the boundary conditions, we
also will only require the weaker conditions limx→0 u(x, t) = h(t) and limx→ℓ u(x, t) = j(t)
for t > 0. The boundary conditions also can be formulated more abstractly to obtain even
weaker conditions, but we will use these limit conditions for now.

Now with this background and motivations in mind, we will derive a solution representa-
tion for the PDE using Fourier series. Since we are seeking a weak solution, we will use our
techniques based on integration instead of trying to differentiate the series, which we already
see would be problematic for this PDE given the inhomogeneous boundary conditions.

Consider the Fourier expansions of the function u and its derivatives ut, ux, uxx,

un(t) =
2

ℓ

∫ ℓ

−ℓ

u(x, t) sin
(nπx

ℓ

)
dx, vn(t) =

2

ℓ

∫ ℓ

−ℓ

∂u

∂t
sin

(nπx
ℓ

)
dx,

qn(t) =
2

ℓ

∫ ℓ

−ℓ

∂u

∂x
sin

(nπx
ℓ

)
dx, wn(t) =

2

ℓ

∫ ℓ

−ℓ

∂2u

∂x2
sin

(nπx
ℓ

)
dx.

Since ut = κuxx and the coefficients of Fourier series are unique, we have vn = κwn. We now
use that we can expression u′

n as

u′
n(t) =

∂

∂t

2

ℓ

∫ ℓ

−ℓ

u(x, t) sin
(nπx

ℓ

)
dx =

2

ℓ

∫ ℓ

−ℓ

∂u

∂t
sin

(nπx
ℓ

)
dx = vn(t).

This yields that u′
n(t) = vn(t). Using that vn(t) = κwn(t) we obtain u′

n(t) = κwn(t). Now we
use integration by parts twice to relate wn(t) to un(t), which is equivalent to Green’s second

8
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identity. Integration by parts yields

wn =
2

ℓ

∫ ℓ

−ℓ

∂2u

∂x2
sin

(nπx
ℓ

)
dx

=
2

ℓ

∫ ℓ

−ℓ

u
∂2

∂x2
sin

(nπx
ℓ

)
dx+

2

ℓ

[
u
∂

∂x
sin

(nπx
ℓ

)
− ux sin

(nπx
ℓ

)]x=ℓ

x=0︸ ︷︷ ︸
=−2nκπℓ−2((−1)nj(t)−h(t))

= −
(nπ

ℓ

)2 2

ℓ

∫ ℓ

−ℓ

u sin
(nπx

ℓ

)
dx− 2nκπℓ−2 ((−1)nj(t)− h(t))

= −
(nπ

ℓ

)2

un − 2nκπℓ−2 ((−1)nj(t)− h(t))

= −λnun − 2nκπℓ−2 ((−1)nj(t)− h(t)) .

We used here in the integration by parts that the boundary terms u(0, t) = u(ℓ, t) = 0 and
similarly the sine terms vanish. This yields wn = −λnun and combining this with vn = κwn

we obtain the ODE

u′
n(t) = −κλnun − 2nκπℓ−2 ((−1)nj(t)− h(t)) .

We find that the boundary terms now contribute in the ODE a source term in addition to
the previous decay term −κλnun. We can express the solution to the ODE using Duhamel’s
principle to obtain

un(t) = un(0) exp (−κλnt) +

∫ t

0

exp (−κλn(t− s)) gn(s)ds (4)

gn(s) = −2nκπℓ−2 ((−1)nj(s)− h(s)) .

This yields the series representation for the solution

u(x, t) =
∞∑
n=1

un(t) sin
(nπx

ℓ

)
,

where un(t) is given in equation 4. We emphasize this general solution was derived without
differentiating through the series. We remark that such series expansion approaches will
typically reduce a more challenging PDE problem down to the simpler problem of solving
a collection of ODEs. This demonstrates some of the ways Fourier methods can be used to
obtain representations of functions and solutions. In future lectures we will further develop
these techniques for analysis and solving other pdes.

Summary:
The Fourier Methods and related approaches provide powerful methods for obtaining solu-
tions of pdes and for performing analysis. We see that Fourier series can approximate quite
general functions only requiring that they be Lebesgue measurable and have finite L2-norm
∥f∥L2 < ∞. We also found that the L2 theory leads to a weak form of convergence for func-
tions with many useful properties. We also should mention we discussed here only a small
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subset of results and techniques using Fourier methods. For those interested in exploring
these topics more, Fourier methods and their generalizations are part of a larger field referred
to as Harmonic Analysis. We also remark that these techniques also play a prominent role
in numerical approximation of solutions of PDEs as part of the fields of Spectral Numeri-
cal Methods and Finite Element Methods. The Fourier methods and related techniques we
discuss here are also used in many other fields as part of obtaining representations of op-
erations on functions, approximating functions, data analysis and compression, and solving
other pdes. As we shall discuss in future lectures, many of the methods also can be extended
beyond 1d to higher dimensional spaces.
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