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Classifying Second-Order PDEs

Change of Variable and Differentiation:
It is useful to investigate how the expression of differential operators is augmented when
performing a change of variable. Consider the linear change of variable in Rn of the form

ξ = Qx.

In more detail, this can be expressed in components as
ξ1
ξ2
...
ξn


︸ ︷︷ ︸

ξ

=


Q11 Q12 · · · Q1n

Q21 Q22 · · · Q2n
...

...
. . .

...
Qn1 Qn2 · · · Qnn


︸ ︷︷ ︸

Q


x1

x2
...
xn


︸ ︷︷ ︸

x

.

This can also be expressed as

ξℓ =
n∑

k′=1

Qℓk′xk′ .

We can now use the chain-rule to determine a relationship between ∂ξ := ∇ξ and ∂x := ∇x.
Consider

∂u

∂xk

= [∇xu]k =
n∑

ℓ=1

∂u

∂ξℓ

∂ξℓ
∂xk

=
n∑

ℓ=1

∂u

∂ξℓ
Qℓk =

[
QT∇ξu

]
k
,

where we used
∂ξℓ
∂xk

=
∂

∂xk

n∑
k′=1

Qℓk′xk′ =
n∑

k′=1

Qℓk′δkk′ = Qℓk.

The δkk′ is the Kronecker δ-function which is one only when k = k′ and zero otherwise. This
shows the linear change of variable impacts the gradients through the transpose and we have
the relationships

∇x = QT∇ξ, ∇ξ = Q−T∇x.

This also can be expressed using the notation

∂x = QT∂ξ, ∂ξ = Q−T∂x.

As we shall show, this is useful in transforming PDEs and putting them into canonical forms.
This is also useful later for development of solution techniques.

Classifying Second-Order PDEs
Consider the second-order constant coefficient PDE of the form

L[u] = a11uxx + 2a12uxy + a22uyy + a1ux + a2uy + a0 = 0.

It will be useful to also express this in the terms of coordinates x = (x1, x2) = (x, y) as

L[u] = a11ux1x1 + 2a12ux1x2 + a22ux2x2 + a1ux1 + a2ux2 + a0 = 0.
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The second-order terms turn out to dominate the behavior of the PDE, so we will write the
differential operator as L = L2 +L1 +L0, where L2 contains the second-order terms and L1

the first-order terms, and L0 the constant. Let

L2[u] = a11ux1x1 + 2a12ux1x2 + a22ux2x2

L1[u] = a1ux1 + a2ux2

L0[u] = a0.

We will primarily be concerned with the behavior of the second-order terms. This operator
can be expressed in components as

L2 = a11
∂2

∂x2
1

+ 2a12
∂2

∂x1x2

+ a22
∂2

∂x2
2

=

[ ∂
∂x1
∂

∂x2

]T
︸ ︷︷ ︸

∂x

[
a11 a12
a21 a22

]
︸ ︷︷ ︸

A

[ ∂
∂x1
∂

∂x2

]
︸ ︷︷ ︸

∂x

= ∂T
xA∂x.

We set here a21 = a12. Since A is symmetric it can be unitarily diagonalized by some
invertible change of basis ξ = P−1x to obtain A = PΛP−1. The Λ = diag(λ1, λ2) is the
diagonal matrix of eigenvalues λℓ of A. LetQ

T = P−1, then since A is unitarily diagonalizable
we have QQT = I = QTQ. We further have P−1AP = QTAQ = Λ. We next use our linear
change of variable relationships with ξ = Qx. In terms of the coordinate components, this
gives

L2 = ∂T
xA∂x = ∂T

ξ Q
TAQ∂ξ = ∂T

ξ Λ∂ξ =

[ ∂
∂ξ1
∂
∂ξ2

]T [
λ1 0
0 λ2

] [ ∂
∂ξ1
∂
∂ξ2

]
= λ1

∂2

∂ξ21
+ λ2

∂2

∂ξ22
.

There are three interesting cases (i) both eigenvalues are the same sign, (ii) the eigenvalues
are opposite sign, (iii) one of the eigenvalues is zero. This can be characterized by consider
the determinant

det(A) = λ1λ2 = a11a22 − a212.

We see each of the cases correspond to (i) det(A) > 0, (ii) det(A) < 0, and (ii) det(A) = 0.
By making an analogy with the classification of quadratic forms which have discriminant
d = a212 − a11a22, we refer to the cases as a/an

(i) elliptic PDE when d = a212 − a11a22 < 0.

(ii) hyperbolic PDE when d = a212 − a11a22 > 0.

(iii) parabolic PDE when d = a212 − a11a22 = 0.

We can put the differential equation L[u] = 0 above into a canoncial form using this
classification. Before doing this, we note the change of variable yields for the first-order
operator

L1 = aT∂x = aTQT∂ξ = bT∂ξ,

where we let b = Qa. The L0 operator does not transform under the linear change of
variable. We also remark that in the parabolic PDE case it is typically assumed that if
λ1 = 0 then b1 ̸= 0 or if λ2 = 0 then b2 ̸= 0, so that both derivatives appear at least at some
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order. With these considerations, we can obtain a canonical form for the PDE in each of the
cases.

