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Separation of Variables

General Technique: Consider a linear pde on an interval [0, ℓ] of the form{
ut = Lu, t > 0, 0 < x < ℓ
u(0, t) = u(ℓ, t) = 0, t > 0.

(1)

Let L be any linear operation that only depends on x. For example, a differential operator
such as L = ∂2

∂x2 . We have intentionally not included initial conditions, so we can focus first
on the differential relations and boundary conditions. We attempt to construct a solution
by using a functional form u(x, t) = X(x)T (t). Substituting above yields

X(x)T ′(t) = (LX(x))T (t), t > 0, 0 < x < ℓ

X(0)T (t) = X(ℓ)T (t) = 0.

If we divide both sides by X(x)T (t), we obtain

T ′(t)

T (t)
=

LX(x)

X(x)
= −λ,

where λ is a constant. It follows that this expression is a constant, since the only way for two
functions f(t) = g(x) that have different independent variables (here t and x) is for the f ,g
to be trivial functions that have no dependence on t or x and hence are constant. In other
words, the only way we can ensure equality for all choices of t and x is if f(t) = C = g(x),
where C is some constant. This allows us to reduce the problem to solving two differential
equations of the form

T ′(t) = −λT (t)
LX(x) = −λX(x), X(0) = X(ℓ) = 0.

The first has the solution T (t) = C exp (−tλ). The second equation has an interesting form.
We can view this equation as an eigenvalue problem, where −λ is an eigenvalue of the linear
operation L. The solution X(x) would then be the eigenfunction of the operator L when
the eigenvalue is −λ. Let’s denote this solution as Xλ(x). Then a solution of the pde above
is given by

uλ(x, t) = C exp (−tλ)Xλ(x).

Since we did not specify initial conditions or other requirements, there could be many so-
lutions of the pde in equation 1 by choosing different eigenvalues −λ. Since the equation
is linear, any additive combination u = a1uλ1 + a2uλ2 of solutions uλ1 and uλ2 would again
be a solution. This provides one general way to obtain a rich collection of solutions making
use of the properties of L. As we will see, the eigenfunctions of differential operators often
provide rich enough collections to represent general solutions of pdes in the form

u(x, t) =
∑
λ

aλuλ(x, t).
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We remark this approach based on eigenfunctions also can serve other useful roles, such as in
the analysis of the behaviors of the pde or in the development of numerical approximations.

We also consider the case when the time derivative is second-order{
utt = Lu, t > 0, 0 < x < ℓ
u(0, t) = u(ℓ, t) = 0, t > 0.

(2)

Let L be any linear operation that only depends on x. Much of the analysis will follow
similarly, so we focus on where things differ in this case. By substituting u(x, t) = X(x)T (t)
above we obtain dividing both sides by X(x)T (t) the equations

T ′′(t)

T (t)
=

LX(x)

X(x)
= −λ.

This reduces the problem to solving

T ′′(t) = −λT (t)
LX(x) = −λX(x), X(0) = X(ℓ) = 0.

The first has the solution T (t) = C1 cos
(
t
√
λ
)
+ C2 sin

(
t
√
λ
)
. The second equation again

can be viewed as an eigenvalue problem, where −λ is an eigenvalue of the linear operation
L. In fact, it is the same eigenvalue problem as before, so the solutions Xλ(x) also will be
the same. This gives solutions of the form

uλ(x, t) =
(
C1 cos

(
t
√
λ
)
+ C2 sin

(
t
√
λ
))

Xλ(x).

For many pdes, we can use combinations of these functions for representing solutions in the
form

u(x, t) =
∑
λ

uλ(x, t) =
∑
k

(
ak cos

(
t
√
λ
)
+ bk sin

(
t
√
λ
))

Xλk
(x).

Here, we parametrized the constants as the coefficients ak, bk over an index k ∈ Z assuming
a discrete collection of eigenvalues. To obtain more specific solutions, we will next consider
particular pdes using these approaches.

Solution of Parabolic PDEs with Dirichlet Boundary Conditions:
Consider 

ut = κuxx, t > 0, 0 < x < ℓ
u(0, t) = u(ℓ, t) = 0, t > 0
u(x, 0) = ϕ(x), t = 0.

