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Method of Characteristics

Constant Coefficient Case: Consider the constant coefficient first-order partial differ-
ential equation (PDE)

aux + buy = 0. (1)

This can be solved by the Method of Characteristics.

This PDE is equivalent to requiring that the derivatives of the function u at x = (x, y)
in the direction v = [a, b]T be zero,

lim
ϵ→0

u (x+ ϵv)− u(x)

ϵ
=

∂

∂ϵ
u(x+ ϵv)

∣∣∣∣
ϵ=0

= ∇u · v =

[
ux

uy

]
·
[
a
b

]
= aux + buy = 0.

We will now treat the case when a ̸= 0 which allows us to simplify the problem to

ux + cuy = 0.

This is obtained by dividing both sides by a to obtain c = b/a. We remark that any case
with not both coefficients zero can be reduced to this by doing a change of variable x̃ = y,
ỹ = x.

This requires the function is constant in the direction v = [1, c]T , so that u(x+αv) = u(x)
for any α ∈ R. This means the value is the same at any point x1 on the same line as x,
provided that x1 = x+ αv for some α. We can denote these lines by γ(s; c0) = x0(c0) + sv.
These lines γ are the Characteristic Curves for this PDE. We parameterized here the family
of curves γ(·; c0) using c0 for some chosen reference point x0 = x0(c0) for each curve.

Since all of these lines intersect the y-axis, we use reference points x0 = (0, y0). For any
point x there is always a way to choose α so that x + αv gives the y-intersection. This
requires x+ αv = x0 = (0, y0), which implies x+ α1 = 0 and y+ αc = y0. This allows us to
solve for y0 = y − xc. This gives the general solution to the PDE

u(x, y) = f (y − xc) ,

where f(s) = u(0, s).

Now we also alternatively could have constructed an equivalent solution by choosing as
our reference to parameterize the lines by the location where they intersect the x-axis. In
that case, we would have instead the reference points x0 = (x0, 0). Now for any point x we
choose α so that x+αv gives the x-intersection. This requires x+αv = x0 = (x0, 0), which
implies x + α1 = x0 and y + αc = 0. This allows us to solve for x0 = x − y

c
. This gives an

equivalent general solution to the PDE which can be expressed as

u(x, y) = g
(
x− y

c

)
,

where g(s) = u(s, 0).
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In general, the characteristic curves can be parameterized in many different ways and
how one does this in practice depends on the problem being considered. This often depends
on where the data is specified. If the data is specified along the y-axis then the first param-
eterization above would be chosen. If the data is specified along the x-axis, we would choose
the second approach. If the data were specified in some other way, such as along a curve
intersecting all the lines, one might use that curve to parameterize the characteristics. The
overall idea is to use that the solution of the PDE above is a function that remains constant
on each of the characteristic curves. We then construct a solution to the PDE by making
use of available information about what the constant value is on each of the characteristic
curves. We now give a few examples to illustrate this approach.

Example: Transport PDE:
2ux + 6uy = 0.

The characteristics are given by γ(s) = x0 + sv with v = [1, c] with c = 6/2 = 3. The
general solution is

u(x, y) = f (y − 3x) .

Example: Transport PDE with Conditions on y-axis:{
2ux + 6uy = 0, x > 0
u(0, y) = ϕ(y).

The characteristics are given by γ(s) = x0 + sv with v = [1, c] with c = 6/2 = 3. Since
the conditions give us information about the value of the function when the characteristics
interset the y-axis, it is most natural to use of the form of the general solution

u(x, y) = f (y − 3x) .

In this case we have u(0, y) = f(y) = ϕ(y). This gives the solution to the PDE

u(x, y) = ϕ (y − 3x) .

