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W
e perform computational investigations of electrolyte-mediated interactions of
charged colloidal particles confined within nanochannels. We investigate the
role of discrete ion effects, valence, and electrolyte strength on colloid-wall in-

teractions. We find for some of the multivalent charge regimes that the like-charged
colloids and walls can have attractive interactions. We study in detail these interac-
tions and the free energy profile for the colloid-wall separation. We find there are
energy barriers and energy minima giving preferred colloid locations in the channel
near the center and at a distance near to but separated from the channel walls. We
characterize contributions from surface overcharging, condensed layers, and overlap
of ion double-layers. We perform our investigations using Coarse-Grained Brownian
Dynamics simulations (BD), classical Density Functional Theory (cDFT), and mean-
field Poisson-Boltzmann Theory (PB). We discuss the implications of our results for
phenomena in nanoscale devices.

1. Introduction

In many microscale and nanoscale systems, elec-
trolytes play a central role in collective interac-
tions, equilibrium phase behaviors, and kinet-
ics [6, 27, 54]. This includes transitions in the
stability of colloidal suspensions [11, 22, 60], elec-
trophoretic separation and detection in fluidic
devices [6,27,28,45,54], and biomolecular interac-
tions [3, 36,56]. Confinement of electrolytes and
charged objects between charged walls presents
additional effects often resulting in rich phenom-
ena that are particularly important in nanoscale
devices [45, 54]. This owes in part to such fea-
tures as the thickness of ionic layers becoming
comparable to other length-scales in the sys-
tem [4,10,21,27].

For sufficiently charged multivalent systems ad-
ditional phenomena can arise as observed in ex-
periments and predicted by theory [26, 31, 38, 44].
This includes the formation of condensed ion
layers on surfaces, over-charging of walls and

particles, and attractions between like-charged
objects [31, 32, 51]. These effects have formed
the basis for understanding phenomena such as
DNA condensation [7, 29, 30, 53, 55], colloidal sta-
bility [22, 31, 40], and attraction of like-charged
plates [26,38,44].

We further explore here phenomena of charged
systems in the context of colloidal particles con-
fined within nanochannels. We investigate the
behaviors of confined electrolytes and charged
particles through coarse-grained molecular-level
simulations using Brownian Dynamics (BD) and
classical Density Functional Theory (cDFT). We
also make comparisons with predictions from
mean-field Poisson-Boltzmann theory (PB). We
investigate the interactions between a charged
colloidal particle and the nanochannel wall as the
electrolyte concentration and particle charge are
varied.

We find that in some charge regimes the free
energy of the particle as a function of its position
within the channel develops significant minima
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in preferred locations near the channel center
and near to but separated from the channel wall.
In some regimes these preferred locations are
separated by significant energy barriers. Moti-
vated by nanofludic devices our results indicate
that colloidal particles could exhibit interesting
bi-modalities switching from long dwell-times in
locations near the channel center to locations near
the channel wall. For instance, this could have im-
plications for experimental protocols and devices
such as capillary electrophoresis used in fluidics
for separations and detection [27,45,54,61].

We investigate the origins of the free energy pro-
file by using BD simulations to characterize at the
coarse-grained molecular-level the ion-ion correla-
tions and the surface overcharging and condensed
ionic layers that form near the colloid surface and
channel wall. We further make comparisons with
results from classical Density Functional Theory
(cDFT). We find the cDFT make predictions con-
sistent with our molecular-level results but in
the most strongly charged regimes with signifi-
cant underestimation of the strength of effects
such as the free energy well-depth. For the free
energy profile of the confined particle, the com-
bined simulation and cDFT results demonstrate
the significant roles played by ion-ion correlations
and over-charging at both the charged walls and
colloid particle surface. We also show for the
strongly charged regimes considered that a mean-
field theory such as Poisson-Boltzmann theory is
not adequate in predicting system behaviors high-
lighting the importance of accounting for ion-ion
correlations and other discrete effects.

We introduce our BD simulations for the elec-
trolyte and colloidal particle in Section 2.1. We
introduce our cDFT description of the nanochan-
nel system in Section 2.2. We present the results
of our calculations including the counterion and
coion densities, colloidal particle free energy, and
ion-ion correlation functions in Section 3. We
discuss our findings and related phenomena ob-
served within nanochannels in Section 4. Addi-
tional information on the computational methods

developed and simulation protocols are discussed
in Appendix A - C.

2. Electrostatics of the
Nanochannel System

2.1. Brownian dynamics simulations

We consider colloidal particles confined within
a nanochannel having a slit-like geometry. The
walls of the channel are viewed as two like-charged
parallel plates. We consider electrolytes consist-
ing of both counterions and coions, using a coarse-
grained model related to the Restricted Primitive
Model (RPM) [57–59]. The discrete ion-ion inter-
actions are taken into account within a continuous
dielectric medium. A snapshot of the system is
shown in Fig. 1. After discussing our model for
the ions, we discuss some additional details on
the electrostatics of channels in Section 2.1.1.

We model the finite size of the ions and the
excluded volume of the colloidal particle using
the Weeks-Chandler-Andersen (WCA) interac-
tion potential [63]

(1)

φwca(r) =

{
4ε
[
(b/r)12 − (b/r)6 + 1

4

]
, r ≤ rc

0, r > rc.
.

The r is the distance between the center-of-mass
of the two particles. For a particle with steric
radius b we have rc = 21/6 · b. This ensures a
purely repulsive interaction between particles [63].
For the steric particle-wall interactions, we treat
the walls as a smooth continuum and use the
Lennard-Jones 9-3 potential

φlj93(r) = ε

[
2

15
(b/r)9 − (b/r)3

]
. (2)

Here, r denotes the nearest distance between
a particle and the wall. Electrostatic interac-
tions between ions and/or the colloidal particle
of charge q1 and q2 are given by the Coulomb
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interaction

φcoul(r) =
q1q2

4πε0εr
(3)

where ε is the dielectric constant of the back-
ground medium and we use SI units. To account
for the surface charge density σ of the colloidal
particle we use Gauss’ Law [19], allowing us to
use a point charge Q0 at the center-of-mass with
Q0 = 4πR2σ, where R is the radius of the parti-
cle.

Figure 1: Shown is a cut-away view of the electrolyte
and colloidal particle corresponding to σ = −6 and
Cm = 8 with counterions with +2 charge (orange) and
coions with −1 charge (blue). Strong correlations are
exhibited, where counterions and coions form clusters
and chains throughout the electrolyte and condensed
layers near the walls and colloidal particle surface.
For clarity the channel walls are not shown.

To handle the long range Coulumb interac-
tions we use the Particle-Particle Particle-Mesh
(PPPM) approach [25, 47] as implemented in
LAMMPS [46]. For the nanochannel with slit
geometry we use a variant of the PPPM method
which uses periodic boundary conditions in the
xy-directions [66]. This method has been ex-
tended to allow the simulated system to have a
net charge within the slab interior [5] which we
utilize in our simulations. Our overall system
is electrically neutral with the electrostatics of
channels with charged walls handled using our
approach discussed in Section 2.1.1.

In some of the simulations, we use a harmonic
potential to hold the colloidal particle at a given

location by

φtarget (x) =
k

2
|x− x0|2 , (4)

where x0 is the target location for the colloidal
particle location x. The total potential energy
associated with a configuration of the nanochan-
nel system including the counterions, coions, and
colloidal particle is given by

Φ[X] = Φcoul[X] + Φsterics[X] + Φtarget [X] , (5)

where we represent the configuration of colloidal
particle and ions by the composite vector X =
[Xcolloidal-particle,Xions]

T . To sample equilibrium
configurations we use Brownian Dynamics (BD)
based on the Langevin equations [15]

m
dV

dt
= −γV −∇Φ[X] + Fthm, (6)

where dX/dt = V and
〈
Fthm(s)FT

thm(t)
〉

=
2kBTγδ(t− s). For the time integration we use
a stochastic Velocity-Verlet method implemented
within LAMMPS [46,62]. All BD simulations are
performed in LAMMPS, with parameter values
as given in Table 1.