(3)

Construct a solution by using the solution form

u(x, t) = X(t)T (t).

Substituting this into the pde, and ignoring for now the initial condition, we obtain

X(x)T ′(t) = κX ′′(x)T (t), t > 0, 0 < x < ℓ

X(0)T (t) = X(ℓ)T (t) = 0.
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We aim to obtain an expression that separates the two independent variables x and t. This
can be accomplished above if we divide both sides by κX(x)T (t), which yields

T ′(t)

κT (t)
=
X ′′(x)

X(x)
= −λ,

where λ is a constant. It follows that this expression is a constant, since the only way for
two functions f(t) = g(x) with different independent variables to be equal is if they have no
no dependence on t or x. This allows us to obtain for the pde the two Ordinary Differential
Equations (ODEs)

T ′(t) = −κλT (t)
X ′′(t) = −λX(x), X(0) = X(ℓ) = 0.

We can solve these to obtain the solutions

T (t) = C̃1 exp (−κλt)
X(x) = C̃2 sin(

√
λx) + C̃3 cos(

√
λx).

The boundary conditions X(0) = X(ℓ) = 0 requires C̃3 = 0 and
√
λ = π

ℓ
k for some k ∈ Z.

This gives λ = λk = k2π2

ℓ2
. We remark that −λ is the eigenvalue of the differential operator

L = ∂2

∂x2 on [0, ℓ] with Dirichlet boundary conditions and sin(
√
λkx) = sin

(
kπ
ℓ
x
)
are the

eigenfunctions. Now using that u(x, t) = X(x)T (t) we obtain solutions to the pde of the
form

u(x, t) = A exp (−tκλk) sin
(√

λkx
)
,

where A is a constant. Since any linear combination of these solutions is again a solution,
we obtain the general solution

u(x, t) =
∞∑
k=1

ak exp (−tκλk) sin
(√

λkx
)
=

∞∑
k=1

ak exp
(
−tκk2π2/ℓ2

)
sin

(
kπ

ℓ
x

)
. (4)

The reason we do not need to sum over k = −∞ to ∞ is that sin(·) is an odd function.
Since we have sin(λ−ky) = − sin(λky), this allows us to combine into one contribution of ak
the terms associated with ±k. The term with k = 0 is always zero in this case.

We can solve the initial value problem provided we can find a choice of ak to match ϕ(x).
This requires

ϕ(x) = u(x, 0) =
∞∑
k=1

ak sin
(√

λkx
)
=

∞∑
k=1

ak sin

(
kπ

ℓ
x

)
.

This can be done by using the sum-angle identity

sin(k1x) sin(k2x) =
1

2
cos ((k2 − k1)x)−

1

2
cos ((k2 + k1)x) .
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This yields the integral with k1, k2 ∈ Z

∫ π

0

sin (k1x) sin (k2x) dx =


π/2, if k1 = k2
0, if k1 ̸= k2
0, if k1 = 0 or k2 = 0.

We can obtain the coefficients ak∗ by using∫ ℓ

0

ϕ(x) sin

(
k∗π

ℓ
x

)
dx =

∞∑
k=1

ak

∫ ℓ

0

sin

(
kπ

ℓ
x

)
sin

(
k∗π

ℓ
x

)
dx

=
∞∑
k=1

ak

(
ℓ

π

)∫ π

0

sin (kx̃) sin (k∗x̃) dx̃

=
ℓ

2
a∗k.

This also shows the integral with k1, k2 ∈ Z evaluates to

∫ ℓ

0

sin

(
k1π

ℓ
x

)
sin

(
k2π

ℓ
x

)
dx =


ℓ
2

if k1 = k2
0, if k1 ̸= k2
0, if k1 = 0 or k2 = 0.

This gives the coefficients for matching the initial conditions

ak =
2

ℓ

∫ ℓ

0

ϕ(x) sin

(
kπ

ℓ
x

)
dx.