To illustrate how the general solutions we discussed are still equivalent, one could have
also used the less natural expression for this problem for the general solution u(x, y) =
g
(
x− y

c

)
. In that case, u(0, y) = g(−y

c
) = ϕ(y) and we conclude g(z) = ϕ(−cz) which yields

u(0, y) = ϕ
(
−c

(
x− y

c

))
= ϕ(y − cx). We end up with the same final solution, just through

a more cumbersome calculation. As problems become more complicated, choosing a good
parameterization for the characteristics can have a significant impact on the ease in solving
the problem analytically.

Example: Transport PDE with Conditions on x-axis:{
ux + 4uy = 0, y > 0
u(x, 0) = ϕ(x).

The characteristics are given by γ(s) = x0 + sv with v = [1, c] with c = 4/1 = 4. Since
the conditions give us information about the value of the function when the characteristics
interset the y-axis, it is most natural to use of the form of the general solution

u(x, y) = g
(
x− y

4

)
.
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In this case we have u(x, 0) = g(x) = ϕ(x). This gives the solution to the PDE

u(x, y) = ϕ
(
x− y

4

)
.

Summary: The form of the characteristic curves were determined by the vector field v.
Since v was constant these gave charactersitics that are straight lines. In general, the
characteristics can be more complicated curves. In some cases they even can be curves
in the whole plane that form closed loops, such as circles. In those cases, the domain of
the PDE is typically more restricted. In this case, we will need methods to determine the
characteristic curves as part of the construction of solutions of the PDE.

Variable Coefficient Case:

Consider the variable coefficient first-order partial differential equation (PDE)

a(x, y)ux + b(x, y)uy = 0.

We can again interpret this using directional derivatives as

∇u(x) · v(x) =
[
ux

uy

]
·
[
a(x, y)
b(x, y)

]
= a(x, y)ux + b(x, y)uy = 0.

Now the direction v for which the function has a zero derivative depends on x. For smooth
a, b we can view v = (a(x, y), b(x, y)) as a smooth vector field. We can look for integral
curves γ(s; c0) = (γ1(s; c0), γ2(s; c0), which are defined as having their tangents align with v
at each point,

∂

∂s
γ(s; c0) = v(γ(s; c0)).

This can also be expressed as

∂

∂s
γ1 = a(γ1, γ2) (2)

∂

∂s
γ2 = b(γ1, γ2). (3)

Since the curve given by γ has a tangent aligned with v we see that the function must be
constant along these curves since

∂

∂s
u(γ(s; c0)) = ∇u · ∂

∂s
γ = ∇u · v = 0.

We have
u(γ(s1; c0)) = u(γ(s2; c0)),

for any parameters s1,s2 corresponding to points on the curve γ(·; c0). These curves γ(·; c0)
are called the Characteristic Curves for the PDE. This yields the general solutions for the
PDE

u(x, y) = g(γ(0; c0)) = f(c0),
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where g(γ(0; c0)) = f(c0) = u(γ(0; c0)). The c0 = c0(x, y) is obtained from the requirement
that x = (x, y) lies on the characteristic curve γ(·; c0). This requires that x = γ(s; c0)) for
some choice of s.

Example:
yux − xuy = 0.

The characteristic equations are

∂γ1
∂s

= γ2 (4)

∂γ2
∂s

= −γ1. (5)

This has as a solution γ1(s; c0) = c0 cos(s) and γ2(s; c0) = c0 sin(s) with c0 ≥ 0. The
PDE has yux − xuy = du(γ)/ds = 0 so that for any x1 = (x1, y1) and x2 = (x2, y2) we
have u(x1, y1) = u(x2, y2) provided that x1 = γ(s1; c0) and x2 = γ(s2; c0) with the same
constant c0. Since these characteristics always intersect with the positive x-axis, we can use
as reference points x0 = (x0, 0) with x0 ≥ 0.