Throughout this paper we use BD to probe
only equilibrium properties of the system. The
BD simulations were equilibrated from random
initial conditions over times long enough for the
ions to diffuse at least two times across the di-
ameter of the nanochannel. We then collected
statistics on trajectories in which the ions dif-
fused at least five times across the nanochannel
diameter.
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Parameter Value
`z nanochannel width (z) 6 nm
`x, `y nanochannel length (x,y) 18 nm

σw wall surface charge -0.72 e/nm2

bw wall steric parameter lj93 0.5 nm

r
[w]
c wall cut-off parameter lj93 0.425 nm

εw wall energy lj93 2.27e+7 amu nm2/ns2

σ particle surface charge -3 e/nm2

R particle radius 0.75 nm
m0 particle mass 6.20e+3 amu
T temperature 300 K

kBT thermal energy 2.50e+6 amu nm2/ns2

ρ solvent mass density 6.02e+2 amu/nm3

µ solvent viscosity 5.36e+5 amu/(nm·ns)
εr solvent relative permittivity 80.1
b− counterion radius 0.116 nm
b+ coion radius 0.116 nm
q− counterion charge -1 e
q+ coion charge +2 e
m− counterion mass + solvantion 2.3e+1 amu
m+ coion mass + solvantion 2.3e+1 amu
c̄− reference ion concentration 0.214M
c̄+ reference ion concentration 0.128M

r
[w]
c wall LJ cutoff 0.425 nm

r
[c]
c coulombic cutoff 6 nm

∆t Langevin timestep 1.0e-5 ns
γ Langevin drag 6πµR
τe Langevin equilibration time 0.5ns

Table 1: Parameter values for the nanochannel model.
We use by default these values unless specified other-
wise.

2.1.1. Electrostatics of Channels

For channels having a slit geometry consisting of
two parallel walls, the electrostatics exhibit a few
interesting features. For channels of finite extent
with wall edges immersed in a reservior, the wall
surface charges generate the strongest electric
fields near the edges in the reservior. Through
cancellations in the Coulombic interactions the
wall charges do not generate significant net elec-
tric forces on the ions toward the middle region
of the channel away from reservior edges. As a
result, in the idealized limit of two infinite walls
having equal and uniform surface charge, the elec-
tric fields generated by the wall-charges exactly
cancel throughout the channel interior.

This can be seen by considering a single wall
with charge σ. This contributes to the electric
potential for the ion interactions as

(7)

φcoul-w (z) =

∫
q1σ(r′)

ε|zez − r′|
dxdy,

where r′ = xez + yez. The ei denotes the stan-
dard basis vector pointing in the ith coordinate

direction. For a constant uniform surface charge
σ this can be integrated to obtain the equivalent
potential

φcoul-w(z) = −(2πq1σ/ε)z. (8)

For two equally charged parallel walls of infinite
extent the net electric field has a Coulombic po-
tential that is independent of z. This can be seen
from

(9)

φ(z) = φcoul-w (z) + φcoul-w (L− z)
= −(2πq1σ/ε) (z + L− z)
= −(2πq1σ/ε)L.

As a consequence, the net electric field E =
−dφ/dz acting on ions confined between the walls
is zero.

It is worth mentioning that such cancellations
would not hold in the case of two walls that have
a finite extent or non-uniform surface charge. For
equal uniform charges this can be seen by inte-
grating equation 7 in polar coordinates for two
disk-like walls of radius R. Our results show
that for uniformly charged walls as their extent
becomes large the electric fields contribute neg-
ligably toward the middle region of the channel
away from the reserviors.

These results suggest a few interesting mecha-
nisms by which ion concentrations are determined
in the middle region of the channel and overall
electric neutrality is acheived. The results indi-
cate that the electric fields generated by the walls
near the reservior edges of the channel are primar-
ily responsible for driving ions into the channel or
expelling them to acheive electric neutrality. Also,
in the middle region of an infinite channel, the
lack of net electric force acting on the ions from
the walls gives an interesting perspective on the
electric double-layers. Rather than conceiving of
ions being pulled toward the charged walls, our re-
sults indicate once ionic concentrations are setup
from the edge effects, the double-layer structures
should be viewed as arising from how the walls
break symmetry. In particualr, since like-charged
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ions repel one another within the confined re-
gion and there are no balancing forces from ion
charges on the other side of the walls, the like-
charged ion repulsions can be viewed as pushing
ions from each other from the channel interior
towards the walls. This occurs in a manner very
similar to mechanisms underlying generation of
osmotic pressures [2, 64]. It is in this manner
that the double layers can arise in the channel
middle region without the need for local net elec-
tric forces generated by the two walls. From
electric neutrality the ion concentrations are de-
termined and such double-layers can be related
to the Poisson-Boltzmann theory (PB) for single
and two charged walls.

Our simulations capture such phenomena in
the middle region of charged channels. We use
periodic boundary conditions to capture behav-
iors similar to the limit of walls of infinite extent.
Since in this limit the walls exert no net electric
force on the ions, we handle implicitly the con-
tributions of the wall charge. Our approach is
similar to the Ewald summation method of Bal-
lenegger et al [5]. In this approach the energy of
the charged slab system is regularized by placing
two charged walls above and below the simulation
system, with charge densities that neutralize the
system. Thus, we are simulating a system that
is overall electrically neutral with two walls of an
appropriately chosen equal charge that serve to
balance the ions.

For mean-field Poisson-Boltzmann theory (PB),
charged walls are often handled by employing
Neumann boundary conditions to account for
surface charge explicitly [8, 34,41,65]. A crucial
consideration linking this to our molecular per-
spective is the condition of electric neutrality. For
channels this implies the implicit determination
of a surface charge for the walls. For our model,
electric neutrality allows us to distinguish differ-
ent choices for the wall charge which result in an
excess or deficit of ionic species in the interior
region driven by the edge electric fields. In this
manner our molecular model gives overall results

that can be directly related to continuum models
with explicit Neumann boundary conditions for
the wall charge [34,41]. We discuss how the ionic
species concentrations in the channel interior are
related to the implicit choice of the wall charge
in Section 2.1.2.

2.1.2. Model parameters

We investigate the structure of the double-layer
as the strength of charge of the colloidal particle
and as the ion concentrations are varied. We
characterize the charge of the negatively charged
colloidal particle Qparticle in terms of its surface
charge density σ, where Qparticle = 4πR2σ. We
performed simulations for colloidal particles with
surface charge densities of σ = -1, -3, and -6
e/nm2; for brevity we will refer to these three
cases without units as the systems with σ =
-1, -3, and -6. We mostly focus on divalent
cations with q+ = 2e and monovalent anions
with q− = −1e. We take as a reference concentra-
tion for the counterions c̄+ = 0.128M and for the
coions c̄− = 0.214M , expressed in molar units.
Other ion concentrations are a multiple Cm of
these baseline reference concentrations. For ex-
ample, Cm = 10 corresponds to a counterion
concentration c+ = Cmc̄+ = 1.28M and a coion
concentration c− = Cmc̄− = 2.14M . The simula-
tions are performed with a fixed number of ions,
with an excess of counterions so that the bulk
electrolyte solution is not neutral. The excess
counterions (cations) lead to an effective negative
charge on the nanochannel walls, given by the
condition of overall electric neutrality:

(10)

q−N− + q+N+ +Qparticle + 2Qwall = 0.

Here N− = V c− and N+ = V c+ denote the num-
ber of ions in the unit cell where V is the channel
volume. Qwall is the charge on each wall in the
unit cell. For a given fixed concentration of coions
and counterions the effective surface charge of
the wall is obtained from electric neutrality by
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solving for Qwall in equation 10. The wall surface
charge density for each system simulated is given
in units of e/nm2 in Table 2. The wall charge den-
sity increases with increasing ion concentration.
Additionally, the wall surface charge densities
vary slightly depending on the colloidal particle
charge, since we have a fixed number of ions in
the channel.

σ = −1 σ = −3 σ = −6
Cm = 1 -0.74 -0.72 -0.68
Cm = 2 -1.49 -1.46 -1.43
Cm = 4 -2.98 -2.96 -2.93
Cm = 6 -4.48 -4.46 -4.43
Cm = 8 -5.98 -5.95 -5.92
Cm = 10 -7.47 -7.45 -7.42

Table 2: Wall Surface Charge Density (units are
e/nm2). For the different regimes considered, we
give the implicit surface charge density that arises
from electric neutrality given by the condition in equa-
tion 10.

In the regimes we consider, the electrostatic in-
teractions vary in strength. We can characterize
the strength of the interactions by the electro-
static coupling constant [37] given by

g ≡ 2πq3`2Bσ. (11)

Here q = 2e is the charge of the divalent counte-
rions and σ is the charge density of either the col-
loidal particle or the channel walls. The Bjerrum
length `B, the distance at which the electrostatic
interaction energy is comparable to the thermal
energy kBT , is `B ≡ e2/4πkTεε0. In our systems
with divalent cations, the electrostatic coupling
constant ranges from g ≈ 17 for the least charged
system, up to g ≈ 188 for the most strongly
charged system. Previous studies of electrolytes
near flat surfaces [37] have shown that the coun-
terion density profiles agree with the PB theory
for g ≈ 1, the profiles show clear deviation from
PB theory for g = 10 and g = 100, and they show
good agreement with the strong-coupling limit for

g = 104 see [37]. Previous simulations of highly
charged spheres explored coupling constants rang-
ing from g = 26 up to g = 615 and found attrac-
tion between like-charged spheres [1, 20,52]. We
therefore expect our simulations to be in the
intermediate regime between weak and strong
coupling.