Elliptic Case: Let zℓ =
1√
|λ1|

ξℓ, then the differential operator takes on the canonical form

L[u] = uz1z1 + uz2z2 + b1uz1 + b2uz2 + b0 = ∆u+ bT∇zu+ b0 = 0.

The L2[u] = uz1z1+uz2z2 := ∆u where ∆ is referred to as the Laplacian. Let f [u] = bT∇zu+b0
then we obtain

∆u = uz1z1 + uz2z2 = −f [u].

Here, the f [u] acts similar to a forcing or source term which can depend on the lower-order
derivatives of u. In the case that f = 0 we obtain the canonical form

∆u = uz1z1 + uz2z2 = 0.

Hyberbolic Case: We assume without loss of generality that the change of variable was
chosen so that λ1 > 0 > λ2. We again let zℓ =

1√
|λℓ|

ξℓ. The differential operator takes on

the canonical form

L[u] = uz1z1 − uz2z2 + b1uz1 + b2uz2 + b0 = uz1z1 − uz2z2 + bT∇zu+ b0 = 0.

We remark that by making the further substitution that t = z1 and x̃ = z2 we obtain

L[u] = utt − ux̃x̃ + bT∇zu+ b0 = 0.

We further let f [u] = f(t, x̃;u) = −bT∇zu− b0. This gives

utt = ux̃x̃ + f [u].

This shows the canonical form above for the hyperbolic PDE is similar to the wave equation
of a string under tension with an additional forcing term. Here, the forcing term can depend
on lower-order derivatives of u. For example, if f [u] = −ut this would act like friction
dampening the wave. As another example, if f [u] = −g this would act similar to gravity
pulling downward on the string. In the case that b = 0 we obtain the canonical form

utt = ux̃x̃.

Parabolic Case: We assume without loss of generality that the change of variable was
chosen so that λ1 = 0 and λ2 > 0, and b1 ̸= 0. We then let z1 = −b−1

1 ξ1 and z2 = 1√
|λ2|

ξ2.

The differential operator takes on the canonical form

L[u] = uz2z2 − uz1 + b2uz2 + b0 = 0.

We remark that by making the further substitution that t = z1 and x̃ = z2 we obtain

L[u] = ux̃x̃ − ut + b2ux̃ + b0 = 0.
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We further let f [u] = f(t, x̃;u) = b2ux̃ + b0. This gives

ut = ux̃x̃ + f [u].

The f plays a role similar to a forcing or source term that can depend on lower-order
derivatives of u in x̃. Note in the case that ut = 0 we obtain a similar form as in the forced
elliptic case (but now in one variable). This suggests the elliptic case can be viewed in some
circumstances as the steady-state of the parabolic case. In the case that f = 0 we have the
canonical form

ut = ux̃x̃.

Summary These are the cases for constant coefficient second-order partial differential equa-
tions (PDEs) in two dimensions. Some similar behaviors are also found in higher dimensions.
We briefly discuss a generalization of the elliptic case which arises in many theoretical studies
and applications of PDEs.
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Elliptic Operators in Rn

We now consider linear second-order differential operators in Rn of the form

L2 =
n∑

i=1

n∑
j=1

aij
∂2

∂xixj

=


∂

∂x1
∂

∂x2
...
∂

∂xn


T

︸ ︷︷ ︸
∂T
x


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...
an1 an2 · · · ann


︸ ︷︷ ︸

A


∂

∂x1
∂

∂x2
...
∂

∂xn


︸ ︷︷ ︸

∂x

= ∂T
xA∂x.

This operator is referred as being an elliptic operator if A is symmetric positive definite.
In this case, it can be diagonalized by a unity change of basis, so that Λ = QAQT , where
QQT = I = QTQ and Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues λℓ of
A. We will also use that Q−T = Q in this case. Now let ξ = Qx, then we have ∂ξ = Q∂x,
∂x = QT∂ξ, and ∂T

x = ∂T
ξ Q. This gives

L2 = ∂T
xA∂x = ∂T

ξ QAQT∂ξ = ∂T
ξ Λ∂ξ.

Expressing this in terms of the components, this gives the following canonical form

L2 =
n∑

i=1

n∑
j=1

aij
∂2

∂xixj

=


∂
∂ξ1
∂
∂ξ2
...
∂

∂ξn


T 

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn




∂
∂ξ1
∂
∂ξ2
...
∂

∂ξn

 =
n∑

ℓ=1

λℓ
∂2

∂ξ2ℓ
=

n∑
ℓ=1

∂2

∂z2ℓ
=: ∆.

In the last step, we used that λℓ > 0 and define zℓ =
1√
λℓ
ξℓ. The operator ∆u :=

∑n
ℓ=1

∂2

∂z2ℓ
u =∑n

ℓ=1 uzℓzℓ is referred to as the Laplacian.
By use of these types of changes of variable, we can take general PDEs and transform

many of them into canonical forms for which we have solution techniques. This allows us
to greatly extend the range of applicability of our solution techniques and gain insights into
the behaviors of diverse PDEs that arise in practice.
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