This choice of coefficients along with equation 4 gives the solution to 3.
We remark that the above integration can be viewed as a type of operator Fk that acts

on functions ϕ to obtain ak = Fk[ϕ]. In particular, Fk[ϕ] =
2
ℓ

∫ ℓ

0
ϕ(x) sin

(
kπ
ℓ
x
)
dx. This is

sometimes referred to as a Sine Transform. Related transforms and discretizations are used
widely in numerical methods for pdes, signal processing, and in data compression of images
(in JPEG format), among other applications. As we will discuss in more detail later, these
operations also have close connections with the Fourier Transform.

Solution of Parabolic PDEs with Neumann Boundary Conditions:
Consider 

ut = κuxx, t > 0, 0 < x < ℓ
ux(0, t) = ux(ℓ, t) = 0, t > 0
u(x, 0) = ϕ(x), t = 0.

(5)

We proceed as before to construct solutions of the form u(x, t) = X(t)T (t). In this case we
have

X(x)T ′(t) = κX ′′(x)T (t), t > 0, 0 < x < ℓ

X ′(0)T (t) = X ′(ℓ)T (t) = 0.
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To separate the variables x and t, we divide both sides by κX(x)T (t), which yields

T ′(t)

κT (t)
=
X ′′(x)

X(x)
= −λ,

where λ is a constant. We obtain the two differential equations

T ′(t) = −κλT (t)
X ′′(t) = −λX(x), X ′(0) = X(′ℓ) = 0.

We can solve these to obtain the solutions

T (t) = C̃1 exp (−κλt)
X(x) = C̃2 sin(

√
λx) + C̃3 cos(

√
λx).

The boundary conditions X ′(0) = X ′(ℓ) = 0 requires C̃2 = 0 and
√
λ = π

ℓ
k for some k ∈ Z.

This gives λ = λk = k2π2

ℓ2
. We remark that −λ is the eigenvalue of the differential operator

L = ∂2

∂x2 on [0, ℓ] with Neumann boundary conditions and cos(
√
λkx) = cos

(
kπ
ℓ
x
)
are the

eigenfunctions.
Now using that u(x, t) = X(x)T (t), we obtain solutions to the pde of the form

u(x, t) = A exp (−tκλk) cos(
√
λkx),

where A is a constant. We can combine these solutions to obtain the general solution

u(x, t) =
∞∑
k=0

ãk exp
(
−tκk2π2/ℓ2

)
cos

(
kπ

ℓ
x

)
. (6)

We can solve the initial value problem provided we can find coefficients that match the initial
conditions. This requires

u(x, 0) = ϕ(x) =
∞∑
k=0

ãk cos

(
kπ

ℓ
x

)
. (7)

This can be done by using the sum-angle identity

cos(k1x) cos(k2x) =
1

2
cos ((k2 − k1)x) +

1

2
cos ((k2 + k1)x) .

This yields the integral with k1, k2 ∈ Z

∫ π

0

cos (k1x) cos (k2x) dx =


π/2, if k1 = k2 ̸= 0
π, if k1 = k2 = 0
0, if k1 ̸= k2.
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We can obtain the coefficients ãk∗ by using∫ ℓ

0

ϕ(x) cos

(
k∗π

ℓ
x

)
dx =

∞∑
k=1

ãk

∫ ℓ

0

cos

(
kπ

ℓ
x

)
cos

(
k∗π

ℓ
x

)
dx

=
∞∑
k=1

ãk

(
ℓ

π

)∫ π

0

cos (kx̃) cos (k∗x̃) dx̃

=

{
ℓ
2
ã∗k, if k∗ ̸= 0
ℓã∗k, if k∗ = 0.

This shows the integral with k1, k2 ∈ Z evaluates to

∫ ℓ

0

cos

(
k1π

ℓ
x

)
cos

(
k2π

ℓ
x

)
dx =


ℓ
2

if k1 = k2 ̸= 0
ℓ if k1 = k2 = 0
0, if k1 ̸= k2.

This gives the coefficients for matching the initial conditions when k ̸= 0

ãk =
2

ℓ

∫ ℓ

0

ϕ(x) cos

(
kπ

ℓ
x

)
dx.

and when k = 0

ã0 =
1

ℓ

∫ ℓ

0

ϕ(x)dx.