2.2. Classical Density Functional Theory
(cDFT)

In the classical density functional theory (cDFT)
calculations, we use the original form of the RPM,
i.e. we model the ions as interacting charged hard
spheres with diameters dα and charges qα, in a
background continuum dielectric medium to rep-
resent the solvent. We represent the colloidal
particle as a larger hard sphere of radius R that
has surface charge density σ. The ions are treated
as mobile fluid species, while the colloidal parti-
cle has a fixed spatial location. We account for
the steric interactions between the ions and the
colloidal particle using a hard sphere interaction
V (r) = ∞ for r < R, where r is the distance
between the ion and the center of the colloidal
particle. In addition, we add a smooth truncated
potential based on the Lennard-Jones (LJ) inter-
action to the surface of the colloidal particle,

V mLJ
α (r′) = 4εm

[(σm
r′

)12
−
(σm
r′

)6]
, (12)

where r′ is the distance between the ion and the
surface of the colloidal particle. We truncate and
shift this potential to obtain

V m
α (r′) = V mLJ

α (r′)−V mLJ
α (r′c), r′ < r′c, (13)

with V m
α (r′) = 0 for r′ > r′c, at large distances

from the colloidal particle. In our notation, the
subscript α refers to the index of the particular
ion species and the mLJ and m to the mod-
ified Lennard-Jones potentials. This repulsive
potential serves to smooth the surface of the col-
loidal particle to reduce mesh-size effects in our
discretized cDFT. We used εm = 0.5kBT and
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σm = d (where d is the ion diameter) for all cal-
culations. The channel boundaries are modeled
as hard walls with the interaction potential for
the ions

V w
α (z) =

{
∞, ions outside the channel
0, ions inside the channel.

(14)
The volume of fluid trapped between the two
channel walls is referred to as the “inside” region
and everything else as “outside” of the chan-
nel. This potential imposes that ions can not
penetrate the walls and must remain within the
channel region between the two walls.

We use a formulation of cDFT that follows
closely the work of Oleksy and Hansen [42] and is
very similar to that of Henderson et al. [23]. We
formulate the cDFT for an open ensemble, speci-
fied by the temperature T , the total volume V ,
and the chemical potentials µα of all fluid species
in the system. We discuss the relation of these
parameters to those used in the BD simulations
in Section 2.2.1.

The grand free energy of the system is given
as a functional of the ion densities ρα(r):

Ω[ρα(r)] =
∑
α

F [ρα(r)] (15)

−
∑
α

∫
dr (µα − Vα(r)) ρα(r). (16)

For notational convenience, it is to be under-
stood that Ω[ρα(r)] depends on all of the density
fields {ρα} collectively, where we use this con-
vention to reduce clutter. Here F [ρα(r)] is the
intrinsic Helmholtz free energy of the system.
Vα(r) = V + V m + V w denotes the neutral part
of the potential that acts on each ion from the
walls and the colloidal particle. The equilibrium
density profile ρ0α(r) minimizes the free energy
functional Ω[ρα(r)]. This can be expressed in
terms of the variational derivative [16]

δΩ[ρα(r)]

δρα(r)

∣∣∣∣
ρ0
α

= 0. (17)

At equilibrium the associated grand potential free
energy of the system is Ω0 = Ω[ρ0α(r)] [12]. The
intrinsic Helmholtz free energy consists of four
terms given by

F [ρα(r)] = Fid[ρα(r)] + Fhs[ρα(r)] (18)

+ Fcoul[ρα(r)] + Fcorr[ρα(r)].

The terms represent respectively the Helmholtz
free energies for the ideal gas (id), hard spheres
(hs), mean-field Coulombic interactions (coul),
and second order charge correlations (corr). In
formulating the DFT, approximations are needed
to capture each of the listed effects. We give more
details in Appendix A.

We emphasize the importance of the ion-ion
correlation term Fcorr in cDFT which allows for
capturing higher-order effects of density fluctua-
tions distinguishing the cDFT results from those
of mean-field theories like Poisson-Boltzmann
(PB) theory. As we shall show these correla-
tions play an especially important role in the
ion distributions observed in multivalent systems.
Without the correlation term (corr) and steric
term for hard spheres (hs), the free energy func-
tional F reduces to that of the Poisson-Boltzmann
theory. By including or excluding the different
terms in the free energy F we can investigate
different theories for the relative contributions of
various effects on the observed ion distributions
and colloid-wall interactions. We now briefly dis-
cuss each of the terms in equation 18.

The term Fid corresponds to the contributions
of an ideal gas which for a given density is known
exactly and is given in Appendix A. For the hard-
sphere interactions Fhs, we use the White Bear
version of the fundamental measure theory [49].
The mean-field Coulombic interaction Fcoul is
given by integrating the collective electric po-
tential and density of the ionic species, see Ap-
pendix A. The charge correlation term Fcorr is
based on a functional Taylor expansion of the
direct correlation function, which in turn is ob-
tained from the known analytic solution of the
mean-spherical approximation (MSA) for mix-
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tures of charged hard spheres given in [42]. De-
tailed expressions for each of these free energy
terms are given in Appendix A.

Minimization of the grand free energy in equa-
tion 15 with respect to the density profiles of
each ionic species is expressed mathematically
as a set of nonlinear partial differential-integral
Euler-Lagrange (EL) equations. We express this
in terms of residual equations Ri = 0 where

R1 = ln ρα(r) + Vα(r)− µα (19)

+

∫ ∑
γ

∂Φ

∂nγ
(r′)ω(γ)

α (r− r′)dr′

−
∑
β

∫
dr′ρβ(r′)∆cαβ(r− r′) + Zαφ(r)

R2 = nγ(r)−
∑
α

∫
dr′ ρα(r)ω(γ)

α (r− r′)

(20)

R3 = ∇2φ(r) +
4π`B
d

∑
α

qαρα(r) (21)

Here φ is the electric potential; other terms are
defined in Appendix A. The residual equations
are solved computationally within the spatial
domain of the nanochannel. The third resid-
ual equation R3 is Poisson’s equation for the
electrostatic potential φ(r). The cDFT calcu-
lations are performed using the open source
package Tramonto, available at https://github.
com/Tramonto/Tramonto. The EL equations are
solved in real-space on a Cartesian mesh using in-
exact Newton iterations for the density fields and
a finite element method for the electrostatic po-
tential. Details of these numerical methods and
discussions of related applications of Tramonto
to charged systems can be found in [13,14,24,39].

All quantities in the residual equations have
been expressed in terms of reduced units with
energies in units of kBT and lengths in units of
the ion diameter d. Zα is the valence of species
α. The dimensionless quantity appearing in R3

is sometimes called the plasma parameter or the
reduced temperature, T ∗ = d/`B.

2.2.1. Parameterization

We parameterized our cDFT calculations to yield
results in comparable physical regimes as the BD
simulations. This was done by taking the tem-
perature and dielectric constant so that `B = 7.1
Å as in the simulations, using the same surface
charge density on the colloidal particle, matching
the ion diameters d = 2b = 0.232 nm, and using
the radius R = 0.75 nm for the colloidal particle.
We used a channel with total width `z = 6 nm
as in the simulations. The channel walls extend
into the channel to the same distance as in the
simulations, so that we match the hard wall con-
dition in the DFT with the Lennard-Jones 9-3
repulsive walls in the simulations.

To reduce computational costs in the cDFT
calculations, we placed the colloidal particle with
its center on the z-axis, so that the symmetry of
the system allows for reflecting boundary condi-
tions to be used in the x- and y-directions and
thus only 1/4 of the particle needs to be directly
included in the calculations. For this purpose,
the size of the computational domain in the x
and y directions was `x = `y = 4.6 nm, for an
effective channel length of 9.28 nm (taking into
account the reflecting boundary through the cen-
ter of the particle). We used a mesh size of 0.058
nm in all the 3D calculations (i.e. a mesh size of
0.25d in reduced units, where d = 0.232 nm is
the diameter of the ions).