For a given x1 point with x1 = γ(s1) = c0[cos(s1), sin(s1)], we must have c0 = ∥x1∥ =√
x2
1 + y21 (using convention c0 ≥ 0 to ensure a unique parameterization of the characteris-

tics). We further have that ∥x0∥ = ∥[x0, 0]∥ = x0 = c0 = ∥x1∥ must hold. This gives the
general solution

u(x, y) = f(
√
x2 + y2) = f(∥x∥),

where f(r) = u(r, 0).

Special Case with a(x) > 0: In the case that a(x, y) > 0 we can formulate the PDE as

ux + b(x, y)uy = 0.

The characteristic equations then simplify to

∂γ1
∂s

= 1 (6)

∂γ2
∂s

= b(γ1, γ2), (7)

where γ(s; c0) = (γ1(s; c0), γ2(s; c0)). This would give γ1 = s up to a constant, so x(s) =
γ1(s) = s and y(s) = γ2(s) = γ2(x) ⇒ y = y(x). In this case, we can rewrite the character-
istic equations in terms of x, y as

dy

dx
= b(x, y(x)). (8)

We only need to solve for y(x) since x can be used to parameterize the curve (plays a role
similar to s above). This gives a family of solutions y = y(x; c0). In this case, general
solutions are given by

u(x, y) = f(c0),
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where f(c0) = u(0, y(0; c0)). The c0 = c0(x, y) is obtained from the requirement that
x = (x, y) lies on the characteristic curve γ(·; c0), here γ(x; c0) = (x, y(x; c0)). This re-
quires c0 such that x = γ(x; c0) = (x, y(x; c0)).

Example:
ux + yuy = 0.

The characteristic equations are

dy/dx = y ⇒ y(x; c0) = c0 exp(x).

The PDE has ux + yuy = du(x, y(x))/dx = 0 so that for any x1 = (x1, y1) and x2 = (x2, y2)
we have u(x1, y1) = u(x2, y2) provided that y1 = c0 exp(x1) and y2 = c0 exp(x2) with the
same constant c0. Since these characteristics always intersect with the y-axis, we can use
as reference points x0 = (0, y0). For a given x1 point with y1 = c0 exp(x1) we must have
c0 = y1/ exp(x1). This requires y0 = c0 exp(0) = c0 = y1/ exp(x1). This gives the general
solution

u(x, y) = f(y/ exp(x)),

where for this example f(s) = u(0, s).

Summary for Homogeneous Case:

1. Formulate the characteristic curve equations for the PDE.

2. Solve the equations to get a family of characteristic curves γ(·; c0).

3. General solutions are obtained of the form u(x, y) = f(c0), where f(c0) = u(γ(0; c0)).
The c0 = c0(x, y) is obtained from the requirement that γ(s; c0) = (x, y) hold for
some s.

As discussed above, this can be carried out readily in the case of constant coefficients or
when a(x, y) > 0. In the more general setting, a system of ODEs has to be solved to obtain
the characteristics either analytically or numerically. The method of characteristics can be
utilized quite generally to solve PDEs.

Inhomogeneous Case:
Consider the variable coefficient first-order inhomogeneous partial differential equation (PDE)

a(x, y)ux + b(x, y)uy = f(x, y;u).

We can again interpret this using directional derivatives as

∇u(x) · v(x) =
[
ux

uy

]
·
[
a(x, y)
b(x, y)

]
= a(x, y)ux + b(x, y)uy = f(x, y;u).

We look for characteristic curves γ(s; c0) = (γ1(s; c0), γ2(s; c0)), which are defined as having
their tangents align with v at each point,

∂

∂s
γ(s; c0) = v(γ(s; c0)).
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This can also be expressed as

∂

∂s
γ1 = a(γ1, γ2),

∂

∂s
γ2 = b(γ1, γ2). (9)

Since the curve given by γ has a tangent aligned with v we see that u must satisfy in s the
following ODE

∂

∂s
u(γ(s; c0)) = ∇u · ∂

∂s
γ = ∇u · v = f (γ(s; c0);u(γ(s; c0))) .