This choice of coefficients along with equation 6 gives the solution to 5.
In practice, it is often convenient to be able to compute coefficients using just one form

for the integration. For this purpose, notation is typically used with a0 = 2ã0 and ak = ãk.
This gives for the solution

u(x, t) =
1

2
a0 +

∞∑
k=1

ak exp
(
−tκk2π2/ℓ2

)
cos

(
kπ

ℓ
x

)
. (8)

The coefficients can be obtained from the initial conditions using for k ≥ 0

ak =
2

ℓ

∫ ℓ

0

ϕ(x) cos

(
kπ

ℓ
x

)
dx.

This choice of coefficients using equation 8 gives another way to represent the solution of 5.

Solution of Hyperbolic PDEs with Dirichlet Boundary Conditions:
Consider the wave equation on the interval [0, ℓ]

utt = c2uxx, t > 0, 0 < x < ℓ
u(0, t) = u(ℓ, t) = 0, t > 0
u(x, 0) = ϕ(x), ut(x, 0) = ψ(x), t = 0.

(9)
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We construct solutions of the form u(x, t) = X(t)T (t). Substituting this into the pde, we
obtain

X(x)T ′′(t) = c2X ′′(x)T (t), t > 0, 0 < x < ℓ

X(0)T (t) = X(ℓ)T (t) = 0.

Dividing by c2X(x)T (t) yields

T ′′(t)

c2T (t)
=
X ′′(x)

X(x)
= −λ,

where λ is a constant. This reduces the problem to two differential equations

T ′′(t) = −c2λT (t)
X ′′(t) = −λX(x), X(0) = X(ℓ) = 0.

We can solve these to obtain the solutions

T (t) = C̃1 cos
(
t
√
c2λ

)
+ C̃2 sin

(
t
√
c2λ

)
X(x) = C̃3 sin(

√
λx) + C̃4 cos(

√
λx).

The boundary conditions X(0) = X(ℓ) = 0 requires C̃4 = 0 and
√
λ = π

ℓ
k for some k ∈ Z.

This gives λ = λk =
k2π2

ℓ2
. Now using that u(x, t) = X(x)T (t) we obtain solutions to the pde

of the form

u(x, t) =
(
A cos

(
t
√
c2λk

)
+B sin

(
t
√
c2λk

))
sin

(√
λkx

)
,

where A,B are constants. Since linear combinations are solutions, we obtain the general
solution

u(x, t) =
∞∑
k=1

(ak cos (tkcπ/ℓ) + bk sin (tkcπ/ℓ)) sin

(
kπ

ℓ
x

)
. (10)

We can solve the initial value problem provided we can find a choice of ak, bk that match
ϕ(x) and ψ(x). This requires

ϕ(x) = u(x, 0) =
∞∑
k=1

ak sin
(√

λkx
)
=

∞∑
k=1

ak sin

(
kπ

ℓ
x

)
ψ(x) = ut(x, 0) =

∞∑
k=1

bk

(√
c2λk

)
sin

(√
λkx

)
=

∞∑
k=1

bk

(
kcπ

ℓ

)
sin

(
kπ

ℓ
x

)
.

This can be done by using that the integral

∫ ℓ

0

sin

(
k1π

ℓ
x

)
sin

(
k2π

ℓ
x

)
dx =


ℓ
2

if k1 = k2
0, if k1 ̸= k2
0, if k1 = 0 or k2 = 0.
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This gives the coefficients for matching the initial conditions

ak =
2

ℓ

∫ ℓ

0

ϕ(x) sin

(
kπ

ℓ
x

)
dx

bk =
2

kcπ

∫ ℓ

0

ψ(x) sin

(
kπ

ℓ
x

)
dx.

By using this choice of coefficients in equation 10 we obtain the solution to equation 9.

Summary:
The Separation of Variables approach provides powerful methods for obtaining solutions of
pdes. This typically results in solutions represented by infinite series expansions involving
the eigenvalues and eigenfunctions of the spatial differential operator. These representations
are used in analysis to gain insights into the behaviors of pdes and for developing numerical
approximations. As we shall discuss in more detail, these methods have close connections
with the Fourier Transform, methods in harmonic analysis, and related approaches for pdes.
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