The BD simulations were performed in the
canonical ensemble at constant Nα, V , and T .
For cDFT it is more natural to work in the grand
canonical ensemble at constant µα, V , and T . To
make a correspondence between these two sets
of calculations, we set the chemical potentials in
the cDFT so that the average ion densities match
the BD simulations at the middle of the chan-
nel where nearly bulk conditions prevail. In the
middle of the channel, the electrolyte solution is
neutral, with c− = 2c+. We set the surface charge
density of the channel walls in the cDFT equal
to the effective surface charge densities given in

Page 8 of 33

https://github.com/Tramonto/Tramonto
https://github.com/Tramonto/Tramonto


Table 2.

We solve equations (36)-(37) in the nanochan-
nel geometry with Neumann boundary conditions
on φ(r) at the nanochannel walls and the colloidal
particle, i.e. we set the charge density of these sur-
faces. We employ Dirichlet boundary conditions
elsewhere, with a reflecting boundary through
the colloidal particle as described above.

To obtain the free energy associated with the
particle at a particular position within the chan-
nel, we performed a cDFT calculation at each
particle position and use the grand free energy
of the resulting density. We computed density
profiles of ions around the particle both in the
case with the particle in the center of the channel
and in the case with the particle in the bulk fluid
with no channel present. The density profiles
were found to be the same in both cases. We also
found that the density profile near the channel
wall, at a location in the channel far from the
particle, was also independent of the presence or
absence of the colloidal particle. This allowed
us a significant reduction in computational costs
by performing calculations of the wall density
profiles from 1D systems using cDFT. In our 1D
calculations we used a finer mesh size of 0.0232
nm for better resolution in the reported results.

2.3. Poisson-Boltzmann (PB):
Mean-Field Theory

In the limit that the ions are treated as point
particles and do not have any charge correlation
contribution to their free energy, the cDFT re-
duces to the Poisson-Boltzmann (PB) equation.
The PB limit corresponds to the Helmholtz free
energy functional with only the ideal gas and

mean-field Coulombic contributions given by

(22)

βF [ρα(r)] = βFid[ρα(r)] + βFcoul[ρα(r)]

=
∑
α

∫
drρα(r) (ln ρα(r)− 1)

+
∑
α

∫
drqαρα(r)φ(r),

where β = 1/kT . Minimization of the grand free
energy in equation 15 using the free energy F in
equation 22 gives

δΩ

δρα
= 0 = ln ρα(r) + qαφ(r)− βµ̃α. (23)

Here µ̃α = µα − Vα(r) is the spatially dependent
chemical potential including the contributions of
the ion interactions with the channel wall and
colloidal particle in equation 15. Solving for the
density gives

ρα(r) = exp[βµ̃α − qαφ(r)]. (24)

In the case that the electric potential vanishes to
zero in the bulk we have ρbα = exp[βµ̃α]. However,
in the nanochannel system the term ρbα should
be interpreted with some care. Since the steric
interaction potential depends on ion location we
technically have ρbα(r) = exp[βµ̃α(r)], which is
a known function of position. However, in the
limit of hard wall interactions that we use here,
the PB theory can be further simplified by using
boundary conditions to represent the walls and
colloidal particle. This eliminates the explicit
dependence of ρbα(r) on position. The remaining
part of the chemical potential µα is constant and
we simply have ρbα = exp[βµα], where ρbα are the
reference densities (ion densities in a reservoir in
equilibrium with the nanochannel system; these
are nearly identical to the ion densities in the
middle of the channel).

The electric potential satisfies Poisson’s equa-
tion ∇2φ = −(4π`B/d)

∑
α ρα. Combining this
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with the densities found in equation 24 gives the
non-linear Poisson-Boltzmann equations

∇2φ(r) = −4π`B
d

∑
α

ρbα exp[−qαφ(r)]. (25)

Here d is a reference length in the system which
for convenience we take to correspond to the ion
size but other choices are also possible.

3. Results

We first discuss results of the BD simulations, fol-
lowed by comparisons with cDFT and PB theory.
All figures show results from the BD simulations
unless explicitly noted otherwise.

3.1. Ionic Double-Layer Structure: BD
Simulations

We show in Figure 2 typical distributions for the
counterions and coions as the colloidal particle
position is varied in the case of σ = −6 and
Cm = 8. In this regime strong layering occurs
for the counterions near the walls and near the
colloidal particle surface. Also, a secondary layer
of coions occurs offset from the walls and the
colloidal particle surface adjacent to the counte-
rion layer. This is especially visible for the coions
shown in the right panel of Figure 2.

Figure 2: The average concentration of counterions
(left) and coions (right) as the colloidal particle posi-

tion is varied within the nanochannel, at X
(3)
0 = 3.0

nm, 4.6 nm, and 4.85 nm (top to bottom), for σ = −3
and Cm = 8.

We show the ion concentrations near the wall
for σ = −6 and varying Cm in Figure 3. The
other cases with σ = −1 and σ = −3 show
ion concentrations that are indistinguishable af-
ter scaling the concentration with the case with
σ = −6. For ions near the wall there are two
length scales associated with the ion layers. The
first length scale is the location of the closest ion
layer to the wall, which occurs at the minimum
of the Lennard-Jones potential of equation 2, at
`∗ = (18/45)1/6 bw = 0.43 nm. From the steric
interactions the next closest layer can form only
around `2 = `∗ + b+ + b−. For the parameters in
Table 1 we have `2 = 0.66 nm. We see both of
these length-scales manifest in the structure of
the ion layers. The double-layer essentially forms
according to the packing distance imposed by the
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ion and wall sterics. This becomes especially pro-
nounced as the concentration increases as seen in
Figure 3.

Figure 3: Ion concentrations near the channel walls
as Cm is varied, for σ = −6.

Other interesting features arise in the ion layers
near the wall as the ion concentrations increase.
The ion layers become smaller in width and more
dense as the ion concentration increases. For
small concentrations there is significant overlap
between the counterion and coion layers with
significant mixing of ions especially within the
secondary coion layer. As the concentration in-
creases the layers become more distinct. Interest-
ingly, for the counterion layer depletion occurs

for the counterions within the secondary layer
relative to the counterion concentration in the
bulk. This is especially pronounced once Cm > 4
as shown in the inset in Figure 3. For Cm < 4
the concentration of the counterions appear to
monotonically decay to the bulk counterion con-
centration.

In the nanochannel in the regimes we consider
the ion double-layer structure is in contrast to
many theories developed for weakly charged sys-
tems with a proposed stern layer and Helmholtz
plane demarcating a transition from relatively
immobile ions to a gaseous mobile phase of
ions [6,27]. From that perspective for our system
at high ion concentrations this transition effec-
tively occurs on the length scale of individual
ions. Near the wall the surface counterion and
coion positions are strongly correlated, as shown
in the simulation snapshot in Figure 4. Many of
the ions form pairs with opposing ions or small
clusters or chains. The wall surface is covered
in a condensed layer of counterions along with a
secondary layer of coions that forms as part of
clusters near individual counterions, see Figure 4.
This indicates some of the challenges involved in
developing theory for such highly charged and
concentrated regimes, where behaviors may be
dependent on individual ion-ion interactions and
charge clusters containing only a few ions.
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Figure 4: Ion configurations near the wall, for
σ = −6 and Cm = 8.

Next we show the density of counterions and
coions near the colloidal particle surface for the
three different surface charges σ = −1, σ = −3,
and σ = −6 in Figure 5, Figure 6, and Figure 7.
The concentrations are measured at distances
relative to the colloidal particle surface. The
relevant steric length-scale for the position of
the counterion layer in this case is the steric
length `∗∗ = 21/6(R + b) − R = 0.22 nm. The
coion layer forms at a distance corresponding to
`2∗ = `∗∗ + 2b± = 0.45 nm. Again the layer loca-
tions are primarily determined by the packing of
the ions as determined by the sterics.

For a relatively weak particle charge density
of σ = −1, the counterions form a tight layer
near the colloidal particle surface with significant
mixing of coions into this primary layer. After
this layer the coions exhibit concentrations that
rapidly approach a level comparable to the bulk,
see Figure 5. For σ = −3 the counterions also
form a tight layer near the colloidal particle sur-
face but with relatively little mixing of coions into
this primary layer, see Figure 6. The coions show
only a weak secondary peak. For the highest sur-
face charge density of σ = −6, a secondary layer
of coions forms. For the largest concentrations
some depletion of the counterions is exhibited in
the secondary layer relative to the bulk. This is

less pronounced than in the case of the walls due
to the high curvature of the particle, but can be
seen readily in the case with σ = −6e/nm2 and
Cm = 10 as highlighted in the inset in Figure 7.