To simplify this notation we introduce w(s) = w(s; c0) = u(γ(s; c0)) then the ODE becomes

dw

ds
= f(s;w).

In this notation, we have f(s;w) := f (γ(s; c0);u(γ(s; c0))) = f (γ(s; c0);w(s)). By solving
this ODE for w, we have at each point x = γ(s; c0) along the characteristic curve that

u(x) = u(γ(s; c0)) = w(s).

In other words to obtain u, this reduces the problem to finding for any given x the corre-
sponding c0 for the characteristic curve and the value for s so x = γ(s; c0). This yields the
general solution for the PDE

u(x, y) = g(γ(0; c0)) + w(s∗) = ϕ(c0) + w(s∗),

where g(γ(0; c0)) = u(γ(0; c0)) = ϕ(c0), s
∗ is such that γ(s∗; c0) = x = (x, y), and w solves

the ODE. The c0 = c0(x, y) is obtained from the requirement that x = (x, y) lies on the
characteristic curve γ(·; c0). This requires that x = γ(s∗; c0)) for some choice of s∗.

The key difference with the homogeneous case is that once we have found the character-
istic curves, we need to solve an additional ODE. This is required, since the value of u is no
longer constant along characteristic curves. The ODE we solved for w captures how the initial
values of u and the source contributions f propagate as we move along a characteristic curve.

Example: {
ux + yuy = −1, x > 0, y > 0
u(0, y) = ϕ(y), y > 0.

The characteristic equations are

∂γ1
∂s

= 1,
∂γ2
∂s

= γ2. (10)

This has as a solution γ1(s; c0) = s and γ2(s; c0) = c0 exp(s). The PDE has ux + yuy =
du(γ)/ds = dw/ds = −1. For any point x1 = (x1, y1) we need to find the characteristic
curve that has x1 = γ(s1; c0) and intersects the positive y-axis. We use for the reference
points x0 = (0, y0) with y0 ≥ 0.
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For a given x1 point, we need x1 = (x1, y1) = γ(s1) = (s1, c0 exp(s1)), which requires
s1 = x1 and y1 = c0 exp(s1). This gives c0 = y1 exp(−x1) for the characteristic curve that
passes through x1 = (x1, y1). For this characteristic curve, we intersect the y-axis at the
point x0 = (0, y0) = γ(0; c0) = (0, y1 exp(−x1)), so y0 = y1 exp(−x1).

Now we need to solve the ODE dw/ds = −1. This has the solution w(s) = w(0)− s. We
have w(0) = u(γ(0; c0)) = u(0, y0) = ϕ(y0) = ϕ(y1 exp(−x1)). This gives the solution at the
point x1 = (x1, y1)

u(x1, y1) = ϕ(y1 exp(−x1))− x1.

This follows since u(x1, y1) = w(s1) and s1 = x1. Since the construction above can be
performed for any point x = (x, y) with x > 0, y > 0, the solution to the PDE is given by

u(x, y) = ϕ(y exp(−x))− x.
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Summary for Inhomogeneous Case:

1. Formulate the characteristic curve equations for the PDE.

2. Solve the equations to get a family of characteristic curves γ(·; c0).

3. Solve the ODE for how the initial conditions ϕ and source contributions f propagate
along the characteristic curves dw/ds = f(s;w).

4. The solution is of the form u(x, y) = ϕ(c0) + w(s∗), where ϕ(c0) = u(γ(0; c0)) and s∗

satisfies γ(s∗; c0) = (x, y). The c0 = c0(x, y) is obtained from the requirement that
γ(s; c0) = (x, y) for some s.

The method of characteristics can be utilized quite generally to solve PDEs. The overall
approach to constructing solutions also can be used to develop approximations and numerical
methods. For instance by solving the systems of ODEs that arise either using analytic
approximations or numerically. In practice, the method of characteristics are combined with
other techniques to obtain insights into the behaviors of pdes and as part of constructing
solutions.
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