Figure 5: colloidal Particle Double-Layer (σ =
−1.0).

For the smaller concentrations there is signifi-
cant overlap of the counterion layer with the coion
layer, with significant mixing in the secondary
layer. From examining configurations of the ions
around the colloidal particle we find this arises
from strong correlations between the counterions
and coions resulting in the formation of transient
charge clusters, as shown in Figure 8. As the col-
loidal particle charge increases, the layer of coun-
terions near the particle adheres more strongly
and the clusters are pushed increasingly toward
the secondary layer. For the case σ = −6 this
is especially pronounced with the double-layer
providing excess charge relative to what would
be required to achieve local electric neutrality.
This over-charging phenomenon can be seen in
Figure 9.
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Figure 6: colloidal Particle Double-Layer (σ =
−3.0).

Figure 7: colloidal Particle Double-Layer (σ =
−6.0).
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Figure 8: Ion configurations near the colloidal par-
ticle in bulk, for σ = −6 and Cm = 8, showing ion
pairs and clusters.

Figure 9: The total collective amount of charge Q(r)
contained within the spherical volume of radius r
around the colloidal particle, for σ = −6. Near the par-
ticle surface the double-layer provides excess charges
(over-charging) when countering the colloidal particle
charge. Q0 is the colloidal particle charge.

3.2. Free Energy of colloidal Particle
Location: BD Simulations

We next consider the free energy E(d) of the
system as a function of the colloidal particle posi-
tion d, see Figure 10. The wall and the colloidal
particle are both negatively charged, and the
free energy is repulsive when the particle is suffi-
ciently close to the wall. As the concentration of
the counterions and coions becomes sufficiently
large, attraction occurs between the like-charged
colloidal particle and wall. The free energy min-
imum occurs at a distance comparable to the
interaction length-scale of the first layers of ions
of the wall and the colloidal particle surface. The
sum of the length-scale for the first counterion
layer of the wall `∗ = 0.43nm and the length-scale
of the counterion layer of the colloidal particle
`∗∗ = 0.22nm is ` = `∗ + `∗∗ = 0.65nm, cor-
responding to d̄/12L ∼ 0.22, the approximate
location of the free energy minima in Figure 10.
The free energy minimum can become significant
compared to kBT at sufficiently large Cm. We
discuss this further in Section 4.
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Figure 10: Free energy profile of the colloid-wall distance from BD simulations. We show the free energy for
σ = -1.0. -3.0, and -6.0, as a function of the distance d between the particle and the wall. The results are
normalized by the thermal energy kBT and the half-width Lh = 1

2L of the nanochannel.

The free energy profile has an interesting non-
monotonic dependence on the colloidal particle
charge and electrolyte ion concentrations. We see
the depth of the free energy minimum well that
forms near the wall is not entirely monotonic as
the ionic concentration increases. Most clearly,
for σ = −6 the magnitude of the free energy well
depth is larger for Cm = 6 than for Cm = 8, but
then increases significantly for Cm = 10. There
is also a significant free energy barrier as large
as 2kBT that can arise separating the particle

from the free energy local minimum near the
wall. Making this even more interesting is that
the largest energy barriers appear to occur for
the intermediate ionic concentrations considered.
For instance see the cases with σ = −3,−6 and
Cm = 8. The free energy barrier appears to arise
from the condensed ion layers that form on the
colloidal particle surface and wall surface that
must coordinate and rearrange as the particle
approaches the wall, see Figure 11.

Figure 11: Top-down view of colloidal particle and ion distribution, showing typical distributions of ions
nearby the colloidal particle at different locations within the nanochannel. We show the locations corrresponding

to (i) the middle of the channel at X
(3)
0 = 3.0nm, (ii) the maximum attraction to the wall at X

(3)
0 = 4.6nm,

and (iii) near-contact with the wall having large repulsion at X
(3)
0 = 4.85nm.
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When the particle is at the free energy min-
imum, the counterions in the condensed layer
typically form transient ring-like structures near
the surface of the colloidal particle as shown in
Figure 11. These counterions appear to serve
double-duty in the condensed layer by screening
both the colloidal particle charge and the effec-
tive wall charge. This double-duty appears to
be the source of the resulting free energy gain.
When the colloidal particle is positioned at an
even closer distance to the wall it penetrates into
the condensed counterion layer. This excludes
counterions which results in a significant pressure
on the colloidal particle surface resulting in a
strong free energy penalty. It is important to
remark that the effective electric field from the
walls cancel so that all interactions beyond the
steric distance are mediated by the ions.

3.3. Ion-Ion Correlations: BD
Simulations

To further understand the system, we examine
the ion correlations in the condensed wall layer vs
in the center of the channel. The counterions and
coions exhibit strong self-correlations and cross-
correlations. The structures of these correlations
depend significantly on whether an ion is near
the channel wall or near the channel center. As
a matter of convention we refer to the ions near
the channel center as being in the bulk. We char-
acterize the correlations by calculating a radial
distribution function (RDF) g(r) for ions within

a permissible sampling region which we refer to
as in the bulk or as near the wall (see Appendix C
for details). The RDFs g(r) are normalized by the
reference number concentration given by taking
the count of all counterions or coions and dividing
by the channel volume. Throughout our simula-
tions reference values are determined from the
channel volume V = 1944 nm3 and from the refer-
ence number concentrations ĝ− = 250/1944×Cm
nm−3 and ĝ+ = 150/1944 × Cm nm−3. We re-
mark that since the density of ions can be large
near the walls the g(r) can exhibit long-range
normalized bulk values that are significantly less
than 1.0 and normalized wall values that are in
excess of 1.0.

The RDFs in the bulk are shown in Figure
12. In the bulk, the counterion-counterion g(r)
shows a correlation hole, with the counterions
not likely to be close together. The counterion-
coion interactions show strong correlations that
indicate a counterion has a cluster of coions in
its proximity at a distance roughtly twice the
steric distance. The coion-coion g(r)’s exhibit a
small feature around r = 0.5 which appears to be
related to ionic clusters that form with multiple
coions associated to a common counterion. Since
we have divalent counterions, it makes sense that
there should roughly be two coions associated
with each counterion. These results indicate that
on average the bulk electrolyte consists of triples
of ions with one counterion and two coions, but
not larger ion clusters.
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Figure 12: Radial distribution functions g(r) for ion-ion correlations in the bulk from the BD simulations.

Near to the wall, the RDF g(r) exhibits fea-
tures indicating much stronger correlations than
in the bulk. While the counterion-coion cor-
relations are similar to those in the bulk, the
counterion-counterion g(r) has a significant peak
at small r. This is from the large density associ-
ated with the condensed counterion layer near the
wall. As the charge increases there is a transition
around Cm ≥ 4 from a correlated gas-like state to
a state with significant correlations that are more
liquid-like [9]. The peak that develops moves
closer toward the steric length-scale of the ions
with peaks around 0.5 nm. The coion-coion corre-

lations near the wall exhibit a peak for all of the
regimes considered. From examining simulation
trajectories we find this arises from the strong cor-
relations of the coions with the counterions and
from bulk coions that transiently move to pene-
trate the strongly positively-charged condensed
layer. The coion-coion peak occurs independent
of concentration around a similar length-scale
0.5nm as the final counterion-counterion peaks
for large concentration. These results show that
there are some significant differences in ion-ion
correlations when near the wall relative to the
bulk.

Figure 13: Radial distribution functions g(r) for ion-ion correlations near the wall from the BD simulations.

3.4. Results from Classical Density
Functional Theory (cDFT) and
Poisson-Boltzmann (PB) Theory

The classical density functional theory (cDFT)
and Poisson-Boltzmann (PB) theory provide

other approaches for investigating phenomena
in electrolytes and charged systems that are ex-
pected to be more computationally efficient than
BD simulations. However, in cDFT and PB fur-
ther approximations are incurred in modeling the

Page 17 of 33



underlying physics of the charged system. We ex-
pect that cDFT could provide a decent basis for
describing the nanochannel system given the in-
clusion of terms accounting for charge correlations
and ion sterics. The steric and correlation effects
can be seen in the ionic layering and clustered
interactions in the simulation results particularly
in Figures 1 and 8. To further emphasize the
importance of these effects, we include in our
comparisons the mean-field Poisson-Boltzmann
(PB) theory, which we do not expect to perform
very well in the strongly charged regime. These
results further demonstrate the importance of
ion correlation effects and sterics to obtain cor-
rect phenomenology even at a qualitative level.
As we shall discuss, our results further highlight
the need for using descriptions beyond the mean-
field theory to obtain reliable results in strongly
charged regimes for the nanochannel system.

Figure 14: Comparison of the counterion densities
for the cDFT (dashed curves) and the BD simula-
tions (solid curves) as a function of distance r from
the channel wall, for wall charge densities from the
σ = −6 column of Table 2.

We compare the ion densities near the channel
walls as calculated from cDFT with the simula-
tion density profiles in Figures 14 and 15. We find
that cDFT predicts qualitatively similar trends
as the simulations but with some significant quan-

titative differences. At smaller values of Cm the
profiles exhibit monotonic behavior. As observed
in the BD simulation results, at larger values
of Cm the cDFT counterion densities exhibit a
distinct peak (condensed layer) followed by a de-
pleted region before attaining the bulk counterion
concentration, see Figure 14. The cDFT coion
distributions exhibit a similar trend as in the
BD results with a distinct peak occurring at the
location of the depleted counterion region before
attaining the bulk concentration, see Figure 15.
The depletion after the first layer of counterions
is not seen for ion densities calculated using the
Poisson-Boltzmann equation, nor for cDFT cal-
culations with only mean-field electrostatics (i.e.,
without the correlation term Fcorr). Instead, in
the absence of ion correlations, the counterions
exhibit a single peak near the wall that decays
monotonically to the bulk, whereas the coion den-
sity profiles simply increase monotonically from
the wall to their bulk concentration, with no
peak.

Figure 15: Comparison of the coion densities for the
cDFT (dashed curves) and the BD simulations (solid
curves) as a function of distance r from the channel
wall, for wall charge densities from the σ = −6 column
of Table 2.

Thus, the cDFT charge correlation terms cap-
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ture the charge density qualitatively as the ionic
concentration is varied, but as the system be-
comes more strongly charged there are some sig-
nificant quantitative deviations with the simula-
tion results. Compared to the BD simulations, at
smaller Cm the cDFT underestimates the magni-
tude of the coion peak but is in fairly good agree-
ment with the long-range behavior of the coun-
terion density profiles. At larger values, Cm > 6,
the cDFT overestimates the magnitude of the
coion peak and also overestimates the amount of
depletion in the counterion density. For all con-
centrations and wall charge densities, the cDFT
overestimates the countertion contact density at
the charged wall as compared with the BD simu-
lations (not shown).

Similar behavior is seen for the ion concentra-
tions around the colloidal particle, as shown in
Figures 16 and 17 for σ = −3. The cDFT un-
derestimates the magnitude of the coion peak,
especially for Cmult = 4, and again overestimates
the magnitude of the counterion contact density
(not shown).

Figure 16: Comparison of the counterion densities
for the cDFT (dashed curves) and the BD simulations
(solid curves) as a function of distance r from colloidal
particle, for σ = −3.

Figure 17: Comparison of the coion densities for the
cDFT (dashed curves) and the BD simulations (solid
curves) as a function of distance r from the colloidal
particle, for σ = −3.

We note that we are using the simplest form of
the charge correlation term in the cDFT, namely
the MSA expression for the direct correlation
function c(r), evaluated at the bulk density of the
ions (i.e. the densities in the middle of the chan-
nel). In our previous study of the interactions
between charged nanoparticles in electrolyte, we
found good agreement between cDFT and molec-
ular dynamics simulations in the density pro-
files [52]. However, for our cDFT approach and
for comparable regimes to our current studies,
discrepancies have been previously observed with
simulations having large ion concentrations and
in regions near to highly charged walls in the
work of Oleksy and Hansen [42]. Oleksy and
Hansen compared cDFT to Monte Carlo simu-
lations for a 1:1 electrolyte at 1M concentration
near a charged wall with reduced charge den-
sity σ∗ = 0.42 [42]. They also included a hard
sphere solvent, and found differences in the ion
density profiles of similar magnitude to those
found in our work. Improvements to the charge
correlation term, such as using the local weighted
density in the calculation of c(r), leads to excel-
lent agreement between cDFT and e.g. molecular
dynamics (MD) simulations near highly charged
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surfaces [33]. The RFD functional of Gillespie
and coworkers [18], which uses a local weighted
density in c(r), has been shown to give good
agreement with simulation results and experi-
ment in a variety of studies [17, 18]. Thus, in
strongly charged regimes a more sophisticated
approach beyond the simple bulk MSA treatment
is needed to capture ion correlations if quanti-
tative accuracy is sought near surfaces. In this

paper, our main focus was to gain further insight
into the qualitative role of charge correlations,
so the more simple cDFT treatment is adequate.
We also note that to our knowledge, more sophis-
ticated treatments of charge correlations have not
yet been implemented in a cDFT code that can
also do 3D calculations in the geometry we study
here.

Figure 18: Comparison of the free energy as a function of particle position in the nanochannel for cDFT,
mean-field cDFT, and PB theory with the BD simulations.

Next we consider the free energy for the col-
loidal particle as a function of position in the
nanochannel. For systems with large ionic con-
centrations and high charge density on the parti-
cle, the cDFT becomes computationally difficult
to converge given the localized structures that
develop within the density fields. In Figure 18
we compare cDFT to the simulation results only
for σ = −3 and Cm = 1.0 and Cm = 2.0, values
which are accessible with the cDFT computa-
tional methods. We see that cDFT captures the
trends on a qualitative level compared to the sim-
ulation results. In particular, for sufficiently high
charge, the cDFT also predicts the development
of a free energy minimum for the colloidal particle
near the wall. In contrast, both the PB theory,

which neglects sterics and correlations, and also
mean-field cDFT with no charge correlations, are
found to predict a purely repulsive interaction
energy between the colloidal particle and wall.
Figure 19 shows cDFT results for differing charge
densities on the colloidal particle, all at Cm = 2.0.
As the charge on the particle increases, the depth
of the minimum in the free energy increases, as
also found (for higher particle charges) by the
BD simulations. In some cases the cDFT also
predicts a small barrier in the free energy between
the minimum and the center of the channel, but
with cDFT we cannot access the high ion concen-
tration regimes where this barrier is as large as
in the BD simulations.

The difficulty in converging the cDFT calcula-
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tions was surprising, but the systems studied here
have higher ion concentrations and surface charge
densities than most previous cDFT studies. In
particular, our previous investigation of the inter-
actions between like-charged nanoparticles had
maximum ion concentrations of about 220 mM,
which is close to the smallest ion concentration in
the current study [52]. Decreasing the strength
of the electrostatic interactions slightly in the
cDFT, by increasing the reduced temperature
from T ∗ = 0.33 to T ∗ = 0.43, enabled conver-
gence of systems with higher ion concentration
(e.g., the σ = −3, Cm = 4 system). This change
corresponds to increasing the ion diameter from
0.232 nm to 3.0 nm. However, further increases
would be needed in T ∗ to get convergence at the
higher ion concentrations so we did not pursue
those calculations.

Figure 19: Free energy of the colloidal particle as a
function of position from cDFT as the particle charge
σ is varied.

While cDFT agrees qualitatively with the simu-
lation results there are some significant quantita-
tive discrepancies. The location of the free energy
minimum in the cDFT is significantly closer to
the nanochannel wall than in the BD simulations.
This is likely due to the somewhat more nar-

row ion layers in the cDFT. We also find cDFT
predicts a depth for the free energy well that is
significantly smaller than observed in the simula-
tion results, see Figure 18 and 19. Nevertheless,
it is clear from these results that the attractive
well results from ion charge correlations.

4. Discussion

In the regimes studied, the ions tend to form clus-
ters in the bulk electrolyte and a compact con-
densed layer near the channel walls. The interplay
between the ionic layers associated with the col-
loidal particle and the wall can result in a signifi-
cant attraction between the like-charged colloidal
particle and wall. As discussed in Section 3.1 this
occurs at a distance comparable to the thickness
of the condensed counterion layer. As can be
seen in Figure 3 and 7, there is a secondary layer
of negative coions just beyond the counterion
layer. At the distance of the free energy mini-
mum, the negatively charged colloidal particle
joins the secondary layer of negative coions. From
our comparisons between the BD simulations and
the cDFT calculations, we found the attraction
to be a consequence of the ion-ion correlations.
In contrast the mean-field theories, either PB or
mean-field cDFT, that neglect these correlations
predict a purely repulsive interaction between the
colloidal particle and wall.

The free energy of the colloidal particle loca-
tion also exhibits an energy barrier. For the case
of the strongly charged colloidal particle and ion
concentrations (σ = −6 and Cm = 8) there is a
significant condensed counterion layer on the par-
ticle surface. As the colloidal particle approaches
the wall, the condensed layer of the colloidal
particle merges with the condensed wall layer.
These rearrangements in some charge regimes
result in the free energy barriers as observed in
Figure 10. This effect appears to occur only for
intermediate ion concentrations of Cm = 6, 8, for
σ = −3 and -6, and disappears when the ion
concentration becomes sufficiently large. The
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significant rearrangements that occur as the ion
approaches the wall indicate a strong role played
by the ion-ion correlations and discrete structures
in determining the free energy of the wall-particle
interactions.

It is interesting to consider further the differ-
ences between multivalent and monovalent sys-
tems. We performed two additional sets of simula-
tions of monovalent systems with 1:1 electrolytes;
further details and results are in Appendix B. In
the first set of simulations, we keep the number
density of the monovalent ions the same as in
the multivalent system. While this case results
in a different charge density it retains the same
entropic contributions in the free energy. In the
second we keep the charge density of the system
the same but double the number of counterions,
which increases the number of charge carriers and
the entropic contributions in the free energy. In
both cases, we find that the 1:1 electrolyte no
longer results in a significant free energy mini-
mum. In the more strongly charged systems with
more charge carriers the free energy minimum is
further suppressed than in the case of the less
charged system which shows a very small (relative
to kBT ) and wide region of lower free energy, see
Figure 10 and Figure 20. This indicates that the
multivalent system may benefit significantly from
having fewer charge carriers, which reduces the
entropic penalties associated with condensation
of charge on the walls and strong correlations
at the colloidal particle surface. There is also
more of an energy gain or less entropic loss when
sharing a screening charge in common. It can
also be seen in the monovalent systems that the
electrolyte is more diffuse, without the presence
of transient ion clusters as in the multivalent
system. The simulation results indicate that it
is the asymmetry between the ion charges and
the reduced entropic penality for forming discrete
structures that is responsible for the rich phenom-
ena seen in multivalent electrolytes and charged
systems.

Thus, the simulation results show that both

the ion correlations, and the resulting discrete
ion configurations, play important roles in de-
termining the free energy of the system. In the
BD simulations strong electrostatic interactions
and multivalent ions can result in the formation
of discrete clusters, and the interactions can be
mediated at the level of individual ions and their
arrangements, as seen in Figures 1, 8 and 11.
This is expected to pose significant challenges
in formulating constitutive equations for contin-
uum descriptions of the system and in making
quantitative predictions. The radial distribution
functions we report for the counterions and coions
for the bulk and near the wall may be helpful
toward that aim, see Figure 12 and 13. The
significant quantitative differences between the
cDFT and the simulation results arise from the
correlation terms in the cDFT functional that
are based on the mean-spherical approximation
(MSA) for bulk electrolytes. It would be of inter-
est in future work to examine whether the RFD
functional [18], which is still based on the MSA
direct correlation function but for the local (in-
homogeneous) rather than bulk density, would
be sufficient to match the present simulation re-
sults, or whether improved expressions for the
direct correlation function, such as from the new
DH-extended MSA (DHEMSA) closure of Olvera
de la Cruz and coworkers [68], would give better
agreement. However, it may also be the case
that for nano systems with finite numbers of ions,
finite ion numbers lead to effects that cannot be
captured by density functional theories which by
construction only include the average ion density.

5. Conclusion

We have investigated the behaviors of a charged
colloidal particles confined in nanochannels. We
have found for multivalent 2:1 electrolytes that
strong ion-ion correlations can develop that give
interesting free energy profiles for the colloidal
particle position within the channel. We found
that the free energy profile can exhibit minima

Page 22 of 33



giving a preferred location for the colloid near the
channel center and near to but separated from
the channel wall. We found in some of the charge
regimes the minima can be separated by signif-
icant energy barriers. This appears to be the
result of over-charging of the double-layer that
forms near the colloidal particle surface, see Fig-
ure 9. Comparisons between our BD simulations
and cDFT and PB theory indicate the strong
role played by ion-ion correlations. As may be
expected from a mean-field, the PB theory was
found to be inadequate in capturing even qual-
itative features of the simulation results. The
cDFT approach is found to capture at a qualita-
tive level the main trends seen in the simulation
results both for the ionic densities and for the
free energy profile as the charge of the system is
varied. However, the cDFT results have quanti-
tative discrepancies with the simulation results,
in both the ionic layer densities near the walls
and in the depth of the free energy well. This
arises appears to arise from the MSA approach
used for the charge correlation term, which is
based on hard-sphere models of unconfined bulk
electrolytes. Our simulations indicate that near
surfaces the ions can form interesting ionic struc-
tures such as clusters or discrete layers differring
significantly from bulk behaviors. To obtain more
quantitative accuracy, such effects would have to
be captured likely requiring further development
of correlation terms for cDFT. Overall the cDFT
did make predictions in qualitative agreement
with most of the BD simulation results.

The results we report could have implications
for many phenomena within nanochannels and
more broadly nanodevices that rely upon electri-
cal effects. For instance, in the case of capillary
electrophoresis the free energy profile indicates
that colloidal particles within the device may hop
between positions close to the nanochannel wall
and close to the channel center. Given the ex-
pected differences in particle mobilities in these
locations, this could significantly affect arrival
time observations. More generally, our results

show that discrete ion-ion interactions may play
a dominate role in nanodevices requiring more so-
phisticated theory than proivided by traditional
mean-field approaches such as the widely used
Poisson-Boltzmann theory. Toward this aim in
developing better correlation terms for cDFT our
bulk and wall radial distribution results may be
useful. Many of our results are expected to be
useful in gaining insights into other charged sys-
tems such as biological macromolecules where
similar discrete ion interactions and collective
effects may be relevant.
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A. Classical Density Functional
Theory (cDFT) Formulation

We provide here some additional discussion and
details concerning our formulation of the cDFT.
As we discussed in Section 2.2, the Helmholtz
free energy consists of the terms:

F [ρα(r)] = Fid [ρα(r)] + Fhs [ρα(r)] (26)

+ Fcoul [ρα(r)] + Fcorr [ρα(r)] .

The terms represent respectively the Helmholtz
free energies for the ideal gas (id), hard spheres
(hs), mean-field Coulombic interactions (coul),
and second order charge correlations (corr). The
term Fid is the free energy of an ideal gas which
incorporates the translational free energy as

Fid[ρα(r)] (27)

= kBT
∑
α

∫
drρα(r)

[
ln(Λ3

αρα(r))− 1
]
.

Here the thermal de Broglie wavelengths Λα are
constants throughout and do not influence the
free energy of the system, so they will be ne-
glected.

For the hard sphere contribution Fhs we use
the fundamental measure theory of [49, 67] given
by

Fhs [ρα(r)] = kBT

∫
dr Φ[nγ(r)]. (28)

The energy density for the hard sphere sys-
tem Φ is a functional of the Rosenfeld nonlocal
(weighted) densities nγ given by

Φ = −n0 ln (1− n3) (29)

+
n1n2 − nV 1 · nV 2

1− n3
+

(
n32 − 3n2nV 2 · nV 2

)
·

· n3 + (1− n3)2 ln(1− n3)
36πn23(1− n3)2

.

The nonlocal densities are

nγ(r) =
∑
α

∫
dr′ ρα(r)ω(γ)

α (r− r′), (30)

where ω
(γ)
α are the weight functions. The weight

functions are based on geometric properties of
the interactions between hard spheres and are
given by the specific forms

ω(2)
α (r) = δ(Rα − |r|), ω(3)

α (r) = θ(Rα − |r|),

ω(0)
α (r) =

ω
(2)
α (r)

4πR2
α

, ω(1)
α (r) =

ω
(2)
α (r)

4πRα
,

ω(V 2)
α (r) =

r

r
δ(Rα − |r|), ω(V 1)

α (r) =
ω
(V 2)
α (r)

4πRα
.

(31)

The δ(r) denotes the Dirac delta function and
the θ(r) denotes the Heaviside step function.
The functional consisting of equation 28 - 31
is designed to match the Mansoori-Carnahan-
Starling-Leland (MCSL) equation of state for
multi-component hard-sphere fluids [35].

The contribution to the free energy Fcoul ac-
counts for the mean-field part of the electrostatic
interactions as

(32)

Fcoul [ρα(r)]

=
1

2

∑
αβ

∫
dr

∫
dr′ρα(r)ρβ(r′)

qαqβ
4πε0ε|r− r′|

=
1

2

∑
α

∫
drqαρα(r)φ(r).

Here qα is the charge of species α, ε0 is the per-
mittivity of free space, and ε denotes the relative
dielectric constant. We introduce the electro-
static potential φ(r) in the second expression.

The contribution to the free energy Fcorr ac-
counts for the charge correlations of the electro-
static interactions. We use for the charge corre-
lation the approach in [42] with

(33)

Fcorr [ρα(r)]

= −1

2
kBT

∑
αβ

∫
dr

∫
dr′

ρα(r)ρβ(r′)∆cαβ(|r− r′|).
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The correlation operator is

∆cαβ(|r− r′|) = cαβ(r) (34)

+
qαqβ

4πε0εkBT |r− r′|
− cHSαβ (r).

where cαβ(r) is the direct correlation function for
the bulk charged system [42]. The hard sphere
and Coulombic terms are subtracted from the
full direct correlation function cαβ(r) in equa-
tion 34 to avoid double counting relative to
the contributions already in the Fhs and Fcoul
terms. The form of cαβ(r) is taken from the
known analytic solution of the mean-spherical-
approximation (MSA) for a mixture of charged
hard spheres. Detailed expressions can be found
in the reference [42].

The grand free energy for the density field of
equation 15 is minimized by solving an associated
set of Euler-Lagrange equations. This is formu-
lated in terms of residuals with the objective of
obtaining densities so that Ri = 0. The numerical
methods used and other computational details
can be found in discussion of the Tramonto pack-
age in [13, 14, 24, 39]. The residuals are given
by

R1 = ln ρα(r) + V (r)− µα (35)

+

∫ ∑
γ

∂Φ

∂nγ
(r′)ω(γ)

α (r− r′)dr′

+
∑
β

∫
dr′ρβ(r′)uαβ(r− r′)

−
∑
β

∫
dr′ρβ(r′)∆cαβ(r− r′) + Zαφ(r)

(36)

R2 = nγ(r)−
∑
α

∫
dr′ ρα(r)ω(γ)

α (r− r′)

R3 = ∇2φ− 4π

T ∗

∑
α

qαρα. (37)

In these expressions we have adopted the con-
vention that all quantities are in reduced units,

so energies are in units of kBT , lengths in units
of d, and valence in terms of Zα for species α.
Additional information concerning classical Den-
sity Functional Theory (cDFT) in general can
be found in [23,42] and our specific approach to
cDFT in [13,14,24,39].

B. Monovalent Ion Correlations

We performed additional BD simulations for the
nanochannel system with a monovalent 1:1 elec-
trolyte with the conditions that σ = −6 and
Cm = 2, 8, 10 and Cm = 4, 16, 20. This allows us
to make comparisons with the multivalent cases
when changing either the total charge of the sys-
tem or while keeping charge fixed and changing
only the number of charge carriers for the counte-
rions. We report the free energy for the colloidal
particle position for constant number density in
Figure 20. We report the ion-ion correlations
and radial distribution function g(r) for ions in
the bulk and near the wall in Figure 21 and 22.
We discuss the g(r) analysis to distinguish these
regions in Appendix C.

We find for all of the monovalent cases that
there is no significant free energy minimum that
forms for a preferred location for the colloidal
particle within the channel, see Figure 20. This
is in contrast to the free energy minima in compa-
rable regimes seen in Figure 10. It is interesting
to note that the case with Cm = 10 shows some
free energy reduction as the colloidal particle ap-
proaches the wall but it is insignificant relative to
kBT . From observations of the simulation trajec-
tory one can see again significant ion condensa-
tion on both the walls and the colloidal particle
surface. A mechanism similar to that discussed
in Section 4 may be at play but it appears the
free energy gain is much reduced by the strength
of the individual ion charges and entropic penalty
associated with monovalent ions.
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Figure 20: Free Energy colloidal Particle Position.
Monovalent case with σ = −6, Cm = 2, 4, 8, 10, 16, 20.

We further explore the ion-ion correlations in
the monovalent cases. We find that there are cor-
relations between the individual counterions and

coions as one may expect. However, in the bulk
there is little to no coordination in the counterion-
counterion or coion-coion interactions, see Fig-
ure 21. Near the walls, while we find there is little
to no coordination in the counterion-counterion
interactions there is some significant coordina-
tion in the coion-coion interactions, see Figure 22.
From examination of the simulation trajectory of
the system this appears to arise from the tran-
sient insertion of coions into the counterion-rich
condensed layer near the walls. In contrast to
the multivalent case we find for the monovalent
electrolyte there are not significant ion clusters
or other discrete ion structures that form in the
bulk electrolyte.

Finally, cDFT calculations for monovalent elec-
trolyte with σ = −3 and Cm = 2, 4 also show
a monotonically increasing free energy as the
colloidal particle nears the channel wall, in agree-
ment with the simulations.

Figure 21: Ion Correlations in the Bulk. The RDF g(r) for ion-ion correlations in proximity to the wall for
the monovalent case with σ = −6, and Cm = 2, 4, 8, 10, 16, 20.
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Figure 22: Ion Correlations near the Wall. The RDF g(r) for ion-ion correlations in proximity to the wall
for the monovalent case with σ = −6, and Cm = 2, 4, 8, 10, 16, 20.

C. Ion-Ion Correlation Analysis

We perform analysis of the radial distribution of
the ions taking into account the proxmity of the
ions to wall vs the bulk regions and by choos-
ing carefully a normalization taking into account
accessible regions of ions. We split the channel
into two sampling regions. The first corresponds
to the wall case when the base ion is within the
distance d < 1nm from the channel wall. The
second is the bulk case when the base ion is a
distance d > 1nm from the channel wall. In the
confined channel geometry there are limited re-
gions where ions are permitted given either the
excluded volume of the wall or intrusion into the
bulk or wall sampling region. We handle this by a
careful normalization by accessible volume to ob-
tain a radial distribution function g(r). We give
details below with a schematic of our approach
in Figure 23.

For a bulk system the radial distribution func-
tion can be sampled for a base ion by counting
the number of ions within a spherical shell at
radius rk and thickness δr to obtain the normal-
ized distribution function ḡ(rk) = Hk/VkC0. The
Vk = 4π

3

(
R3
k − r3k

)
is the volume of the spherical

shell of thickness δr, Rk = rk + δr, Hk is the
histogram corresponding to the number of ions
within the kth spherical shell, and C0 is a normal-
izing constant typically chosen to correspond to

the bulk concentration.

Figure 23: Ion Radial Distribution Analysis. To dis-
tinguish between the behaviors of the ions in the bulk
vs near the channel wall in the condensed layer we
perform regional sampling of a radial distribution func-
tion. To avoid issues with ions excluded from the wall
domain or within other sampling region we perform
our radial distribution analysis g(r) with probability
conditioning on being within permissible regions. We
normalize the distribution at a given radius by the
accessible volume V (1) of the ions which correspond
to spherical caps.

To obtain a more spatially refined descrip-
tion of the ions taking into account excluded
regions we define the radial distribution func-
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tion as g(rk) = H̃k/ṼkC̃0 where H̃k for a given
base ion is the histogram count for all permis-
sible ions in the sampling region within the
spherical shell of radius rk and thickness δr
and C̃0 is a normalization based on the to-
tal concentration of ions. To obtain a radial
density we use the volume Ṽk corresponding
only to the part of the spherical shell that is
within the permissible sampling region. This
can be computed using the geometry of spheri-
cal caps to obtain Ṽk = V (1) = Vk − V (2) − V (3)

where V (2) = π
3

(
A2
k (3Rk −Ak)− a2k (3rk − ak)

)
and V (3) = π

3

(
B2
k (3Rk −Bk)− b2k (3rk − bk)

)
are the volumes associated with the shell of a
spherical cap of thickness δr [48]. We denote by
Ak = ak + δr, Bk = bk + δr, Rk = r + δr, see
Figure 23.

Our radial distribution function can be thought
of as the conditional probability function for a
pair of ions occupying the sample sampling region.
Alternative methods have been considered in the
literature such as sorting ions into z-slabs and
sampling only in the xy-directions [43,50]. Both
approaches provide very similar information and
allow for distinguishing between the behaviors of
ions in the bulk region and behaviors of ions in
the condensed layer near to the walls.

The approach we have introduced here allows
for a unified observable that can transition from
calculations involving sampling regions that are
relatively narrow similar to z-slabs to interme-
diate and larger regions that yield results ap-
proaching the bulk radial distribution. By use
of this radial distribution function, we are able
to obtain a refined understanding of how the ion
correlations change when in regions in the bulk
of the nanochannel versus when an ion occupies
the condensed ion layer near to the wall which
exhibits a quasi-two dimensional behavior.
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